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ABSTRACT

The complex and integrated nature of both genetic
and protein level factors influencing recombinant
protein production in Escherichia coli makes it
difficult to predict the optimal expression strategy
for a given protein. Here, two combinatorial library
strategies were evaluated for their capability of
tuning recombinant protein production in the cyto-
plasm of E. coli. Large expression vector libraries
were constructed through either conservative
(ExLib1) or free (ExLib2) randomization of a seven-
amino-acid window strategically located between a
degenerated start codon and a sequence encoding
a fluorescently tagged target protein. Flow
cytometric sorting and analyses of libraries,
subpopulations or individual clones were followed
by SDS-PAGE, western blotting, mass spectrometry
and DNA sequencing analyses. For ExLib1, intra-
cellular accumulation of soluble protein was shown
to be affected by codon specific effects at some
positions of the common N-terminal extension.
Interestingly, for ExLib2 where the same sequence
window was randomized via seven consecutive
NN(G/T) tri-nucleotide repeats, high product levels
(up to 24-fold higher than a reference clone) were
associated with a preferential appearance of novel
SD-like sequences. Possible mechanisms behind
the observed effects are discussed.

INTRODUCTION

Numerous expression vector systems have been developed
for efficient recombinant protein production using the
bacterium Escherichia coli as host. This involves,
for example, the use of different plasmid vector back-
bones, promoters, ribosomal-binding sites (RBS),
gene fusion partners, transcriptional terminators and

antibiotic resistance markers (1,2). Although a vast
number of reports are describing successful use of these
systems for production of recombinant proteins of
different origin and characteristics, others have reported
on frequently encountered problems like no or low
product formation, misfolding/inclusion body formation
or proteolytic degradation (3,4). If such problems are
observed using a particular expression vector system,
the use of different inducer concentrations, host cell
mutants, growth media, cultivation temperatures and
co-expression of folding factors can be tested for
improved production of the target protein (1–3).
Alternatively, the target protein-encoding gene can be
transferred to a different expression vector system.
However, with relatively few exceptions, it is difficult to
predict what effects a particular system or set of
conditions will have on the production of a given protein
which typically leads to an empirical testing of several
systems.
Many gene-specific effects on the protein production

involve post-transcriptional events. For example, the
mRNA sequence element denoted Shine–Dalgarno (5),
located upstream of the initiation codon interacts with a
complementary sequence (anti-SD) in the 30-end of the
16S rRNA in the ribosomal 30S subunit during transla-
tion initiation complex formation (6). Strong and gene-
specific mRNA secondary structures can mask the SD
sequence and thereby reduce the accessibility of the RBS
which influences the translation efficiency (7–12). Further,
reports concerning influence on translation initiation by
different mRNA determinants have emphasized the
importance of the strength of the interaction between
the SD sequence and the complementary anti-SD, the
identity of the initiation codon and the spacing between
these two sequence elements (6,13). RBS sequences can
also appear within the cDNA of target proteins, compete
for ribosome binding and interfere with protein transla-
tion causing low or no gene expression (14).
It has also been established that there is a bias in the

codon usage in E. coli, where so-called major codons,

*To whom correspondence should be addressed. Tel: þ46 8 55378328; Fax: þ46 8 55378481; Email: perake@biotech.kth.se

� 2007 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



as opposed to rare or minor codons, are more frequently
represented in highly expressed genes than in genes being
expressed at low levels (15). The nucleotide and codon
composition in the early coding region of a gene appears
to be especially important for gene expression (13,16–21),
although clusters and even unique rare codons located
further down in the structural gene also can have effects
like ribosome stalling, frame shifting and premature
translation termination (15,22,23). Codon-specific transla-
tion rates may likewise influence the in vivo protein
folding, where the presence of rare (i.e. more slowly read)
codons in specific regions of the structural gene can be
beneficial for the folding process (24).
In this work we have investigated two related but

different combinatorial strategies to obtain a post-
transcriptional tuning of recombinant E. coli protein
production and how this affected the soluble production
of a fluorescently tagged product protein. Based on a
reference eight-amino-acid translation initiation peptide
(TrpL) fused to an enhanced green fluorescent protein
(EGFP)-based reporter fusion protein, large expression
vector libraries were constructed in which the TrpL-
encoding sequence was either silently mutated into all
possible genetic combinations encoding the same peptide
sequence or more freely randomized allowing for the
appearance of either any eight-amino-acid N-terminal
extension or novel un-translated mRNA sequences which
could influence the expression on the nucleotide level.
Flow cytometric analyses of libraries, sorted subpopula-
tions and individual clones were utilized to study effects on
soluble protein product levels. Clonal analyses by DNA
sequencing, real-time PCR, western blotting, mass spec-
trometry and N-terminal sequencing indicated different
possible mechanisms behind observed variations.

MATERIALS AND METHODS

Bacterial strain, enzymes and oligonucleotides

The E. coli strain RRI�M15 (25) was used both in cloning
work and for recombinant protein production. Enzymes
were purchased from New England BioLabs or Fermentas
and used according to the suppliers’ recommendations.
Oligonucleotides employed for DNA sequencing, vector
and library constructions and real-time PCR were ordered
from MWG Biotech or Scandinavian Gene Synthesis AB.
Recombinant DNA techniques were performed according
to standard methods (26).

Vector construction

pUC-TrpL-ZEGFP. A portion of plasmid pZEGFP,
based on the pUC19-derivative pEGFP (Clontech, Inc.),
and containing a gene encoding the IgG binding Z domain
(27) in fusion with the gene encoding EGFP was PCR
amplified using an upstream oligonucleotide Band-1
(50-CTGGCACGACAGGTTTCC) encoding part of a
blunt end PvuII restriction site and two downstream and
partially overlapping oligonucleotides Band-3a (50-GC
TTTCATAGAGCTCGATACCCTTTGTGAAATTGTT
ATCCGCTC) and Band-3b (50-CCCCAAGCTTTTCAG
TACGAAAATTGCTTTCATAGAGCTCGATAC). The

resulting PCR product was digested with HindIII and
religated with a PvuII/HindIII restricted pZEGFP vector,
to yield pUC-TrpL-ZEGFP containing the SD sequence
AAGG followed by a SacI restriction site, a sequence
corresponding to the eight initial amino acids of the E. coli
tryptophan operon leader peptide (trpL;(28)) and a
HindIII restriction site.

pBR-TrpL-ZEGFP. For construction of pBR-TrpL-
ZEGFP, the low copy number plasmid pBR322
(Fermentas) was digested with EcoRI, treated with
Klenow fragment to create blunt ends and subsequently
restricted with Eco52I. A fragment starting upstream from
the promoter region and covering the complete sequence
of the ZEGFP encoding part was excised from pUC-
TrpL-ZEGFP with PvuII and NotI and inserted into the
prepared pBR322 vector to yield pBR-TrpL-ZEGFP
(Figure 1A and B).

ExLib2-Opt7stop. For the introduction of a stop codon
between the Z target protein and the EGFP reporter in
clone ExLib2-Opt7, the DNA fragment located between
the sequences of the Z and EGFP genes was excised
from the parental vector using BamHI and NcoI and
replaced with a linker of identical length and with
compatible protruding sticky ends. The linker was created
by annealing oligonucleotides Band-23 (50-GATCCCTAA
AGCCCGGTCGCCAC) (in-frame stop codon under-
lined) and Band-24 (50-CATGGTGGCGACCGGGC
TTTAGG).

Back-transfer of library sequence fragment to an original
vector preparation. For clone ExLib2-Opt7 the DNA
region corresponding to the library sequence and the
coding sequence for protein Z, was back-transferred to a
pBR-TrpL-ZEGFP vector backbone preparation which
had not been subjected to flow cytometric sorting,
via digestion with SacI and NcoI. The purified DNA
fragment was then re-ligated with the pBR-TrpL-ZEGFP
vector fragment, previously digested with the same
enzymes.

Library construction

The degenerate oligonucleotides Lib-1a (50-CCCCAAGGG
TATCGAGCTCT(a/t)TG AA(a/g)GC(a/t/c/g)AT(t/c/a)T
T(c/t)GT(a/t/c/g)CT(g/t/c/a)AA(a/g)CAAGCTTGGTAG
ACAACCCC; the variegated nucleotides in degenerate
positions are shown in small characters) and Lib-1b
(50-CCCCAAGGGTATCGAGCTCT(a/t)TGAA(a/g)GC
(a/t/c/g) AT(t/c/a)TT(c/t)GT(a/t/c/g)TT(g/a)AA(a/g)CA
AGCTTGGTAGACAACCCC) were used for construc-
tion of an early version of ExLib1, via mixing at a molar
ratio 2:1. For the second library (ExLib2) the degenerate
oligonucleotide Lib-2 (50-CCCCAAGGGTATCGAGC
TCT(a/t)TGNNKNNKNNKNNKNNKNNKNNKCAA
AGCTTGGTAGACAACCC) was used. These three
library oligonucleotides have surrounding constant
regions containing an upstream SacI and a downstream
HindIII site. To obtain double-stranded library fragments,
the first library oligonucleotide strand served as a template
for second strand synthesis by Klenow DNA polymerase
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after annealing of Band-4 (50-GGGGTTGTCTACCAAG
CTTG) (ExLib1) or Band-7 (50-GGGTTGTCTACCAAG
CTTTG) (ExLib2), respectively, to the non-variegated
downstream region. The resulting DNA fragments were
digested with SacI, purified with CHROMA SPINTM-30
Columns (Clontech) to remove unwanted restriction
products and ligated to the linearized SacI/HindIII
cleaved pBR-TrpL-ZEGFP plasmid. After HindIII diges-
tion of the vector-anchored library fragments, the vector
was recirculized using T4 DNA ligase. The resulting
plasmid library pools were transformed into electrocom-
petent E. coli cells by electroporation with a Bio-Rad

Gene PulserTM (Bio-Rad Laboratories). Approximately
100 ng DNA ligation mixture was used for electroporation
of each 100 ml vial of electrocompetent cells.
Transformants were subsequently incubated for 50min
without shaking at 378C in tryptic soy broth medium
(TSB; Merck) supplemented with 5 g l�1 yeast extract
(Merck), 2% glucose, 10mM MgCl2, 10mM MgSO4,
10mM NaCl and 2.5mM KCl, before portions of the
libraries were titrated on ampicillin-selective agar plates.
The remaining library pools were inoculated into 100
(ExLib1) or 500 (ExLib2) ml TSB supplemented with
yeast extract, 2% glucose and relevant antibiotic and

B

C

D

A

E

Figure 1. Schematic representation of the expression cassette and the library designs. (A) Block diagram of the expression cassette showing (i) the
E. coli lac promoter (Plac), (ii) the E. coli trp operon-derived SD sequence (SDtrp), (iii) the gene sequence corresponding to either the eight first amino
acids of the wild-type TrpL peptide (reference vector), or the corresponding variegated sequence window of any library member from ExLib1 or
ExLib2, (iv) the gene encoding the IgG-binding Z domain (Z) and (v) the gene encoding the EGFP. The two alternative start codons are indicated
(Start 1 and Start 2); (B) DNA and deduced amino acid sequence of the translation initiation region of the reference vector pBR-TrpL-ZEGFP
discussed in the text. Recognition sites for restriction enzymes discussed in the materials and methods section are indicated as underlined;
(C) Description of the randomization design used to construct the ExLib1 library, showing location and nature of nucleotide variations introduced
via the use of the two degenerate oligonucleotides Lib-1a and Lib-1b. Note: In order to be able to include all six codons for Leu at position þ7,
two different oligonucleotides (Lib-1a and Lib-1b) were used in the library construction (in a 2:1 mixture); (D, E) Description of the randomization
design used to construct the ExLib2 library, showing location and nature of nucleotide variations introduced via the use of the degenerate
oligonucleotide Lib-2 (N¼A, G, C or T). The design of this library allowed for two in vivo scenarios, involving either a translational start at the first
start codon (underlined in Figure 1D) or at the second start codon (underlined in Figure 1E). See text for details.
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grown overnight at 378C in shake flasks. Cells harboring
the individual libraries were finally harvested, resuspended
in phosphate-buffered saline (PBS) containing 50%
glycerol and stored at �808C until use. Plasmid prepara-
tion was carried out from cell cultures containing the
early version of the ExLib1 library. The vectors were
digested with HindIII, treated with Klenow DNA poly-
merase to fill in protruding ends and re-ligated.
This rendered the degenerate sequence in the resulting
library (ExLib1) in a correct reading frame with the
downstream ZEGFP-encoding sequence. The total
number of transformants obtained for the final version
of ExLib1 and ExLib2 were 9� 107 and 2� 108,
respectively.

DNA sequencing

DNA sequencing to verify correct cloning of constructs
and for analysis of library member sequences was
performed using primers Band-1 (see above), Band-5
(50-CGCTTTGGCTTGGGTCATCT) and Band-6
(50-CAGCATGGCCTGCAACGC) and an ABI Prism
3700 DNA analyzer (Applied Biosystems).

Real-time PCR

Oligonucleotides for real-time PCR analysis of plasmid
DNA and genomic DNA were targeted at the beta-
lactamase encoding bla gene and the 16S rDNA gene,
respectively and were designed as described elsewhere (29).
Thawed samples of induced overnight cultured cells were
diluted 1:1000 in sterile water. One microliter samples of
such cell suspensions were included in 25 ml PCR
reactions, containing 12.5 pmol each of forward and
reverse primers and 12.5ml of 2� iQTM SYBR� Green
Supermix (Bio-Rad Laboratories). Real-time PCR was
performed with an iCycler (Bio-Rad Laboratories) instru-
ment with the cycling protocol 2min at 508C, 3min at
958C followed by 40 cycles of 15 s at 958C and 45 s at
608C. At the end of the amplification reactions a melt
curve analysis was performed by 20min ramping of the
temperature from 608C to 958C. The ��CT method (30)
was applied to calculate relative plasmid copy number
for clones harboring library expression vectors, where
the genomic DNA served as internal standard and cells
containing plasmid pBR-TrpL-ZEGFP as the reference.

Culturing of libraries and individual clones

Both libraries and individual clones (for either flow
cytometric analyses or for SDS-PAGE/western blotting/
affinity purification/real-time PCR) were cultured accord-
ing to the same basic protocol. Aliquots of thawed library
stocks (covering the respective total library size) or
overnight cultures of individual clones were diluted
approximately 500 times by inoculation into fresh 10 or
25ml TSB medium supplemented with 5 g l�1 yeast extract
and 100mg l�1 ampicillin and cultivated in shake flasks at
308C or 378C. When an OD600 nm between 0.5 and 1.0 was
reached, recombinant protein production was induced by
addition of isopropyl-beta-D-thiogalactopyranoside
(IPTG) to a final concentration of 1mM and the

cultivation was allowed to proceed for either 4.5 h (sorting
of low, medium and high clones) or 18–20 h.

Flow cytometric analysis and sorting

For flow cytometric measurements, approximately 100 ml
of induced overnight cell cultures were gently harvested,
washed twice with 1ml PBS and diluted 200 times in the
same buffer. Cells were analyzed and sorted using a
FACSVantage SE flow cytometer (BD Biosciences).
Alignment of the argon ion laser was performed with
AlignFlowTM flow cytometry alignment beads for 488 nm
(molecular probes). Histograms were recorded from
10 000 cells at a rate of approximately 500 cells s�1 using
standard procedures. Library cells, chilled on ice, were
sorted in Normal-R mode into 1ml TSB medium
supplemented with yeast extract and transferred to 30 or
378C for approximately 1 h incubation with shaking.
Sorted and incubated cells were further inoculated into
10ml TSB medium supplemented with yeast extract and
ampicillin and re-cultivated first overnight and then
according to above described procedures at 30 or 378C
before next round of flow cytometric analysis.
Approximately 3500 cells from the fluorescence intervals
denoting low, medium and high, respectively (see results
section), were sorted out at a rate of 300–500 cells s�1. For
the two-round sorting of library populations conferring
the highest fluorescence intensities, sorting was carried out
for 1 h at a rate of 5000 cells s�1 and the resulting tubes
with sorted cells were transferred to incubation conditions
every 15min. CellQuest software (BD Biosciences) was
used to analyze flow cytometric data.

Protein purification and analysis

Induced overnight cultures were centrifuged and pelleted
cells were re-suspended in a double volume of PBS and
disrupted by sonication using a sonicator (Vibra cellTM,
Sonics and materials, Inc.) at 60% duty cycle for 3min
with 1.0 s pulses. A 5ml IgG SepharoseTM 6 Fast Flow
matrix was utilized for protein purification. Before loading
of samples on the column, cell debris was removed by
centrifugation and filtration (0.45 mm) and the buffer was
adjusted to give a final concentration of 25mM Tris-HCl
pH8.5, 150mM NaCl, 1.25mM EDTA and 0.05%
Tween-20. The columns were washed with loading buffer
and the absorbance at 280 nm of HAc eluted fractions was
determined. Extinction coefficients were calculated using
ExPASy. Fractionation of soluble and insoluble proteins
for SDS-PAGE and western blot analysis was performed
by centrifugation of 1ml of previously sonicated samples
at 10 000 rpm in a micro-centrifuge. PBS was used to wash
the pellet twice and was then added to the soluble fraction
prior to concentration by lyophilization. Samples of both
soluble and insoluble materials were dissolved in a volume
of beta-mercaptoethanol containing SDS-PAGE loading
buffer corresponding to 1:100 of the original cultivation
volume. One microliter of these samples were applied to
NuPAGETM 4–12% Bis-Tris Gels (InvitrogenTM), which
subsequently were stained with GelCode� Blue Stain
Reagent (Pierce). For western blotting, PVDF membranes
(InvitrogenTM) with electrophoretically transferred
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proteins were blocked with 5% milk powder dissolved in
PBS supplemented with 0.05% Tween-20. As primary
antibody a 1:2000 dilution of anti-green fluorescent
protein rabbit polyclonal antibody (InvitrogenTM) was
used. Polyclonal goat anti-rabbit immunoglobulin con-
jugated to horseradish peroxidase (DakoCytomation),
diluted 1:3000 served as secondary antibody.
SuperSignal West Dura Extended Duration Substrate
(Pierce) was used as detection system and images of the
chemiluminiscence were aquired by a Chemi DocTM Gel
Documentation system (Bio-Rad Laboratories Inc.).
The five N-terminal amino acids in the IgG-affinity
purified protein produced by the clone ExLib2-Opt7
were determined by Edman degradation (Protein
Analysis Center, Stockholm, Sweden). Mass spectra were
recorded on a MALDI-TOF MS biflexIV instrument
(Bruker Daltonics).

Sequence analysis

Codon adaptation index (CAI) values were calculated as
described previously (31). Because no relative adaptive-
ness value (w) was available for the TTG codon when used
as initiation codon and decoded as methionine, it was in
our study given the value 0.05 to still be able to calculate
CAI for the library member sequence variants. We based
this on the infrequent use of TTG as initiation codon in
our study (13% in ExLib1-High (308C) and 0% in
ExLib1-High (378C), Figure 2A) and on the relative
synonymous codon usage (RSCU) values assigned to
so-called ‘rare’ codons in an earlier report (32).

RESULTS

Design of expression vector libraries

Two separate E. coli expression vector libraries (ExLib1
and ExLib2) were constructed and electroporated into
E. coli host cells for sorting and analysis of cell
populations as well as individual clones on basis of their
soluble intracellular protein product levels. All library
vector constructs contained (i) an E. coli lac promoter; (ii)
a trp operon-derived SD sequence followed downstream
by (iii) a 21 (3� 7) nucleotide long window of differently
variegated positions (see below) following an initially
placed first potential translational start codon triplet
((A/T)TG, see below) and (iv) a cassette encoding a
fluorescent fusion protein product consisting of a 6 kDa
IgG-binding target protein Z (27) fused to an enhanced
green fluorescent protein (EGFP) reporter (33), connected
via a twelve-residue linker (Figure 1). The included EGFP
moiety has earlier been described as a useful reporter of
intracellular levels of soluble protein (34).

For the construction of the ExLib1 library
clones, the variegation of the 24 nucleotide window was
designed such that all resulting library members encoded a
common eight amino acid translation initiation peptide
(MKAIFVLK) derived from the E. coli trp operon (TrpL
leader sequence;(28)), albeit by different combinations of
position-specific synonymous codons (Figure 1C). This
sequence has earlier been demonstrated to promote an
efficient translation initiation, leading to high product

levels of recombinant protein (35). The first nucleotide of
the original ATG initiation triplet in the trpL sequence
was genetically doped with an equal amount of T,
allowing for the less frequently used initiation codon
TTG to also appear in library clones. The frequency with
which this codon is used as initiation codon in E. coli is
only 1% (1). Although it has been shown to be poorly
efficient as initiation codon (13), it can be as favorable as
ATG if followed by a certain codon context (19).
Electroporation of E. coli resulted in approximately
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Figure 2. Results from statistical analyses of codons in TrpL variants
corresponding to ExLib1 clones of different fluorescence intensity
values. (A) Fractions (%) of investigated clones utilizing a TTG rather
than an ATG codon in the first position of the randomized sequence.
In conjunction with the sorting, cells were grown at either 308C (gray
bars) or 378C (black bars). The designations low, medium and high
correspond to three different fluorescence intervals (see text);
(B, C) Position-specific codon biases. Position-specific mean w values
were calculated for TrpL encoding sequence variants (n¼ 16) of
categories of clones from ExLib1, sorted for the indicated fluorescence
intensity intervals and grown at indicated temperatures. Individual
codons with high w values reflect their overrepresentation in highly
expressed E. coli proteins (31). In (B), gray, black and striped bars
indicate ExLib1-High clones grown at 308C, ExLib1-High clones grown
at 378C and ExLib1-Opt clones grown at 378C, respectively. In (C),
gray and black bars indicate ExLib1-Low clones grown at 30 and 378C,
respectively.
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9� 107 transformants and the theoretical diversity of the
library (4608 different possible variants) could thus be
considered duly covered. DNA sequencing of 23 randomly
picked colonies showed that 83% of the constructs
contained correct library window sequences in reading
frame with the ZEGFP fusion protein. All clones in this
library would thus be expected to encode a common
protein product, and any differences in cellular fluores-
cence intensities should be possible to attribute to the use
of different codons in the N-terminal region allowing for
effects related to one or several levels, including codon
usage, mRNA stability, mRNA secondary structure and
translation initiation efficiency.
In ExLib2, the 21 nucleotide window following the

same alternative translational start (A/T)TG triplet was
instead randomized using seven consecutive NN(G/T)
triplets, allowing for a significantly larger genetic freedom.
If recruited as codons for translation, each such triplet
includes 32 possible codons covering all 20 amino acids as
well as one of the stop codons (TAG), theoretically
allowing for the ZEGFP protein to be extended at the
N-terminal by any of 1.2� 109 different peptide variants
encoded by 6.8� 1010 genetic variants (Figure 1D).
In addition, the presence of a TTG codon downstream
of the randomized window (Figure 1E) would potentially

allow for the recruitment of this codon as an alternative
translational start in a fraction of the ExLib2 library
clones, provided the occurrence of a suitably positioned
SD sequence. Thus, in comparison with the ExLib1
library, the design of the more complex ExLib2 library
includes additional sequence-dependent features on both
the nucleotide and protein level with potential to influence
the production of the ZEGFP fusion protein.
Electroporation of E. coli resulted in a library size of
approximately 2� 108 transformants, of which 82%
(18/22) were found to contain correct inserts as analyzed
by DNA sequencing.

Initial flow cytometric analysis of the libraries

For initial library characterization cell cultures corre-
sponding to either ExLib1 or ExLib2 were grown in shake
flasks and induced for 4.5 h at 30 or 378C, washed and
analyzed for whole cell fluorescence in a flow cytometer.
The results showed a wide distribution in fluorescence
intensity for both ExLib1 and ExLib2 (Figure 3A and C),
spanning more than three orders of magnitude. Using
three different relative fluorescent intensity gate intervals,
subpopulations denoting low (5–10 interval), medium
(50–100 interval) and high (500–10 000 interval) from both
libraries were sorted and collected in separate pools.

Figure 3. Histograms from initial flow cytometric analyses of ExLib1 and ExLib2. Induced shake flask cultures were harvested after 4.5 h of
induction and analyzed. (A) Analysis of ExLib1; (B) Analysis of previously isolated and here re-cultured ExLib1 subpopulations denoted low,
medium and high (gates once used for the sorting are shown), cultured either in separate flasks (non-filled histograms) or together in a common flask
(co-culture) (filled histogram); (C) Analysis of ExLib2; (D) Analysis of previously isolated and here re-cultured ExLib2 subpopulations denoted low,
medium and high (gates once used for the sorting are shown), cultured either in separate flasks (non-filled histograms) or together in a common flask
(co-culture) (filled histogram). The pre-amplifier gain was set to 799V and the experiments were performed at least twice with similar results
(data not shown).
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To investigate if the observed fluorescence intensities for
the subpopulations were likely to be linked to particular
clonal characteristics or were merely reflecting statistical
variation, the sorted pools from each library were
re-cultured using the same protocol either as separate
sub-pools or mixed (all three pools together), followed by
flow cytometric analysis. Interestingly, the results showed
that the separately re-cultured subpopulations from both
libraries retained fluorescence intensities in parity with the
gate values used for their isolation, indicating that these
values were linked to clone-dependent characteristics
(Figure 3B and D). In addition, the analysis of the
co-cultured subpopulations indicated that the clonal traits
had been preserved also under these conditions, in that,
three subpopulations could be spotted in the flow
cytometer histograms (Figure 3B and D). Sixteen individ-
ual clones from each of the twelve different populations
(ExLib1/2; 30/378C; low/medium/high) were collected and
subjected to DNA sequencing (see below).

To exclude the possibility that the observed effects in
whole cell fluorescence were due to any altered properties
of the bacterial host, rather than the library plasmids,
control experiments were performed. Here, plasmid
preparations from cells that had been sorted out from
the low, medium and high intervals were re-transformed
into fresh cells and the experiment was repeated.
No significant differences in the resulting fluorescence
properties between these cultures and the cultures
analyzed without intervening plasmid preparation could
be observed (data not shown). The results show that the
varying fluorescence intensity displayed by different
library member clones most likely reflects effects resulting
from sequence differences in their respective expression
cassettes. Notably, in both libraries there was an
approximate 1000-fold span in whole cell fluorescence
intensity between clones showing that both randomization
strategies for the libraries seem to have a dramatic
influence on the soluble product levels of the fusion
protein.

Isolation of high-fluorescence library clones

To isolate individual clones (optimized or Opt clones)
from the two libraries showing markedly increased
fluorescence intensities compared to the reference
clone pBR-TrpL-ZEGFP, two consecutive rounds of
flow cytometric sorting at relatively high gate values,
with intervening re-cultivations (at 378C) were performed
(Figure 4A and B). Interestingly, after the second sorting
round the resulting subpopulations of the libraries showed
a distribution in whole cell fluorescence intensity similar to
cultures of individual clones. Ten randomly picked
individual colonies from each of these two-round sorted
library pools were re-cultured according to the previously
used protocol and re-analyzed in the flow cytometer
(Figure 4C and D). Some of the clones from the ExLib1
library showed a 3–4-fold increase in mean whole cell
fluorescence compared to the reference clone pBR-TrpL-
ZEGFP (Figure 4C, Table 1). For the clones originating
from the ExLib2 library, all had higher fluorescence
intensities than the reference clone (typically 4–6-fold

increases) and one clone (denoted ExLib2-Opt7) showed a
16-fold higher whole cell fluorescence intensity than the
reference construct (Figure 4D, Table 1). Clones with high
fluorescence intensity values from both libraries were
subjected to DNA sequencing (see below and Table 1).

Protein production analysis

To verify the results from the different sorting experi-
ments, and also to estimate the relative proportions of
soluble and insoluble fractions of the ZEGFP fusion
protein in the cells, SDS-PAGE and western blot (anti-
EGFP) analyses were performed. Homogenates of cell
cultures from three separate clones from the fluorescence
intervals low and high, respectively, as well as from clones
identified during the two-round sorting of the libraries
(Opt clones) were divided into soluble and insoluble
fractions. The results shown in Figure 5 indicate that
cultures of clones originating from the low and high
fluorescence intervals of both libraries contained correlat-
ing relative amounts of soluble ZEGFP fusion protein
(Figure 5A). Noteworthy, the levels of soluble ZEGFP
fusion protein appeared to be higher for ExLib2 clones
than for clones from ExLib1 (Figure 5A). Interestingly,
whereas only very low levels of co-existing insoluble
ZEGFP fusion protein was observed for ExLib2-Low and
-High clones, clones from ExLib1 showed to generate
equal or even higher (e.g. ExLib1-High3) amounts of
insoluble compared to soluble target protein (Figure 5B).
The corresponding results obtained for cultures of the

Opt clones, isolated for their high fluorescence intensities
in two consecutive sorting rounds, also showed higher
intracellular amounts of soluble ZEGFP reporter protein
for ExLib2 clones than for ExLib1 clones (Figure 5C).
Further, ExLib2 clones also displayed higher apparent
soluble to insoluble product ratios than ExLib1 clones.
Both the SDS-PAGE and western blotting data

suggested that the amounts of soluble ZEGFP protein
product in the ExLib2 clones had been significantly
increased compared to the pBR-TrpL-ZEGFP reference,
and that observed whole cell fluorescence values had
indeed been indicative of amounts of soluble ZEGFP
fusion proteins for both libraries. To further investigate
this notion, soluble ZEGFP fusion proteins were purified
and quantified by IgG-affinity chromatography from lysed
shake-flask cultures corresponding to the pBR-TrpL-
ZEGFP and ExLib2-Opt7 clones. The results showed
that the average yield of soluble ZEGFP fusion protein
from the ExLib2-Opt7 library clone was approximately
24-fold higher (1.2� 10�5moles/l culture or 410mg/l
culture; MW¼ 34.9 kDa) than for the pBR-TrpL-
ZEGFP reference (4.7� 10�7moles/l culture or 17mg/l;
MW¼ 36.0 kDa). This dramatic increase in soluble
protein expression was in fact higher than could be
expected from the flow cytometric analysis where a
fluorescence intensity ratio of 15.8 was observed between
cells corresponding to these two clones (Figure 4D,
Table 1).
Further, to investigate if this positive effect on soluble Z

protein product level was retained after functional
removal of the C-terminally fused reporter moiety,
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a stop codon was genetically introduced between the gene
fragments encoding the Z target protein and the EGFP
reporter protein in the ExLib2-Opt7 clone. Interestingly,
a quantification of the Z protein product via IgG-affinity
chromatography showed that a similar amount of soluble
Z product protein (1.3� 10�5mole/l culture or 94mg/l
culture; MW¼ 7.3 kDa) was obtained without the EGFP
fusion partner present which indicated a neutral net effect
for the EGFP reporter on the product expression, stability
and solubility under the conditions used.

Additional analysis of ExLib1 clones

To further investigate possible reasons for the observed
differences in ZEGFP protein expression between clones
belonging to ExLib1, 16 clones from each of the
fluorescence intensity intervals low, medium and high
from library cultures grown at either 30 or 378C were
subjected to DNA sequencing. In addition, IgG-affinity
purified soluble protein from cultures of three clones was
subjected to mass spectrometric analyses. The fact that all
investigated clones showed to produce an IgG-binding
protein product of the molecular mass of 36.19 kDa
(�0.015 kDa), showed that the assumption that different

members of the library encoded identical TrpL-ZEGFP
gene products (theoretical mass of 36.19 kDa), albeit via
different sets of synonymous codons for the N-terminal
region was correct (data not shown).

In the construction of the ExLib1 library, the two
alternative initiation codons (ATG or TTG) were included
in equal proportions. The data from an analysis of clones
belonging to different sorted categories presented in
Figure 2A, shows a clear correlation between lower
fluorescence intensity values and the use of TTG as the
initiation codon at both investigated temperatures.
Interestingly, none of the ExLib1-High (378C) or the
three isolated ExLib1-Opt clones (Figure 2A and B) used a
TTG triplet as the initiation codon.

To further address the possible influence from alter-
native codon choices, codon adaptation index (CAI)
values were calculated for the N-terminal sequence of
eight amino acids of each of the library members included
in the analysis. Using an index for each of the 20 amino
acids (denoted w values) based on their appearance in a set
of highly expressed proteins in E. coli (31), a given
sequence using solely the theoretically most preferred
codons would result in a CAI value of 1.0. The gene

Figure 4. Histograms from flow cytometric sortings of optimized fluorescence clones (Opt) from ExLib1 and ExLib2. (A) Overlay plots from analyses
of the original ExLib1 library (filled histogram) and re-cultured subpopulations of the libraries (gray) from after the first (left) and second (right)
sorting round for highly fluorescent cells using 488 nm fluorescence gate values of4800 (gate 1) and42000 (gate 2), respectively, (B) Overlay plots
from analyses of the original ExLib2 library (filled histogram) and re-cultured subpopulations of the libraries (gray) from after the first (left) and
second (right) sorting round for highly fluorescent cells using 488 nm fluorescence gate values of 41000 (gate 1) and 44000 (gate 2), respectively;
(C) Overlay plots from analyses of the individual clones from the ExLib1 library (gray histograms) and the reference clone pBR-TrpL-ZEGFP
(black histogram); (D) Overlay plots from analyses of the individual clones from the ExLib2 library (gray histograms) and the reference clone
pBR-TrpL-ZEGFP (black histogram). The pre-amplifier gain was set to 600V (A and B) or 500V (C and D).
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encoding the first eight amino acids of the wild-type TrpL-
sequence included as reference in this work uses relatively
highly biased/optimized codons and has a CAI value of
0.69. Interestingly, the mean CAI values, calculated for
the eight amino acid ExLib1 library member sequences in
each of the categories low, medium, high and Opt, all
ranged between approximately 0.2 and 0.3 (data not
shown). Thus, no obvious correlation between fluores-
cence intensity values and codon bias could be seen.
However, if the eight codons of the sequences were

treated separately and average values were calculated for
each group of clones (i.e. low, medium and high),
a different pattern was observed. The results from a
series of analyses involving two different cultivation
temperatures, are shown in Figure 2B and C. ExLib1
clones belonging to the high category (grown at 30 or
378C) show similar and highly biased codon usage in
positions þ1, þ2 and þ5, which is similar to the pattern
observed for Opt clones from ExLib1 (Figure 2B).
It should be noted though, that there only exists two
codons for phenylalanine and that the average w values
of the high and Opt clones in position þ5 reflects
an approximate equal usage of these two codons
(w(UUC)¼ 1.0 and w(UUU)¼ 0.296). The lysine codon
AAA was exclusively used in position þ2 in the three
ExLib1-Opt clones and in 15 out of 16 clones belonging to
the ExLib1-High category (378C). In contrast, ExLib1
clones sorted for low fluorescence intensity values showed
more varying codon usage in positions þ1 and þ2
(Figure 2C).
To investigate possible contributions to the increased

product levels from changes in the gene dosage, the
relative plasmid copy numbers (i.e. the number of library
plasmid copies per chromosome observed for a clone
compared to the corresponding value for the pBR-TrpL-
ZEGFP reference clone) were determined for the ExLib1-
Opt3, -Opt9 and -Opt10 clones via a real-time PCR-based
method. Here, mean values from three independent
cultures of each clone were calculated using plasmid and
chromosome-specific primer-pairs in separate experi-
ments, the genomic DNA serving as internal cellular
reference. The results showed that all the three investi-
gated ExLib1-Opt clones had relative plasmid copy
numbers in the range 1.1–1.3 (Table 1), thus showing
only marginally higher gene dosages than the reference
which suggested that other factors (as discussed above)
were mainly responsible for the high relative fluorescence
intensities observed for these clones (in the range 3.0–4.3;
Table 1).

Additional analysis of ExLib2 clones

For the ExLib2 library, 16 clones originating from each of
the fluorescence intensity intervals low, medium and high
(grown at either 30 or 378C) and a number of Opt clones
were subjected to DNA sequencing. As mentioned above,
the design of this library opened up for the possible
isolation of clones for which the translation had started at
a second alternative start codon (TTG), located immedi-
ately in front of the ZEGFP fusion protein-encoding
sequence (Figure 1E). Indeed, an analysis of ExLib2-High

Table 1. Listing of some characteristics for a selection of clones from

ExLib1 and ExLib2a

Clone ID Sequence (50–30)b Startc RelPCd RelFe

ExLib1-Low8 ATGAAAGCGATCT
TCGTGCTGAAG

nd

ExLib1-Low9 ATGAAGGCCATAT
TCGTGCTCAAA

nd

ExLib1-Low2 TTGAAGGCAATAT
TCGTCCTCAAA

nd

ExLib1-High3 ATGAAAGCAATAT
TCGTATTAAAG

nd

ExLib1-High2 ATGAAAGCTATTT
TTGTACTCAAG

nd

ExLib1-High1 ATGAAAGCCATCT
TCGTGTTAAAG

nd

ExLib1-Opt9 ATGAAAGCAATAT
TCGTACTCAAG

1:st 1.1 4.3

ExLib1-Opt10 ATGAAAGCAATCT
TTGTCTTGAAA

1:st 1.3 4.0

ExLib1-Opt3 ATGAAAGCAATAT
TCGTGTTGAAG

1:st 1.3 3.0

ExLib2-Low4 ATGGTGTGGGGTA
GGGAGCATCAG

nd

ExLib2-Low1 TTGGGGGGTACGC
GGGGTCAGGCT

nd

ExLib2-Low7 ATGGCGGCTACGT
CGAAGCCGGTG

nd

ExLib2-High3 ATGAAGAATAGGT
CGACGCAGCAG

1:st 1.3 2.7

ExLib2-High1 ATGTTTAAGGGGG
GGGAGGGGGTT

2:nd

ExLib2-High5 ATGTTGGCGGCGA
TTGAGGGGAAG

2:nd

ExLib2-Opt7 ATGGTGGATGGTC
TGAAGAGGGGG

2:nd 2.7 15.8

ExLib2-Opt1 ATGAGTGATCCTA
GTAGGAGGGGG

2:nd 1.6 5.5

ExLib2-Opt4 ATGAGTAGTCAGG
GGTTGAGGAGT

2:nd 1.0 4.7

ExLib2-Opt5 ATGACGTAGCATC
TGAATAAGGAG

nd

ExLib2-Opt6 ATGTAGGTGAAGA
TGGGGGAGGTT

nd

ExLib2-Opt10 ATGGGTAGGGCCG
TGAGGAGGAG

nd

ExLib2-Opt9 ATGCGGGAGCGTG
AGACGGGGGAG

nd

ExLib2-Opt3 ATGAAGACGTCGC
GGGGGGAGTAG

nd

ExLib2-Opt8 TTGGCGAAGGGGA
AGTTGATGATG

nd

ExLib2-Opt2 TTGAATTGGAGGA
AGGTGAGGGAG

nd

aClones within each group are listed according to their mean
fluorescence intensity values as measured by flow cytometry
(first¼ highest fluorescence).
bSequences of the 24 nucleotide windows subjected to the variegation.
Putative SD sequences are indicated in bold for clones of which purified
protein products have been analyzed by mass spectrometry. The sequence
giving the highest number of continuous bases complementary to the
CCUCC core of the E. coli anti-SD sequence ACCUCCUUA is shown (36).
cThe nomenclature 1:st and 2:nd, refers to a translational start at the
first start codon (A/T)TG or the second start codon TTG discussed in
the text (Figure 1).
dRelPC is the relative plasmid copy number for a given clone (i.e. the
average number of library plasmid copies/chromosome in a clone
compared to the corresponding value for the pBR-TrpL-ZEGFP
reference clone) (mean values from triplicate experiments) as deter-
mined in the materials and methods section.
eRelF is the relative fluorescence intensity for a given clone (i.e. the
fluorescence intensity value for a clone compared to the fluorescence
intensity value of the pBR-TrpL-ZEGFP reference clone) (mean value
from triplicate experiments), determined by flow cytometry analyses as
described in the materials and methods section.
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and -Opt clones (Table 1) revealed several SD-like
sequence regions within the randomized window. The
sequence context GGAG or GAGG was present in the
majority of ExLib2-High and -Opt clones (Table 1) but
was less frequent in the ExLib2-Medium and ExLib2-Low
clones (data not shown). Thus, with the exception of the
sequence for ExLib2-High3, all ExLib2-High and -Opt
clone sequences listed in Table 1, contain at least one sub-
sequence showing an apparent complementarity to the
E. coli 16S rRNA anti-SD sequence.
An analysis by mass spectrometry of IgG-affinity

purified proteins from three Opt clones showing the
highest fluorescence intensity values (ExLib2-Opt1,
ExLib2-Opt4, ExLib2-Opt7) and two of the ExLib2-
High clones (ExLib2-High1 and ExLib2-High5) showed
molecular masses consistent with translational starts at the

second alternative initiation codon. For the clone ExLib2-
Opt7, an N-terminal sequencing of the purified protein
yielding the sequence Val-Asp-Asn-Lys-Phe further con-
firmed a translational start at the second initiation site.
Thus, this suggests that the putative SD-like sequences
shown in Table 1 for these five clones were productively
positioned to promote a translational start at the TTG
start codon placed downstream. The aligned spacing
between the SD-like sequences and the TTG start codon
varies between 5 and 10 nucleotides, which is in
accordance with literature values for productive arrange-
ments (36). For the ExLib2-High3, containing no appar-
ent SD-like sequence within the randomized window, the
mass spectrometric analysis showed an N-terminal exten-
sion consistent with a translational start at the first
initiation codon. This is consistent with the small upward

Figure 5. Analysis of sorted ExLib1 and ExLib2 clones by SDS-PAGE and western blotting. Clones of indicated identities were cultivated and
treated as described in the material and methods section for fractionation of soluble and insoluble materials, which were subsequently analyzed by
SDS-PAGE under reducing conditions with protein staining or western blotting (smaller insets) using a polyclonal anti-GFP rabbit IgG reagent as
primary antibody. The regions of the SDS-PAGE gels corresponding to the western blotting analyses are indicated by the boxes. (A) Soluble
fractions from ExLib1-low/high and ExLib2-low/high clones; (B) Insoluble fractions from ExLib1-low/high and ExLib2-low/high clones;
(C) Insoluble (I) and soluble (S) fractions from ExLib1-Opt and ExLib2-Opt clones. The lanes designated ‘ref’ refers to samples prepared from
plasmid-less host cells (grown without added antibiotic). The numbers indicate molecular weights of reference proteins in kDa (Amersham
Biosciences). In (C), samples from the pBR-TrpL-ZEGFP clone was included as additional reference.
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shift of the bands visualized in the western blotting for this
clone relative to the neighboring bands corresponding to
two clones for which the translation was confirmed to
start at the second start codon (Figure 5A and B).
The ExLib2-High3 also showed to result in a higher yield
of ZEGFP protein product than the TrpL-ZEGFP, as
evaluated from IgG affinity purification (60.6mg/l culture
and 17.2mg/l culture, respectively). Thus, the use of the
ExLib2 library showed that increased levels of soluble
ZEGFP protein, relative to the reference, could be
obtained both with and without an N-terminal extension.

As described above for some of the ExLib1 clones,
the relative plasmid copy numbers were also determined
for four ExLib2 clones (-High3, -Opt1, -Opt4 and -Opt7)
to be able to correlate obtained values to the relative
fluorescence intensities and soluble product yields
(Table 1). For the three clones ExLib2-High3, ExLib2-
Opt1 and ExLib2-Opt4, the relative plasmid copy
numbers were found to be in the range 1.0–1.6
(Table 1), suggesting that the contribution from a gene
dosage effect to the elevated soluble product levels and
higher relative fluorescence intensities (in the range
2.7–5.5) was limited.

Interestingly, the ExLib2-Opt7 clone, showing the
highest soluble product levels and the highest relative
fluorescence intensity (15.8; Table 1) had a relative
plasmid copy number value of 2.7, suggesting that a
gene dosage effect, in addition to sequence-related effects,
had contributed to the overall clonal characteristics.

As an additional investigation of the ExLib2-Opt7
clone, to be able to rule out that the library work,
including sorting had resulted in spurious genetic changes
in non-addressed parts of the expression plasmid and
influenced the results, a fragment containing the rando-
mized sequence window and the Z protein encoding gene
was transferred to a fresh lot of the reference vector
backbone (containing the EGFP gene cassette). In flow
cytometry analyses, this re-constructed clone showed as
high fluorescence intensities as the originally sorted
ExLib2-Opt7 clone. This indicated that the basis for the
elevated product levels seen for this clone could be
specifically located to the studied sequence region.

DISCUSSION

The translation initiation efficiency is often described as
the rate-limiting event in the translational process and is
considered to influence the overall expression level of
a gene (8,37). Sequence-related features affecting the
initiation efficiency in E. coli include the initiation
codon, the region downstream of the initiation codon,
the SD sequence and its spacing to the initiation codon
as well as variations in mRNA secondary structures (6).
The integrated nature of these features makes it difficult,
if not impossible, to perform truly isolated studies of any
one of these single factors.

The aim of this study was to investigate the possibilities
to influence the soluble product levels of a recombinant
protein from varying the sequence of a 50-end-located
mRNA element by either conservative or free

combinatorial randomization. The recruitment of an
easily detected fluorescent gene product as reporter
opened up for efficient flow cytometric monitoring of
thousands to tens of millions different variants in single
experiments. Both constructed libraries showed to result
in wide distributions of the cellular fluorescence intensity,
spanning up to three orders of magnitude. The stable
expression characteristics for isolated subpopulations and
individual clones indicated that the traits were due to
inherent properties related to particular expression cas-
sette sequence contexts.
For the ExLib1 library, corresponding to a conservative

combinatorial variation (silent mutations) of the eight
amino acid TrpL translation initiation peptide, a clear
correlation between the start codon triplet and the cellular
fluorescence intensities was seen, in accordance with the
earlier findings showing that TTG generally is a less
efficient initiation codon than ATG (13,19). Some of the
sorted TrpL-ZEGFP encoding constructs of ExLib1
conferred up to 4-fold increases in fluorescence intensity
relative to the wild-type reference. The library sequences
in these constructs generally have low CAI values and
accordingly contain high frequencies of rare codons.
This is intriguing since translation of rare codons has
been suggested to be slower than that of frequent codons
(38). Furthermore, rare codons appearing in clusters or in
the N-terminal part of the protein have been reported to
be particularly important (22). However, an analysis of
individual positions revealed that in position þ2 there was
a highly biased prevalence of an AAA codon in
comparison to the alternative lysine codon AAG.
Interestingly, AAA has been shown to be the most
frequent þ2 codon in E. coli genes, a position where it is
also almost 4-fold as frequent as AAG (39). Further, an
AUC to AAA codon substitution at the þ2 position of
E. coli dhfr gene resulted in a more than 2-fold increased
yield using an in vitro expression system (39). The biased
codon usage in position þ2 was also evident when
studying a subset of 3540 E. coli genes with an AUG as
start codon (21). Several reports have noted significantly
higher expression levels of reporter protein when AAA is
used in position þ2 as compared to AAG (18,21,39) and
consequently our results are in agreement with these
findings.
The increase in fluorescence intensity relative to the

reference, reflecting the increase in amount of soluble
protein products, was up to 4-fold in ExLib1-Opt clones.
Although this corresponds to a significantly increased
yield, it is not as pronounced as the increase observed for
ExLib2-Opt clones. However, the amounts of TrpL-
ZEGFP protein existing as insoluble inclusion bodies
seen for these clones (Figure 5B) should also be taken into
account when considering the effect on the production and
further indicate that the overall increase in gene expression
was considerable from the relatively minor changes at the
nucleotide level.
Ten out of ten investigated ExLib2-Opt clones and the

majority of ExLib2-High clones were found to contain
one or more SD-like sequences, and all three
mass-determined protein products originating from
ExLib2-Opt clones proved to be translated from the
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second start codon (TTG). Thus, the appearance of
alternative, or additional, SD sequences seemed to
account for a more efficient mechanism to increase the
amount of soluble ZEGFP protein product, than via
N-terminal extension by a particular peptide sequence.
Genetic engineering approaches specifically directed to
an already present SD region have earlier been demon-
strated useful for the development of vector variants
yielding increased product levels (40,41). Even if the
randomized windows of ExLib2-Opt and ExLib2-High
clones contain novel SD-like sequences, open reading
frames starting from the original translation initiation site
and continuing through the same windows can in many
cases still be deduced. This could potentially have led to
the production of two protein products of different lengths
from a single mRNA species. Nevertheless, in the
determination of translational start positions of purified
proteins by mass spectrometry analysis, only masses
corresponding to initiation from one of the two start
codons were detected. This was also confirmed by an
N-terminal sequence analysis of the IgG-affinity purified
product from clone ExLib2-Opt7. The notion that the
occurrence of novel SD-like sequences was the predomi-
nant mechanism for the increased product levels is also
strengthened from sequence features observed in Opt
clones for which a protein-level analysis was not
performed. Amber (TAG) stop codons are seen in frame
with the first start codon for clones ExLib2-Opt3, -Opt5,
-Opt6 (Table 1). Although amber stop codons to some
extent can be suppressed in the supE 44 strain used in the
study, their presence suggest that the high fluorescence
intensities observed for these clones originate from
translation initiations at codons different from the first
start codon. A one-base base deletion within the
variegated sequence is seen for clone ExLib2-Opt10,
which if translation was initiated at the first start codon
would lead to an out-of-frame translation of the ZEGFP
protein.
In a previous study concerning translational activation

of the Qb coliphage maturation cistron, a model was
suggested where a strong downstream coat protein gene
RBS nearly always out-competed a nearby weaker
upstream maturation protein initiation site (42). It has
further been reported that ribosome-binding site-like
sequences present in the cDNA of the target protein are
able to interfere with vector encoded ribosome-binding
site sequences, affecting the expression of the target
gene (14). Thus, sufficiently strong SD sequences appear-
ing in ExLib2 clones could potentially out-compete the
upstream SD sequence and promote translational start
from the second start position. Nuclease protection
studies have shown that bacterial ribosomes cover
approximately 15 nucleotides on each side of the initiation
codon during translation initiation (37). The region of lac
mRNA which was protected in RNA footprinting
experiments was 14 bases preceding the initiation codon
and 20 following it (43). Taking these observations into
account and considering the close proximity between
the two alternative translation initiation sites in our
constructs, the binding of a ribosome to one site,
presumably the stronger, would probably block binding

to the other site. In future work, it would be interesting
to eliminate the upstream ribosome binding site in one
of the library clones, e.g. ExLib2-Opt7, to investigate
if the efficient protein production seen for this construct
is caused by cooperative effects from two neighboring
ribosome-binding sites or is solely the result of the library-
derived initiation region. In an earlier version of the
ExLib1 library, the randomized TrpL encoding window
was placed out-of-frame relative the ZEGFP gene located
downstream. Analysis of induced cells from this library
showed no fluorescence corresponding to ZEGFP
protein expression (data not shown). This indicates that
efficient SD-like sequences are not readily formed
based on the limited genetic diversity used for the
construction of this conserved library. Accordingly,
three ExLib1-Opt derived protein products had masses
corresponding to a translational start at the first position
(Table 1).

It should be noted that all experiments in the study
were performed under identical induction conditions
(1mM IPTG), and that observed effects therefore most
likely were not related to differences on the transcriptional
level. However, a single clone in the study (ExLib2-Opt7)
showed to have significantly higher plasmid copy
number than the reference, suggesting an influence on the
product mRNA level. However, in view of the results for
the other investigated clones, the 3-fold higher gene dosage
seen for the ExLib2-Opt7 should only partially explain the
higher levels of soluble product protein.

Mass spectrometry analysis of purified protein from the
ExLib2-High3 clone, isolated for its high fluorescence
intensity value, showed a translational start at the first
initiation codon. Interestingly, the deduced amino acid
sequence of the randomized window for this clone
contained codon signatures previously associated with
low gene expression. The CAI for the N-terminal
extension peptide of this high expression construct is low
(0.12), due to the presence of several consecutive rare
codons. Consequently, there must be other compensating
effects for the ExLib2-High3 clone, either on the nucleo-
tide or amino acid level, contributing to the observed high
amounts of soluble protein.

A strength of the presented combinatorial library
approach coupled to a powerful screening strategy for
expression optimization, is that it allows for a massive
testing of very large collections of variants in a relatively
short time. In the present study, many parameters of the
cellular protein production machinery capable of influen-
cing the desired trait were addressed simultaneously,
and in a given clone some parameters may have been
affected positively and others negatively. However,
the functional screening using EGFP as reporter for
soluble product protein allowed for the isolation of rare
clones for which the net effects for soluble production
of the target protein were the most positive. Future
work should reveal if the clonal traits seen for the
optimization of the production of the rapidly folded
and highly soluble target protein Z (44,45) will be similar
to when target proteins of other intrinsic characteristics
are investigated using the described combinatorial vector
library methodology.
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