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The TR2 and TR4 orphan nuclear receptors comprise the

DNA-binding core of direct repeat erythroid definitive, a

protein complex that binds to direct repeat elements in the

embryonic and fetal b-type globin gene promoters.

Silencing of both the embryonic and fetal b-type globin

genes is delayed in definitive erythroid cells of Tr2 and

Tr4 null mutant mice, whereas in transgenic mice that

express dominant-negative TR4 (dnTR4), human embryo-

nic e-globin is activated in primitive and definitive ery-

throid cells. In contrast, human fetal c-globin is activated

by dnTR4 only in definitive, but not in primitive, erythroid

cells, implicating TR2/TR4 as a stage-selective repressor.

Forced expression of wild-type TR2 and TR4 leads to

precocious repression of e-globin, but in contrast to induc-

tion of c-globin in definitive erythroid cells. These tempo-

rally specific, gene-selective alterations in e- and c-globin

gene expression by gain and loss of TR2/TR4 function

provide the first genetic evidence for a role for these

nuclear receptors in sequential, gene-autonomous silen-

cing of the e- and c-globin genes during development, and

suggest that their differential utilization controls stage-

specific repression of the human e- and c-globin genes.
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Introduction

The human b-globin locus is composed of e- (embryonic),

Gg- and Ag- (fetal), and d- and b-globin (adult) genes, which

are spatially arranged from 50 to 30 and developmentally

expressed in the same order. The embryonic e-globin gene

is transcribed during the first 8 weeks of human gestation in

yolk sac (primitive) erythroid cells. The first switch in

b-globin transcription results in the silencing of e-globin

and concomitant activation of fetal g-globin when definitive

erythropoiesis ensues in the fetal liver. Gradually, at around

the time of birth, a second switch from g- to b-globin

transcription occurs as the site of hematopoiesis shifts

again to the adult bone marrow (Stamatoyannopoulos and

Grosveld, 2001).

From genetic analyses of transgenic mice harboring

mutated human b-globin loci, two nonexclusive mechanisms

for globin gene ‘switching’ have been postulated: one is regu-

lation by sequences located in the globin promoters (auton-

omous gene control) (Magram et al, 1985; Townes et al, 1985;

Raich et al, 1990; Dillon and Grosveld, 1991), and the other is

competition among the globin genes for activation by the

locus control region (LCR), an element required for abundant

expression of all the globin genes (Grosveld et al, 1987; Choi

and Engel, 1988; Behringer et al, 1990; Enver et al, 1990). In

a competitive model, the gene closer to LCR should have a

higher probability of interaction with the LCR and hence be

more abundantly transcribed, unless the gene is autono-

mously silenced (Hanscombe et al, 1991; Tanimoto et al,

1999). Autonomous control plays a major role in silencing the

human embryonic e- and fetal g-globin genes in definitive

erythroid cells (Raich et al, 1990; Dillon and Grosveld, 1991),

whereas competitive control plays a major role in silencing of

the adult b-globin gene during the embryonic and fetal stages

(Tanimoto et al, 1999). However, the molecular basis for the

seamless integration of these regulatory phenomena is in-

completely understood.

In analyzing possible autonomous silencing mechanisms

governing transcriptional regulation of the e- and g-globin

genes, direct repeat (DR) elements (AGGTCA repeats), con-

sensus binding sites for nonsteroidal nuclear receptors, were

identified in the proximal promoters of both genes

(Figure 1A). Mutation of the DR sequences in the e-globin

promoter led to e de-repression in definitive erythroid cells of

transgenic mice (Filipe et al, 1999; Tanimoto et al, 2000). In

the hematologic condition known as hereditary persistence

of fetal hemoglobin (HPFH), the fetal g-globin gene is abun-

dantly transcribed in adulthood, with elevated synthesis

(up to 30%) of g-globin in adult erythrocytes (Stamato-

yannopoulos and Grosveld, 2001). HPFH mutations include

small and large deletions in the locus as well as point

mutations in the g-globin promoters. Of 16 documented

naturally occurring HPFH promoter mutations, six are located

within DR elements (Huisman et al, 1997). Introduction of

artificial or naturally occurring mutations into the DR element

leads to derepression of g-globin transcription in transgenic

mice (Berry et al, 1992; Omori et al, 2005). These obser-

vations initially suggested a central role for promoter DR

elements in both e- and g-globin silencing in definitive

erythroid cells.

Two nuclear factors, DRED (direct repeat erythroid defini-

tive) and COUP-TFII, can bind to the DR elements in the
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e- and g-globin promoters in vitro, and both have been

implicated in their repression (Filipe et al, 1999; Tanimoto

et al, 2000). When we purified DRED from nuclear extracts of

murine erythroid (MEL) cells, mass spectrometric analysis

revealed that DRED is a large macromolecular complex

containing the TR2 and TR4 orphan nuclear receptors

(Tanabe et al, 2002). These data indicated that DRED might

play a key role in repressing definitive erythroid e- and

g-globin transcription.

TR2 and TR4 have diverse biological functions. They

form homodimers and heterodimers to bind to AGGTCA

DRs separated by a 0–6 nt spacer, and can either activate or

repress cellular target genes (Lee et al, 2002). TR2 and TR4

share common functions in regulating cellular genes: the

CNTF receptor, multiple thyroid hormone-regulated genes

as well as genes involved in retinoic acid signaling (Lee

et al, 2002). Recent gene ablation studies have revealed that

mice lacking TR2 are viable and have no overt phenotypes

(Shyr et al, 2002), whereas TR4 germline mutants display

reproductive and neurological deficiencies (Collins et al,

2004; Mu et al, 2004; Chen et al, 2005).

Here, we report biochemical and genetic analyses of TR2

and TR4 and their loss- and gain-of-function effects on the

regulation of b-type globin gene transcription. The analyses

of Tr2 and Tr4 null mutant as well as dominant-negative TR4

(dnTR4) mutant mice showed that TR2/TR4 are stage-

selective repressors of the human e- and g-globin genes: an

e-globin repressor in both primitive and definitive erythroid

cells, but at the same time a definitive stage-specific repressor

of the fetal g-globin genes. Forced TR2/TR4 expression

resulted in precocious repression of the human embryonic

e-globin gene, but in contrast, to induction of the g-globin

gene in definitive erythroid cells. This gene-selective repres-

sion of the human embryonic and fetal b-type globin genes by

TR2 and TR4 provides critical new insight into the molecular

basis for gene autonomous, sequential silencing of the

e- and g-globin genes during embryonic development, and

in concert with the competition hypothesis, provides a com-

pelling molecular rationale for how globin gene switching

during human development ensues.

Results

DRED differs in affinity for embryonic and fetal globin

promoter DR sites

During embryonic development, primitive erythrocytes pro-

duced in the murine yolk sac predominantly express the

embryonic ey- and bh1-globins. At around 12.5 d.p.c., when

definitive erythropoiesis ensues in the murine fetal liver, the

ey and bh1 genes are gradually silenced with concomitant

activation of the two adult b-globin (bmajor and bminor) genes

whose expression continues after birth as the site of erythro-

poiesis shifts to the bone marrow (Whitelaw et al, 1990). The

promoters of the mouse embryonic globin genes contain

either two (ey) or one (bh1) DR elements, and are similar

to the equivalent regions of their human orthologues,

the embryonic e- and fetal g-globin genes, respectively

(Figure 1A). Neither the mouse nor the human adult b-globin

genes contain recognizable DR sites. This suggests that both

the mouse and human embryonic or fetal b-type globin genes

could be regulated by DRED (Tanabe et al, 2002).

To test the hypothesis that TR2/TR4 might negatively

regulate embryonic and fetal globin gene transcription, we

first asked which of these promoter DR elements could

bind to DRED. A 32P-labeled probe from the e-globin distal

Figure 1 DRED binding to the DR Elements of human and mouse
embryonic and fetal b-type globin genes. (A) Alignment of the
promoter sequences of human and mouse b-type globin gene
orthologues. Nucleotides in potential DR elements (horizontal
arrows) are shown in bold letters, where as those matching the
consensus sequence for nuclear receptor binding are indicated in
uppercase. The numbers adjacent to each potential DR element
represent the nM Ki determined for that binding site. (B) EMSA
competitive binding assays using 1.1 nM 32P-labeled e distal DR
probe, and 20 or 200 nM (18- or 180-fold molar excess) unlabeled
competitor oligonucleotides. The arrowhead indicates the position
of authentic DRED complex. The relative abundance of bound
probe is shown at the bottom of each lane (the bound probe with
no added competitor set at 100%). �, no competitor. (C) A 10mg
portion of pEF-BOS expression vector driving Flag-tagged TR2 or
TR4 cDNA (Tanabe et al, 2002) was transfected separately or
together into 293T cells for nuclear extract preparation and EMSA
(top panel) or Western blotting with anti-Flag, anti-TR2, or anti-TR4
antibodies (lower panels). The nuclear extract of TR2/TR4 cotrans-
fectant was preincubated with anti-TR2 or anti-TR4 antibody, or
preimmune serum, and then subjected to EMSA (rightmost three
lanes). A 10mg portion of a CMV expression vector driving tran-
scription of putative dnTR4 mutant (Flag-tagged) was also trans-
fected into 293T cells. The arrowhead indicates the mobility of the
authentic DRED complex from MEL cell nuclear extract. The
relative abundance of bound probe is shown at the bottom of
each lane (with TR2/TR4 cotransfection set at 100%).
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promoter DR element that conforms best to the consensus

binding site for nuclear receptors was used in these experi-

ments; an assortment of oligonucleotides corresponding to

human and mouse b-type promoter DR elements were used

as competitors. From these studies, equilibrium dissociation

constants (Ki) representing the affinities of competitor oligo-

nucleotides for DRED were determined.

The Ki value of the human e distal DR element displayed

the highest affinity of all the competitors tested (Figure 1A).

The affinity of the g-globin promoter DR element was equiva-

lent to known functional binding sites for RXR (Medin et al,

1994) or HNF-4 (Jiang et al, 1997), members of the same

subfamily (Laudet, 1997). Not surprisingly, the affinity of the

human b-globin promoter was too low to generate functional

association. The mouse globin DR-binding sites were of

generally lower affinity than their equivalent human promo-

ter counterparts. Typical data for the competitive binding

experiments are shown in Figure 1B. These data indicated

that the human and mouse embryonic and fetal b-type globin

gene promoters have DR elements with differential affinities

for DRED in the following order: human e distal4e proxi-

mal4g; mouse ey distal4bh14ey proximal.

We next compared the affinities of TR2 or TR4 alone and

the TR2/TR4 heterodimer to the e-globin distal DR element by

expressing TR2 and TR4 separately or together. After trans-

fection into 293T (kidney) cells, nuclear extracts were pre-

pared and examined for binding to the e distal DR element by

electrophoretic gel mobility shift assay (EMSA) (Figure 1C).

Expression of TR2 alone led to a weak signal for a DNA–

protein complex that co-migrated with authentic DRED (from

MEL cells), whereas expression of TR4 alone yielded a more

robust EMSA complex, even though TR2 was slightly more

abundant than TR4 (Figure 1C). Coexpression of TR2 and

TR4 generated an EMSA complex whose signal intensity was

comparable to that of TR4 alone. These data indicate that the

affinity of the e-globin distal DR element for the TR2 homo-

dimer is lower than that for either the TR2/TR4 heterodimer

or TR4 homodimer, whose affinities are roughly equivalent.

Effects of Tr2 or Tr4 loss-of-function on embryonic/fetal

globin gene transcription

To investigate the in vivo roles of TR2 and TR4 in b-type

globin gene regulation, we first analyzed the expression

of the endogenous globin genes in Tr2 or Tr4 null mutant

mice. The level of the embryonic ey-, bh1-, and adult b-globin

mRNAs in 10.5 d.p.c. yolk sac and 13.5 d.p.c. fetal liver was

determined by semiquantitative RT–PCR and normalized to

endogenous a-globin mRNA. In the yolk sac, there was no

significant difference in the expression of any of the globin

genes in the homozygous Tr2 or Tr4 mutant embryos or their

wild-type littermates (data not shown). In fetal liver defini-

tive erythroid cells, bh1 silencing was significantly delayed in

both Tr2 and Tr4 mutant fetuses; at the same stage, expres-

sion of the mouse embryonic ey and adult b-globin genes was

unaffected (Figure 2A). The results indicate a role of TR2 and

TR4 in the repression of bh1 in the fetal liver, consistent with

the hypothesis that DRED represses both embryonic and fetal

DR-regulated b-type globin genes. However, these results do

not provide clear evidence regarding a role, if any, for TR2

and TR4 in the regulation of the murine ey gene. As TR2 or

TR4 can bind to DR elements as homodimers (Figure 1), they

may be functionally redundant in their ability to regulate the

embryonic and fetal b-type globin genes. To examine this

possibility, we interbred the Tr2 and Tr4 mutants to generate

compound mutants in which to analyze b-globin gene ex-

pression.

Tr2/Tr4 mutant loss-of-function effects on human b-type

globin transcription were assessed by breeding to a wild-type

human b-globin YAC transgenic line (TgbYAC, line 264;

Tanimoto et al, 2000). The total amount of transgene-derived

human b-type globin mRNAs in animals bearing this YAC was

only about 10% of mouse endogenous a-globin transcript.

e- and g-globin silencing was significantly delayed (9- or 3.6-

fold increased e- and g-globin gene expression in 14.5 d.p.c.

fetal livers, respectively) in compound Tr2/Tr4 homozygous

null mutant fetuses as compared to wild type, whereas

expression of the human adult b-globin gene was unaffected

(Figure 2B). In the fetal livers of the Tr2–/–:Tr4–/þ or the

Tr2–/þ :Tr4–/– embryos, expression of the e- and g-globin

genes was induced to levels lying between those of

wild-type and compound homozygous null mutant fetuses.

The data indicate that TR2 and TR4 play key roles in repres-

sion of the e- and g-globin genes, and that TR2 and TR4

are genetically partially redundant. Furthermore, the data

suggest that TR4 plays a more prominent role than does

TR2 in vivo, as the Tr2–/þ :Tr4–/– mutants displayed a more

severe phenotype than did the Tr2–/–:Tr4–/þ mutants.

To determine whether these changes in mRNA accumula-

tion were due to altered transcriptional activity, we quantified

primary RNA transcripts recovered from fetal liver samples of

human b-type globin genes by RT–PCR using primer sets

spanning exon–intron junctions (one primer for an exon

sequence, and the other for an adjacent intron sequence).

The abundance of b-, g-, or e-globin primary transcripts in the

14.5/15.5 d.p.c. fetal livers of wild-type mice was about 0.5,

0.2, or 0.2% of the corresponding mRNA abundance, respec-

tively. In the fetal livers of the Tr2–/–:Tr4–/� mutant fetuses, e
and g primary transcript levels were elevated 2.9- or 2.4-fold,

respectively, compared to wild type (Figure 2C). These data

show that TR2 and TR4 exert repressive effects on e- and

g-gene transcription in definitive erythroid cells of the fetal

liver, and thus that the effects of TR2/TR4 are transcriptional

and are not due to (e.g.) altered longevity of primitive

erythroid cells or erythroid cell-specific mRNAs.

Transgenic mice that express wild-type or dominant-

negative TR2/TR4

We next wished to address the possible roles of TR2 and TR4

in b-type globin gene regulation after forced transgenic

expression of wild-type or mutant receptors. The crystal

structure of the DNA-binding domain of RXRa, a member in

the same subfamily as TR2 and TR4 (Laudet, 1997), has been

resolved, and the amino-acid residues that determine the

base and phosphate backbone contacts in complex with

the DR element have been identified (Zhao et al, 2000)

(Figure 3A). Based on that structure, we predicted which

residues in TR4 would make contacts with the DR elements,

and introduced three amino-acid substitutions for those

residues (Lys or Arg to Glu) to generate a potential dnTR4

mutant protein that should be defective in DNA binding, but

should retain other (dimerization or co-regulator interaction)

activities.

After transfection of dnTR4 into 293T cells, nuclear ex-

tracts were examined for binding of the force-expressed

b-Globin switching by TR2/TR4
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receptor to the human e-distal DR element (Figure 1C). The

dnTR4 mutant produced no DNA–protein complex on EMSA,

even though the dnTR4 protein is abundantly expressed in

the transfected cells (from Western blotting) but is devoid

of DNA-binding activity. The dnTR4 mutant was next coex-

pressed in cells at the same time as the wild-type TR2 or TR4

proteins to ask whether the mutant could, in fact, serve as a

dominant-negative receptor (Figure 3B). The DNA-binding

activities of TR2 and TR4 were significantly diminished by

coexpression of dnTR4 protein. These data showed that

dnTR4 could serve as a mutant receptor isoform that could

block the intrinsic DNA-binding activity of both TR2 and TR4.

In order to restrict their expression exclusively to hemato-

poietic cells, the dominant-negative or wild-type TR2 or TR4

cDNAs were cloned into G1-HRD, a Gata1 construct that is

sufficient to drive expression of any cDNA exclusively in

(primitive and definitive) erythroid cells (Onodera et al,

1997). The eGFP gene was also placed under G1-HRD control,

and by microinjecting the two constructs together into ferti-

lized oocytes, transgenic lines carrying the dnTR4 mutant

(TgdnTR4) as well as wild-type TR2 (TgTR2) or TR4 (TgTR4), or

both (TgTR2/TR4) were generated (co-integration of eGFP and

nuclear receptor transgenes was verified by following multi-

ple generations of breeding in each line).

The abundance and stability of transgene expression was

first estimated by eGFP fluorescence, as measured by flow

cytometric analysis of adult peripheral blood. Lines that

expressed eGFP in 480% of the erythrocytes were selected

for further analysis. Expression of the transgenes in the

14.5 d.p.c. fetal liver was determined by real-time quantita-

tive PCR; the level of dnTR4 mRNA was 11- or 9-fold higher

than endogenous TR2 or TR4 mRNAs, respectively. In the

gain-of-function lines, the level of Tg-derived TR2 mRNA

was 1.7- to 7-fold higher than endogenous TR2, whereas Tg-

derived TR4 mRNA levels were from 8- to 13-fold greater than

those of endogenous TR4 (Figure 3C).

The human e- and c-globin genes are activated by dnTR4

We analyzed the effects of transgenic dnTR4 expression on

human b-type globin transcription by breeding to a wild-type

human b-globin YAC transgenic line (Tanimoto et al, 2000) to

generate TgdnTR4:TgbYAC compound transgenic animals. The

abundance of human b-type globin mRNAs in the 8.5, 10.5,

and 12.5 d.p.c. yolk sacs or 14.5 d.p.c. fetal liver was deter-

mined by semiquantitative RT–PCR, normalized to mouse

a-globin mRNA (Figure 4A). The data show that the peak of

e-globin mRNA accumulation in the yolk sac was induced

1.5-fold in comparison to TgbYAC littermates upon concomitant

Figure 2 Mouse and human b-type globin gene expression in Tr2 or Tr4 null mutant mice. (A) The abundance of mRNAs for mouse ey-, bh1-,
and adult b-globin normalized to a-globin mRNA abundance in the 13.5 d.p.c. fetal liver of Tr2 or Tr4 null mutant fetuses and their wild-type
littermates was determined by semiquantitative RT–PCR and graphically depicted with s.e.m. The number of animals of each genotype
analyzed was 3–8. (B) The abundance of human embryonic e-, fetal g-, and adult b-globin mRNA normalized to mouse a-globin mRNA
abundance in the 14.5 d.p.c. fetal livers of compound Tr2/Tr4 null mutant mice bred to a human b-globin YAC transgenic line was determined
by semiquantitative RT–PCR and graphically depicted with s.e.m. The number of fetuses of each genotype analyzed was 2–10. (C) Abundance
of primary RNA transcripts for human e-, g-, and b-globin in 14.5 d.p.c. fetal livers of compound Tr2/Tr4 homozygous null mutant fetuses
bearing a wild-type b-globin YAC transgene (Tr2–/–:Tr4–/–:TgbYAC) was determined by RT–PCR and normalized to mouse a-globin mRNA
abundance. Relative abundance of primary RNA transcripts normalized to wild-type (Tr2þ /þ :Tr4þ /þ :TgbYAC, set at 100%) fetuses is
graphically depicted with s.e.m. Two mutant and four wild-type fetuses were analyzed. *Po0.05, **Po0.01, ***Po0.001 by t-test.
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expression of the dnTR4 mutant, and that e-globin gene

silencing in the fetal liver (Figure 4B) was significantly

delayed (4.2-fold increased expression) compared to litter-

mates without TgdnTR4. In contrast, g-globin mRNA accumu-

lation was only slightly reduced in comparison to YAC-

containing littermates in yolk sac erythroid cells, whereas g-

globin transcription, like e, was induced 1.9-fold in the fetal

liver RNA samples. These data verify the Tr2 and Tr4 null

mutant mouse analysis, and underscore the conclusion that

TR2/TR4 is a repressor of the mouse bh1 gene, as well as the

human e- and g-globin genes. The data also suggest that TR2/

TR4 may act in a stage-selective manner: as an e-globin

repressor in primitive (Figure 4A) and definitive (Figure 4B)

erythroid cells, but as a fetal g-globin repressor only in

definitive erythroid cells.

The embryonic ey gene is repressed by forced TR2

and TR4 expression

We next analyzed the consequences of forced transgenic

expression of TR2 or TR4 on b-type globin gene transcription.

The abundance of mouse endogenous globin mRNAs in the

9.5 d.p.c. yolk sac and 14.5 d.p.c. fetal liver was determined

by semiquantitative RT–PCR (Figure 5). In the embryonic

yolk sac of the two TgTR4 lines, ey expression was reduced

to 70 or 25% in comparison to their wild-type littermates,

whereas bh1 mRNA accumulation was unaffected. Unexpec-

tedly, in both TgTR4 lines, expression of the adult b-globin

gene was induced by 2.0- or 2.5-fold. In contrast, TR2 forced

expression did not cause a change in expression of any of the

b-type globin genes (data not shown). The activation of adult

b-globin transcription upon forced TR4 transgenic expression

Figure 3 Generation of transgenic mice expressing wild-type and
dominant-negative TR2 or TR4. (A) Alignment of the amino-acid
sequences of the DNA-binding domains of TR4 and RXRa.
Mutations introduced to the putative dnTR4 mutant are shown at
the top. Residues in RXRa that make base or phosphate contacts are
indicated by triangles (Zhao et al, 2000). (B) A 4 mg portion of a
CMV expression vector bearing wild-type TR2 (left panel) or TR4
(right) cDNAs was transfected into 293T cells with or without
cotransfection of 4 or 16mg of a CMV expression vector bearing
the putative dnTR4, followed by nuclear extract preparation and
EMSA. The relative abundance of DR probe bound to wild-type TR2
or TR4 is indicated at the bottom of each lane (bound probe in the
absence of dnTR4 was set at 100%). (C) Relative mRNA abundance
of the TR2 or TR4 transgenes. The abundance of endogenous (open
bars) or transgenic (shaded) TR2 (upper panel) and TR4 (lower)
mRNAs in 14.5 d.p.c. fetal livers of transgenic mice expressing
dnTR4, or wild-type TR2, TR4 or both was determined by reverse
transcription followed by real-time quantitative PCR, and normal-
ized to the abundance of endogenous GATA-1 mRNA (set at 100%).
Data represent the averages with s.e.m. of 2–3 fetuses from each
transgenic line, or 14 wild-type fetuses.

Figure 4 Human b-globin gene transcription in dnTR4 transgenic
mice. (A) The abundance of the human e- and g-globin mRNAs
normalized to the mouse endogenous a mRNA abundance in the
8.5–12.5 d.p.c. yolk sac of transgenic mice bearing the wild-type
human b-globin YAC, with or without intercrossed TgdnTR4, was
determined by semiquantitative RT–PCR and graphically depicted
with s.e.m. One to five embryos of each genotype were examined.
(B) The abundance of the human e-, g-, and b-globin mRNAs
normalized to the abundance of a-globin mRNA in 14.5 d.p.c.
fetal livers of transgenic mice bearing the wild-type human b-globin
YAC, with (þ ) or without (�) the intercrossed TgdnTR4, was
determined. The number of fetuses of each genotype analyzed
was 2–7. *Po0.05, **Po0.01 by t-test.
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was unpredicted, but may be due to a secondary consequence

of promoter competition by the LCR due to coordinate ey
repression.

In the fetal livers of the TgTR2 lines, embryonic ey globin

gene expression was repressed to 45% of wild type (line 2),

whereas bh1 and adult b transcription was unaffected. TR4

forced expression resulted not only in ey repression to 45% of

wild type (line 2), but also in mild induction of bh1 (1.9- or

2.5-fold higher than in wild-type fetal livers). In the TgTR2/TR4

lines, ey gene expression was severely repressed (to 35 or

15% of wild type), but bh1 was even more robustly activated

(by 8.8- or 4.3-fold over wild type), whereas again adult b
mRNA accumulation was unaffected. The data indicate that

both TR2 and TR4 homo- and heterodimers can repress ey
transcription. However, the data also show that forcibly

expressed wild-type TR2 and TR4 can induce bh1 expression,

thereby causing a significant delay in ‘fetal’ gene silencing in

the liver, thus superficially contradicting the loss-of-function

data (showing that TR2/TR4 acts as a repressor of the bh1

gene in the fetal liver; see Discussion). The TgTR2/TR4 lines

displayed essentially the same, but more robust, phenotypes

in the fetal liver than fetuses bearing only TR2 or TR4

transgenes, underscoring the possibility that TgTR2 and

TgTR4 function additively or synergistically. Forced expression

of TR2 plus TR4 also resulted in induction of bh1 (2.4- and

6.7-fold in the TgTR2/TR4 lines 1 and 2, respectively) in the

adult spleen, but did not cause a significant change in ey
or adult b-globin mRNA (data not shown).

Finally, we performed a complete time-course analysis

of mouse b-type globin mRNA abundance in one of the

TgTR2/TR4 lines (line 1; Figure 6). The data show that TgTR2/TR4

forced expression reduced the peak level of ey transcription

in the yolk sac, and accelerated ey silencing in the liver. In

contrast, bh1 transcription was unchanged in the yolk sac, but

induced in the fetal liver, causing a significant delay in bh1

silencing. Adult b-globin transcription was unaffected except in

the yolk sac, suggesting that its transient induction was second-

ary to repression of ey transcription.

Human e-globin transcription is repressed in TR2/TR4

transgenic mice

We next analyzed the effects of transgenic TR2/TR4 expres-

sion on human b-type globin transcription by analysis of

TgTR2/TR4:TgbYAC compound transgenic animals (Figure 7A).

The abundance of human b-type globin mRNA in the

10.5 d.p.c. yolk sac, 15.5 d.p.c. fetal liver, or adult spleen

was determined by semiquantitative RT–PCR and once

again normalized to endogenous mouse a-globin mRNA

abundance.

In the embryonic yolk sac, forced expression of TR2/TR4

repressed human e-globin to 28% (line 1) or 3% (line 2) of

wild-type (TgbYAC alone) levels, but did not change fetal g- or

adult b-globin (data not shown) transcription at the primitive

stage. In the fetal liver, TgTR2/TR4 expression repressed em-

bryonic e-globin transcription to 54% (line 1) or 10% (line 2)

of wild type, and activated g-globin by 3.9-fold (line 1) or 3.6-

fold (line 2), precisely as observed at the same stage in the

mouse orthologue, bh1. In the adult spleen, g-globin expres-

sion was also induced 3.9-fold (line 1) or 5.1-fold (line 2), but

Figure 5 Mouse b-type globin gene expression in transgenic mice forcibly expressing TR2 or TR4. The abundance of mRNAs for mouse
embryonic ey-, bh1-, and adult b-globin normalized to the mouse endogenous a mRNA abundance in the 9.5 d.p.c. yolk sacs and 14.5 d.p.c.
fetal livers of TR2 or TR4 transgenic fetuses and their wild-type littermates was determined by semiquantitative RT–PCR and graphically
depicted with s.e.m. The number of animals of each genotype analyzed was 2–6. *Po0.05, **Po0.01, ***Po0.001 by t-test.
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neither e-globin (data not shown) nor b-globin accumulation

was affected.

We performed a complete time-course analysis of human

b-type globin transcription in the TgTR2/TR4:TgbYAC compound

transgenic mice using the TgTR2/TR4 line 1 (Figure 8).

The data show that elevated TR2/TR4 expression reduced

the peak level of e-globin transcription in the yolk sac

and significantly accelerated e transcriptional silencing. In

contrast, fetal g-globin expression in the yolk sac was not

significantly affected, but was induced 2.2- to 7.3-fold in the

fetal liver, causing a delay in silencing of the g gene in

definitive erythroid cells. Adult b-globin mRNA accumulation

was unchanged in the yolk sac, but was repressed by 20% in

the fetal liver. The consistent repression of human adult

b-globin synthesis in the fetal liver was unpredicted, but

may be simply a secondary consequence of activation of

the g-globin gene via promoter competition for LCR activity

(Choi and Engel, 1988; Carter et al, 2002; Tolhuis et al, 2002).

These data indicate that the transcriptional effects of forced

TR2 and TR4 expression are conserved between the mouse

and human embryonic and fetal orthologues: between ey and

e, as well as between bh1 and g.

We quantified the primary RNA transcripts of the human

b-type globin genes to analyze the actual transcriptional

activity in erythroid cells of the fetal liver and adult spleen.

The levels of g primary transcript of TgTR2/TR4 line 2 animals

increased 2.2- and 1.5-fold in the fetal liver or adult spleen,

respectively, compared to the wild-type TgbYAC transgene

alone, whereas the e primary transcript level was not signi-

ficantly altered in the fetal liver (Figure 7B). These data

indicated that forcibly expressed TR2 and TR4 induced

g-globin transcription in definitive erythroid cells of the

fetal liver and adult spleen. In contrast, the reduction of

e-globin mRNA abundance in the fetal livers of TgTR2/TR4:

TgbYAC compound transgenic mice can be largely ascribed to

the TR2/TR4 effects on e-gene transcription in the few

residual primitive erythroid cells that remain in the fetal liver.

We next analyzed the effects of TgTR2/TR4 on mutant

human b-globin YAC transgenes that bear mutant DR ele-

ments in either the e- or Ag-globin promoters (Tanimoto et al,

2000; Omori et al, 2005) in order to determine whether or not

the effects were mediated directly through globin promoter

DR elements. One transgenic line bears a mutant YAC with

9 nt substitutions in the e-globin gene promoter that ablates

both of its DR elements (Bepsi) (Tanimoto et al, 2000). This

YAC mutant (TgBEPSI) was bred to TgTR2/TR4 line 2, and

expression of the mutant e-globin gene in the 10.5 d.p.c.

yolk sac was determined. The data show that repression of

the e-globin gene observed in the wild-type YAC is abrogated

by the DR site mutations in the TgBEPSI YAC (Figure 7C). We

also examined a different transgenic line: mutDR has a 4 nt

substitution in the Ag-globin gene promoter that specifically

abolishes the DR1 element (Omori et al, 2005); this mutation

induced Ag-globin gene expression by six-fold compared to

the wild-type YAC transgene (line 264). TgmutDR was bred

to TgTR2/TR4 line 2, and expression of the (unmodified)

Gg-globin gene (as the internal control) and the mutant

Ag-globin gene was individually quantified. In contrast to

the behavior of the wild-type TgbYAC (Figure 7D), only the Gg
gene (bearing an intact DR element) in the TgmutDR YAC was

activated. The YAC mutant data show that the effects of TR2/

TR4 on transcription are direct, and are mediated by the

binding of TR2 and TR4 to the DR elements in both the e- and

g-globin promoters.

Discussion

We showed that the TR2/TR4 heterodimer can bind in vitro to

the DR elements of both the human and mouse embryonic

and fetal b-type globin gene promoters with affinities that are

comparable to the known association constants for TR2, TR4

and closely related nuclear receptors. The genetic analysis

provides compelling in vivo evidence for repression of

the human embryonic e- and fetal g-globin genes by these

receptors. In the transgenic mice bearing the human b-globin

YAC as well as a dnTR4 mutant, the human e-globin gene was

activated in both primitive and definitive erythroid cells. In

contrast, the human fetal g-globin gene was only slightly

perturbed during the yolk sac stage of erythropoiesis, but was

induced at the fetal liver (definitive erythroid) stage. These

data suggest that TR2/TR4 comprise a stage-specific, gene-

selective repressor of the human embryonic e- and fetal g-

globin genes, and may provide at least part of the mole-

cular basis for explaining the gene-autonomous, sequential

Figure 6 Time course of mouse b-type globin mRNA accumulation
in TR2/TR4 transgenic mice. The abundance of mRNAs for mouse
embryonic ey-, bh1-, and adult b-globin normalized to mouse a
mRNA in the yolk sac and fetal liver of TR2/TR4 transgenic mice
(line 1) and their wild-type littermates from 9.5 to 15.5 d.p.c. was
determined by semiquantitative RT–PCR and graphically depicted
with s.e.m. Note that the scales for the ey- and bh1-mRNA accu-
mulation in the fetal liver are different from the others. Either two or
three animals of each genotype were examined. *Po0.05,
**Po0.01 by t-test.
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silencing of those genes during development: that is b-globin

gene ‘switching’.

Forced erythroid-specific TR2/TR4 expression resulted in

precocious repression of human e-globin transcription, but in

contrast, to induction of the g-globin gene in definitive

erythroid cells by a currently unexplained mechanism. The

analysis of DR mutant YAC transgenic mice demonstrates that

the effects of TR2 and TR4 on the e- and g-globin genes are

direct. The expression of the DR-mutated Ag-globin gene was

elevated six-fold in the fetal liver compared to the wild-type

Ag gene, whereas g transcription was elevated 3.6-fold in the

compound Tr2/Tr4 homozygous null mutation. These data

indicate that the majority of repressor activity acting through

the g promoter DR element can be attributed to TR2 and TR4,

although the involvement of other currently undefined,

redundant factors in repression of the g-globin genes through

their DR elements cannot be excluded.

Control of b-type globin gene switching mediated by

TR2/TR4

Based on the results presented here, we propose a hypothe-

tical model for how TR2 and TR4 regulate human b-type

globin gene transcription (Figure 9). In primitive erythroid

cells of the yolk sac, TR2/TR4 binds to the DR elements of the

e-globin gene as a component of the DRED complex, thereby

repressing e-globin transcription. In contrast, TR2/TR4 exerts

little or no effect on the g-globin gene DR sites at this

developmental stage; this is consistent with the results of

Figure 7 Altered human b-type globin gene transcription in TR2/TR4 transgenic mice. (A) The abundance of human e-, g-, and b-globin
mRNAs normalized to mouse a mRNA in the 10.5 d.p.c. yolk sac, 15.5 d.p.c. fetal liver, or adult spleen of transgenic mice bearing a wild-type
human b-globin YAC transgene with (þ ) or without (�) TgTR2/TR4 was determined by semiquantitative RT–PCR and graphically depicted with
s.e.m. Two to five animals of each genotype were examined. (B) The abundance of primary RNA transcripts for the same samples as in panel
(A) was determined by semiquantitative RT–PCR and normalized to mouse a mRNA abundance. Three animals of each genotype were
analyzed. (C) The abundance of human embryonic e-globin mRNA in the 10.5 d.p.c. yolk sac of transgenic mice bearing the DR mutant human
b-globin YAC transgene, Bepsi (Tanimoto et al, 1999), in the presence (þ ) or absence (�) of TgTR2/TR4 (line 2) was determined as described in
panel (A). Three fetuses of each genotype were examined. (D) g-Globin cDNAs from the 15.5 d.p.c. fetal liver of transgenic mice bearing a wild-
type or mutDR (Omori et al, 2005) human b-globin YAC transgene either in the presence (þ ) or absence (�) of TgTR2/TR4 (line 2) were
amplified by PCR as in panel (A) and then digested with PstI to determine the Gg to Ag molar ratio (Tanimoto et al, 1999; Omori et al, 2005).
The averages with s.e.m. for Gg- and Ag-globin mRNAs normalized to mouse endogenous a-globin are graphically depicted. Three fetuses of
each genotype were examined. *Po0.05, **Po0.01, ***Po0.001 by t-test.
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the dnTR4 mutant analysis, and with the lack of any effect on

TgmutDR transcription in primitive erythroid cells (Omori et al,

2005). Such gene-selective repression could result from a

greater number of e promoter-binding sites or to the higher

affinity of DRED for the two e-globin promoter DR sites

compared to the single g-globin promoter DR site.

In definitive erythroid cells of the fetal liver, the DRED

complex represses both the e- and g-globin genes in a gene-

autonomous manner, thus enabling the subsequent g- to

b-globin switch, possibly because the activity or abundance

of DRED increases in definitive erythroid cells (we have no

evidence to either support or refute this hypothesis).

Although ligands for TR2 or TR4 have not been identified,

it is also possible that the activity of TR2/TR4 could be

mediated by the differential availability of small molecule

ligands (if such exist), which would provide a non-cell-

autonomous basis for the developmental stage specificity

and synchronicity of globin gene switching.

Although autonomous control has been shown to play a

major role in the silencing of the human embryonic e- and

fetal g-globin genes in definitive erythroid cells (Raich et al,

1990; Dillon and Grosveld, 1991), roles for the LCR hyper-

sensitive sites 2, 3, and 4 in gene-selective or stage-specific

transcriptional activation of the b-type globin genes have

been demonstrated (Bungert et al, 1995, 1999; Navas et al,

1998, 2001). In this context, we would speculate that DRED

may repress the e- and g-globin genes not only by gene-

autonomous mechanisms, but also possibly by modulating

the interaction of the globin genes with specific LCR hyper-

sensitive sites.

The precocious repression of the embryonic mouse ey- and

human e-globin genes after forced transgenic expression of

TR2/TR4, when considered along with the induction of the

e-globin gene in the compound Tr2/Tr4 homozygous null

fetuses and after breeding to the dnTR4 mutant, provides

compelling genetic evidence that TR2/TR4 is a bona fide

repressor of the mouse and human embryonic globin genes.

In contrast, the absence of repression of the murine embryo-

nic bh1- and human fetal g-globin genes in primitive

erythroid cells, and the unexpected induction of those

genes in definitive erythroid cells upon TR2 or TR4 forced

expression, superficially contradicts the proposed repressor

function of TR2 and TR4 for the bh1- and g-globin genes

Figure 8 Time course of human b-type globin mRNA accumulation
in TR2/TR4 transgenic mice. The abundance of the human e-, g-,
and b-globin mRNAs normalized to mouse a-globin mRNA in the
yolk sac and fetal liver of transgenic mice bearing the wild-type
human b-globin YAC, with or without TgTR2/TR4 (line 1), from 9.5 to
15.5 d.p.c. was determined by semiquantitative RT–PCR and gra-
phically depicted with s.e.m. Note that the scales for e- and g-globin
mRNA accumulation in the fetal liver are different from the others.
Two to five animals of each genotype were used. *Po0.05,
**Po0.01, ***Po0.001 by t-test.

Figure 9 A model for the role of TR2/TR4 in developmental stage-
specific silencing of the human e- and g-globin genes. In primitive
erythroid cells (top), DRED is formed as a complex of TR2/TR4 and
other (currently unidentified) co-repressors, and DRED represses
e-globin transcription, but exerts little or no effect on the g-globin
gene in primitive erythroid cells (because of higher affinity for the
e-globin promoter DR sites, and/or because of its activity/abun-
dance at that stage). In definitive erythroid cells (models 1 and 2),
the activity of DRED increases, allowing it to gradually repress g-
globin synthesis from the (lower affinity) DR site in the g-globin
promoter. The seemingly contradictory induction of the g-globin
genes in the TgTR2/TR4 transgenic mice may be explained either by a
dominant-negative effect of the forcibly expressed wild-type recep-
tors which dilute limiting g-specific co-repressors for their normal
repressor activity against the g-globin gene (model 1), or by an
inherent context-dependent transcriptional activator function (i.e.
dual functionality) of the receptors on the g-globin gene, depending
on interaction with specific coactivators that are found only in
definitive erythroid cells (model 2).
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deduced from the loss-of-function and dominant-negative

analyses. The absence of bh1 or g repression in primitive

erythroid cells could be a secondary consequence of promo-

ter competition for LCR activity due to profound repression of

the ey- or e-globin gene, but the induction of the bh1- or

g-globin gene in definitive erythroid cells cannot be explained

by promoter competition, as the bh1- and g-globin genes are

induced even in the adult spleen where the repression of

ey- or e-globin genes is no longer observed, and as the

induction of the g-globin gene in the fetal liver is dispropor-

tionately greater than the degree of repression of e.
We previously showed that DRED is a 4500 kDa complex,

consisting of TR2 and TR4 as well as other currently un-

identified proteins (Tanabe et al, 2002). One likely explana-

tion for the induction of the g- (and bh1-) globin gene may be

a dominant-negative effect of forcibly expressed TR2 and

TR4, which are DNA-binding subunits of the functional

DRED holo-repressor complex. The forcibly expressed orphan

receptors could sequester and dilute limiting g-specific

co-repressor(s) in the DRED complex, thereby precluding

formation of a functional DRED complex on the g promoter

DR element (model 1 in Figure 9). The lack of g- (and bh1-)

globin gene repression in primitive erythroid cells by the

forcibly expressed TR2/TR4 may be also explained by

hypothetical g-specific co-repressor(s), which would also

be limited in abundance in the context of forced expression

of TR2/TR4. Alternatively, it is possible that TR2/TR4 may

bear an inherent context-dependent transcriptional func-

tion that is specific to the g- (bh1-) globin gene, and is

dependent on interaction with specific coactivators that

are available only in definitive erythroid cells, in keeping

with the dual regulatory capacity of most nuclear receptors

(model 2 in Figure 9) (Glass and Rosenfeld, 2000).

Distinguishing between these two possibilities is an imme-

diate goal.

We finally speculate that the very modest activation of the

mouse adult b-globin gene in the yolk sac, and the repression

of the human adult b-gene in the fetal liver, upon forced

expression of TR2 and TR4 may be ascribed to promoter

competition for the LCR due to mouse ey-gene repression, or

human g-globin activation, respectively. However, the possi-

bility that forcibly expressed TR2/TR4 are directly modulat-

ing mouse and human adult b-globin gene transcription

cannot be formally disproven at this time.

Genetic analyses examining transgenic mice harboring

mutated human b-type globin loci have revealed that silen-

cing of the embryonic and fetal b-type globin genes is

initiated by gene-autonomous mechanisms (Magram et al,

1985; Townes et al, 1985; Raich et al, 1990; Dillon and

Grosveld, 1991), although the relative contributions of auton-

omous control versus competitive silencing (Tanimoto et al,

1999) are unresolved. In analysis of possible cis-regulatory

elements governing transcription of the e- and g-globin genes,

multiple silencing elements have been proposed to lie in the

proximal or distal regions of those promoters (Raich et al,

1992, 1995; Peters et al, 1993; Li et al, 1998a, b; Tanimoto

et al, 2000), including those identified through the analysis of

the HPFH mutations (Berry et al, 1992; Ronchi et al, 1995; Li

et al, 2001; Omori et al, 2005). However, identifying the

repressors that mediate gene silencing through any of these

cis-regulatory elements has proven to be remarkably difficult.

Nonetheless, some well-known activators (e.g. GATA-1) have

been suggested to harbor context- or stage-specific erythroid

repressor functions (Li et al, 1997).

Taken together, the data presented here represent the first

genetic evidence showing that a trans-acting factor controls

gene-autonomous silencing of the human embryonic and

fetal b-type globin genes directly through well-defined cis-

regulatory elements in their promoters. Considering the pre-

sence of many other hypothetical as well as verified negative

cis-regulatory elements in the proximal promoters of the

b-type globin genes, we speculate that multiple trans-acting

factors, including TR2/TR4, collectively control autonomous

embryonic and fetal globin gene silencing. Identifying, and

then clarifying the specific roles of each of these transcrip-

tional effectors as well as the co-regulators recruited to these

genes via those sequence-specific transcription factors, will

be essential for finally elucidating the molecular mechanisms

that control b-globin gene switching.

TR2/TR4 as a target for therapeutic intervention

in sickle-cell disease

Sickle-cell disease is caused by a missense mutation in the

adult b-globin gene and affects millions of people worldwide

(Stuart and Nagel, 2004). Based on biochemical and epide-

miological evidence, therapeutic agents that increase g-globin

production are widely expected to benefit sickle-cell patients.

While the fetal hemoglobin (HbF) level in erythrocytes of

normal human adults is o1% of total hemoglobin, HbF

concentrations among sickle-cell patients can vary from 0.1

to 30%, and any increment in HbF level was found to

increase survival (Steinberg, 2005). A previous clinical

study showed that sickle-cell patients with higher (48.6%)

HbF levels experience significantly reduced mortality (Platt

et al, 1994).

In this study, we found that the abundance of human fetal

g-globin mRNA in fetal liver definitive erythroid cells of

compound Tr2/Tr4 null mutants was 9.5% of human adult

b-mRNA abundance, and was nearly four-fold higher than

that of genetically matched wild-type (2.5%) embryos. These

data, therefore, provide direct evidence that TR2/TR4 may

comprise a useful molecular target for possible therapeutic

intervention in treating sickle-cell disease: pharmacological

inhibition of the repressor activity of TR2/TR4 in definitive

erythroid cells is predicted to induce g-globin synthesis

and thereby ameliorate the disease. Identification of natural

ligand(s) of TR2 and TR4, if they exist, would facilitate the

design of antagonists that would block the repressor function

of TR2/TR4. Similarly, identification of co-repressor proteins

in the larger DRED complex (Tanabe et al, 2002) may also be

crucial for developing new therapeutics, as the interfaces

between TR2/TR4 and those co-factors would constitute

additional targets for drug design that may selectively block

effective interactions and therefore diminish DRED repressor

function.

Materials and methods

Transgenics
For transient expression in cell culture, the mouse TR2 and TR4
cDNAs were appended to Flag-tags at their amino termini (Tanabe
et al, 2002), and then cloned into a CMV promoter-driven
expression vector pEGFP-N3 (Clontech), replacing the eGFP gene.
The cDNA encoding the dnTR4 mutant was generated by PCR-
directed mutagenesis, and cloned into the same vector. For
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transgenic expression, the Flag-tagged mouse TR2 or TR4 cDNAs,
the dnTR4 mutant, and eGFP from the pEGFP-N3 plasmid were
ligated to the KpnI–NotI fragment from IE3.9int-LacZ (GATA1-HRD;
Onodera et al, 1997).

Mice
The Tr2 and Tr4 null mutant mice were described previously (Shyr
et al, 2002; Collins et al, 2004). The phenotypes of these mutant
mice were confirmed in other independent Tr2 and Tr4 null mutant
mouse lines (O Tanabe, unpublished). For generation of transgenic
mice expressing wild-type TR2 or TR4, or the dnTR4 mutant, the
expression DNAs were separated from the plasmid backbones and
purified by gel electrophoresis and electroelution. The constructs
were injected into fertilized mouse oocytes (CD1; Harlan) that were
then transferred to foster dams (Nagy et al, 2003). Founder
offspring were screened by PCR for the presence of transgenes,
and then bred to wild-type CD1 mice; F1 offspring were analyzed
for the presence of the transgenes by Southern blots of tail DNA.
Transgenic mouse lines bearing the wild-type human b-globin YAC
(line 264; Tanimoto et al, 1999) and the mutant YAC transgenes
Bepsi (line 588; Tanimoto et al, 2000) and mutDR (line 74; Omori
et al, 2005) were described previously.

Semiquantitative RT–PCR
Total RNA from transgenic lines was extracted from the yolk sac,
fetal liver, or adult spleen (6-week-old, treated with 1-acetyl-2-
phenylhydrazine to induce anemia), and then used as a template for
first-strand cDNA synthesis. Details of the RT–PCR assay and
primer sequences are described in Supplementary data. To
determine the ratio of Gg to Ag mRNAs, both cDNAs were
coamplified with the common g primers, and then digested with
PstI (Omori et al, 2005). The relative abundance (molar ratio) of
b-type globin RNAs normalized to mouse a-globin mRNA was
calculated according to the following equation:

Molar ratio ð%Þ ¼
Rb
Ra

�
Ca
Cb

�
ð1 þ EaÞNa

ð1 þ EbÞNb �100

Rb where Ra is the radioactivity of PCR product for b-type or mouse
a globin measured by PhosphoImager; Cb, Ca number of C
nucleotides incorporated by PCR in each amplicon for b-type or a
globin; Eb, Ea amplification efficiency of a primer set for b-type or a
globin; Nb, Na number of PCR cycles for b-type or a globin.

The amplification efficiency for each primer set was experimen-
tally determined for each tissue by plotting radioactivity of PCR
products against cycle numbers over a 6–8 cycle range.

Real-time PCR analysis for quantifying TR2, TR4, and GATA-1
cDNA
Real-time PCR analysis was performed with 0.1ml of 14.5 d.p.c. fetal
liver cDNA prepared as described above in a 25ml reaction using an
ABI Prism 7000 and SYBR Green PCR Master Mix (Applied
Biosystems). Sequences of the primers are described in Supple-
mentary data. All the primer sets were designed to span introns.
The abundance of each cDNA was determined based on its Ct value
and an experimentally determined amplification efficiency for each
primer set, and then normalized to the abundance of GATA-1 cDNA
(as the internal control).

Cell culture and transient transfection
The mouse erythroleukemia cell line MEL and human embryonic
kidney cell line 293T were cultured in DME medium (Gibco) with
10% fetal calf serum. For transfection, 2�106 293Tcells were plated
in a 10 cm dish the day before transfection. A total of 20 mg of
expression plasmid was transfected into each dish using lipofecta-
mine 2000 (Invitrogen). At 48 h after transfection, cells were
harvested and nuclear extracts were prepared.

EMSA
Nuclear extracts preparation, binding reactions, and electrophoresis
were performed as described previously (Tanimoto et al, 2000). The
oligonucleotides used are described in Supplementary data. To
determine the affinity of each competitor by EMSA, the dissociation
constant (Kd¼ 0.56 nM) for the 32P-labeled e distal DR probe was
initially determined by saturation binding experiments using
nuclear extracts from MEL cells. The competitive binding experi-
ments were then performed using 1.1 nM 32P-labeled e distal DR
probe and 70 pM to 2 mM of each competitor to determine the 50%
inhibitory concentration (IC50). The equilibrium dissociation con-
stant (Ki) for each competitor was then determined as follows
(Cheng and Prusoff, 1973):

Ki ¼
IC50

1 þ ½labeled probe	
Kd

Antibodies
Rabbit antisera against TR2 and TR4 were generated by fusing
cDNA fragments (for the amino-terminal regions of mouse
TR2 (Leu35–Leu100) and TR4 (Ala43–Tyr116)) into the pET-42a
plasmid (Novagen), and then expressed as GST-fusion proteins
in Escherichia coli BL21-CodonPlus (DE3)-RIL (Stratagene). The
fusion proteins were affinity-purified with glutathione Sepharose 4B
(Amersham), and then used as antigen for the preparation of
rabbit antisera (Cocalico Biologicals Inc.). For Western blotting
with the anti-Flag mouse monoclonal antibody (Sigma), or the
anti-TR2 and -TR4 antisera, horseradish peroxidase-conjugated
secondary IgG was used for detection using the ECL system
(Amersham).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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