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ABSTRACT

Structural and physical properties of DNA
provide important constraints on the binding sites
formed on surfaces of DNA-targeting proteins.
Characteristics of such binding sites may form the
basis for predicting DNA-binding sites from the
structures of proteins alone. Such an approach has
been successfully developed for predicting protein–
protein interface. Here this approach is adapted for
predicting DNA-binding sites. We used a represen-
tative set of 264 protein–DNA complexes from the
Protein Data Bank to analyze characteristics and
to train and test a neural network predictor of DNA-
binding sites. The input to the predictor consisted of
PSI-blast sequence profiles and solvent accessibil-
ities of each surface residue and 14 of its closest
neighboring residues. Predicted DNA-contacting
residues cover 60% of actual DNA-contacting
residues and have an accuracy of 76%. This
method significantly outperforms previous attempts
of DNA-binding site predictions. Its application to
the prion protein yielded a DNA-binding site that
is consistent with recent NMR chemical shift
perturbation data, suggesting that it can comple-
ment experimental techniques in characterizing
protein–DNA interfaces.

INTRODUCTION

Protein–DNA interactions play central roles in a wide
range of biological processes such as gene regulation and
DNA replication and repair. A fundamental question is
how recognition is achieved, both on the DNA side and
on the protein side. On the DNA side, recognition by a
protein involves features that distinguish a short stretch of
nucleotides, to which the protein specifically binds, from
other nucleotide sequences on the DNA. On the protein
site, recognition by a DNA involves features that
distinguish a patch of residues, to which the DNA

binds, from other areas on the protein surface. This
article presents a method for predicting the DNA-binding
site on a protein surface. The method is called DISPLAR,
or DNA-Interaction Site Prediction from a List of
Adjacent Residues.
DISPLAR is built on our method, PPISP, developed

previously for protein–protein interaction site prediction
(1,2). The approach is based on a number of distinguish-
ing features that residues in protein–protein or protein–
DNA interfaces have over non-interface residues on the
protein surface. In the case of protein–DNA interfaces,
such distinguishing features have been reported before.
These include enrichment of positively charged Arg and
Lys residues (3–8) and sequence conservation (9). The
former can be easily rationalized by the negatively
charged phosphate group on each nucleotide; the latter
can be rationalized by structural and functional require-
ments on the interface. In DISPLAR, like in PPISP, these
two features are captured by position-specific sequence
profiles as obtained by running PSI-blast (10). In
addition, the solvent accessibility of interface residues is
also distinct from that of non-interface residues and is
used as an input for DISPLAR as well as for PPISP.
These input parameters are used to train a neural network
for prediction.
The approach of PPISP seems to be ideally suited for

adaptation to DNA-binding site prediction. The binding
partners, i.e. different DNA, have common structural and
physical properties. All DNA share the basic double-helix
architecture; structural variability due to local bending
and twisting is much less compared to variability in the
case of proteins from different folds. Variability among
nucleotides also seems to be much less than among amino
acids. There are only four different nucleotides compared
to 20 amino acids. More importantly, the variable part of
each nucleotide, i.e. the base, is involved in base pairing
and less exposed than the constant part, i.e. the
phosphate. The latter, as noted earlier, carries a negative
charge. In contrast, in the case of amino acid, the variable
part, i.e. the side chain, is usually more exposed than the
constant part, i.e. the backbone, in folded proteins.
In short, the partners in protein–DNA recognition are
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much more uniform than those in protein–protein
recognition. Since a neural network is trained to learn
common features of interface residues and has been found
to work well for protein–protein interface prediction, it
may be expected that the same approach would work well
for predicting DNA-binding site.
Several attempts at predicting DNA-binding have been

made previously. Stawiski et al. (4) used percentages of
Arg and Lys residues and other physical properties to
classify whether a protein is nucleic-acid binding.
Jones et al. (5) used electrostatic potential surface of
DNA-binding proteins to predict the binding surface
patch. Of a set of 56 proteins, 38 (i.e. 68%) had
top-ranked patches with more than 70% residues that
are actually DNA-contacting. Keil et al. (11) used
electrostatic potential and other physical properties to
classify protein surface patches as protein, DNA, ligand or
non-binding. Ferrer-Costa et al. (12) used electrostatic
potential to classify whether proteins with the helix-turn-
helix motif are DNA-binding. Tsuchiya et al. (13) also
used electrostatic potential to classify whether a protein is
DNA-binding. Recently Kummerfeld and Teichmann (14)
used homology to predict transcription factors.
Two methods that have the most resemblance to

DISPLAR are by Ahmad et al. (6) and by Kuznetsov
et al. (15). Like our method, the predictions by these two
groups are at the residue level (i.e. whether a residue is
DNA-contacting), instead of the patch or protein level.
Like our method, Ahmad et al. also used PSI-blast
sequence profiles and solvent accessibility as input to train
neural networks, while Kuznetsov et al. used similar input
to train a support vector machine predictor. However,
there are important differences between these two methods
and DISPLAR, resulting in the latter’s much higher
accuracy. Ahmad et al. reported coverage of 40% of
actual DNA-contacting residues by their predictions, and
from their reported data, a very low accuracy for positive
prediction, at 13%, is obtained. The method of Kuznetsov
et al. applied to our set of 264 proteins has a coverage
of 60% of actual DNA-contacting residues and an
accuracy of 56% for positive prediction. In comparison,
DISPLAR test results show a coverage of 60% and an
accuracy of 76%.
The high level of prediction accuracy suggests that

DISPLAR can complement experimental techniques in
characterizing protein–DNA interfaces. As an illustration,
we applied the method to the prion protein, which has
recently been shown to interact with DNA (16). The
predicted DNA-binding site agrees well with NMR
chemical shift perturbation data.

MATERIALS AND METHODS

Generation of the data set

All 1091 entries containing both protein chains and DNA
chains were downloaded from the Protein Data Bank
(May 2006 release) (http://www.rcsb.org/). To obtain a
representative data set, sequence alignment between
protein chains from different PDB entries was made by
the PSI-blast program (10) with a default (10�3) e-value.

When a match was identified, the ratio of the number of
aligned identical residues to the total length of the query
entry was calculated as the sequence identity. Redundant
entries were removed manually at an identity threshold of
50%, with the entry having the highest resolution typically
retained as representative. In addition, entries with all
protein chains shorter than 40 residues were not included;
such chains could not yield a position-specific scoring
matrix by PSI-blast. At the end a representative set of 264
PDB entries was obtained (listed in Supplementary
Table S1). Not included in this set were two nonhomo-
logous entries (1i6h and 1w36) of protein complexes, each
with more than a total of 2000 residues; these two entries
were later used in an additional test of DISPLAR.
Throughout this study, only protein chains constituting
a single copy of a complete biologically significant
multimer in each PDB entry were used. Such chain
information was found from ‘REMARK 350
BIOMOLECULE’ of PDB files (or similar remarks in
older PDB files). All protein chains with less than 40
residues were discarded, again because they could not
yield a position-specific scoring matrix by PSI-blast.

Among the 264 PDB entries, 139 have a single protein
chain and the remaining 125 have at least two chains.
In all there are 428 protein chains. The total number of
residues is 80 983. For each PDB entry, protein residues
that contact DNA chains were found. A contact was
defined as a pair of heavy atoms across the protein–DNA
interface with a distance less than 5 Å. There are a total of
11 305 DNA-contacting, or, interface, residues.

Within the data set of 264 protein entries, 140 were
found to not have any homologs. Of the remaining 124
entries, those having homologs with sequence identities in
the brackets of 510, 10–20, 20–30, 30–40 and 40–50%
numbered 6, 17, 38, 29 and 34, respectively.

We focused on protein surface residues. For this
purpose, exposed surface areas of residues in each protein
multimer were calculated using the DSSP program (17),
and surface residues were taken to be the ones with
exposed surface areas at more than 10% of maximum
values (1). The ratio of exposed surface area and the
maximal value will be referred to as the solvent
accessibility for each residue. With the threshold of 10%
solvent accessibility, 56 093 were classified as surface
residues; among these, 10 062 were interface residues.
The percentage of interface residues among surface
residues is 18%. The 10 062 interface residues will be
collectively referred to as the interface group; the
remaining 46 031 non-interface surface residues will be
referred to as the non-interface group.

Statistics of interface and non-interface surface residues

Residues in the interface and non-interface groups
were separately collected according to amino acid types.
From these the percentages of the 20 types of amino acids
in the interface and non-interface groups were calculated.
For each type of amino acid in either the interface or
non-interface group, the average solvent accessibility was
calculated.
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As already alluded to, sequence profiles were obtained
as the position-specific scoring matrix produced by
PSI-blast (10). The search was limited to three rounds
with the default e-value threshold (10�3). The database
consisted of 3 625 149 non-redundant protein sequences
(May 2006 release of NCBI nr at ftp://ftp.ncbi.nlm.nih.
gov/blast/db/). The substitution matrix was BLOSUM62
(18). The position-specific scoring matrix for each query
sequence has Q�A elements, where Q is the length of the
query sequence and A is the size (i.e. 20) of the amino acid
alphabet. If position q (¼1 to Q) of the query sequence is
occupied by amino acid type a (¼1 to A), then sequence
conservation at this position was measured by the (q, a)
element of the scoring matrix. The higher this element, the
less frequent the query amino acid’s substitution in
the multiple sequence alignment and hence the more
conserved the amino acid for the particular position. For
type a amino acid, the conservation score was taken as the
average of the (q, a) elements over query positions which
were occupied by type a amino acid and were either in the
interface or non-interface group.

Neural network architecture

DISPLAR was largely adapted from the latest implemen-
tation of PPISP (2). Unless otherwise indicated, model
parameters were inherited from that implementation. The
predictor had two types of input: solvent accessibility and
sequence profile. Prediction for each residue was based on
the input variables of the residue itself plus 14 of its closest
spatial neighbors. The solvent-accessibility input for each
residue was averaged over the residue and six of its closest
spatial neighbors. The sequence-profile input for each
residue (say at position q) consisted of the 20 elements in
the qth row of PSI-blast position-specific scoring matrix.

Two feed-forward, back-propagation neural networks
were used consecutively as before. The first network had
15� 21 input nodes, in which the first quantity was the
window size, i.e. one for the residue under consideration
plus 14 for its spatial neighbors, and the second quantity
was the number of input variables for each residue in the
window (one for solvent accessibility plus 20 for sequence
profile). The first network was completed with a hidden
layer of 150 nodes, and an output layer of two nodes (one
for predicting interface and one for predicting non-
interface). The input layer of the second network had
15� 3 nodes, in which the first quantity was window size
and the second quantity consisted of the two output values
of the first network plus the solvent accessibility. The
second network had 30 hidden nodes and again two
output nodes. Training of the neural networks amounted
to modifying the weight matrix, which was assigned
random values initially.

Training, cross-training and test sets

In most previous prediction studies, the same proteins
were used for selecting the optimal protocol and also for
reporting the prediction performance (1,2,15,19,20). The
dual use of the test proteins likely leads to inflated
performance scores. To avoid this pitfall, for the purpose
of reporting prediction performance, we randomly divided

the data set of 264 protein entries into 10 groups. In turn,
8 groups were pooled for training; one of the two
remaining groups was used for cross-training; and the
last group was used for testing. Training resulted in a list
of weight matrices (up to 20 rounds). Cross-training
entailed selecting an optimal collection of weight matrices
from different rounds for building consensus predictions
(described below). Testing involved obtaining predictions
for the group not used either in training or cross-training.
With the three-tier division of the data set into 10 groups,
each group was part of a training set 45 times, and used
for cross-training 9 times and for testing also 9 times. For
each residue, the majority outcome of the 9 test results was
taken as the final prediction.
The three-tier division of the data set avoids the use of

the same proteins for both optimizing prediction protocol
and reporting performance scores. A priori it was not clear
this division was the best use of the data set for making
new predictions. Therefore we also investigated using
the data set in the more traditional way (1,2), with 239
of the 264 entries constituting a single training set and
the remaining 25 entries reserved for cross-training.
For unequivocal identification, these training and cross-
training sets are referred to as ‘two-tier.’ To lessen any
possible cross-contamination between training and cross-
training, in selecting the two-tier cross-training set, we set
an upper bound of 30% sequence identity. That is, we
ensured that all entries in the two-tier cross-training set
either are nonhomologous or have no more than 30%
sequence identities among themselves or with any entry in
the training set. The two-tier cross-training set has a total
of 5004 surface residues, of which 870 are
DNA-contacting (Table 1).

Trimming of non-interface residues

There is an imbalance of interface and non-interface
residues (the former accounts for just 18% of all surface
residues in our data set of 264 proteins), randomly
trimming some of the non-interface residues in the
training process may improve accuracy (2,15). Training
was carried out without and with one-third trimming of
non-interface residues. Both sets of results were used to
build consensus predictions (described next).

Consensus prediction from different neural-network weight
matrices

Either with or without non-interface trimming, different
rounds of neural network training result in different
coverage and accuracy. Typically, the number of DNA-
contacting predictions would initially increase with the
increase in the round of training, leading to increasing
coverage but decreasing accuracy; excessive training then
leads to decrease in coverage. Our last implementation
of PPISP (2) suggested that taking the consensus of
positive predictions from different weight matrices may
enhance accuracy at a given coverage. This approach was
taken here.
The consensus approach consisted of two steps:

(1) clustering of all positive predictions using different
weight matrices, and (2) selecting a cluster or clusters as

Nucleic Acids Research, 2007, Vol. 35, No. 5 1467



the final predictions. In the first step, each positively-
predicted residue was assigned a consensus score, defined
as the number of times positive predictions were made by
the different weight matrices. These residues were then
sorted according to consensus score. Starting with the
batch having the highest consensus score, residues were
clustered if they were among the 19 nearest neighbors of
each other. Then the next batch of residues with the
second highest consensus score was used to grow the
clusters and add new clusters. The process was continued
until all the positive predictions were clustered. When a
cluster was composed of predictions from different
batches, the highest consensus score among all predictions
within the cluster was assigned to the cluster. For later
reference the maximum consensus score among all clusters
is denoted as �max. The number of predictions in a cluster
is referred to as the cluster size.
In the second step, clusters were selected according to

consensus score and cluster size. First of all, clusters were
eliminated if their consensus scores were less than
�max� 5. The largest size (smax) of the remaining clusters
was then found. All clusters with the maximum consensus
score were automatically retained. Clusters with consensus
scores between �max� 5 and �max� 1 were then eliminated
if their sizes were less than either 4 or smax� 4.

Assessment of predictions

The performance of DISPLAR was assessed by coverage
and accuracy. If Npr residues are predicted to be DNA-
contacting, of which ntp are true positives (i.e. among Ndc

actual DNA-contacting residues) and the remaining nfp
are false positives, then coverage is ntp/Ndc. For defining
accuracy, we loosened the criterion of ‘true positive’ by
counting as positive four nearest neighbors of the Ndc

actual DNA-contacting residues. If the number of true
positives using this loose criterion is n0tp, then accuray is
n0tp=Npr.

Optimal collection of weight matrices

We attempted to exhaustively search for the optimal
collection of weight matrices. This was done in two stages.
The first stage involved only training without non-
interface trimming. All possible combinations of weight
matrices from the first round to the round in which
coverage reached maximum (as reported on the cross-
training set) were applied to the crossing-training set.
Among those with coverage above a threshold,
the combination of weight matrices with the highest
accuracy was selected. There were three possible coverage
thresholds. The highest was 58%; when prediction did not

Table 1. Prediction results for the two-tier cross-training set

PDBa Unbound PDB (RMSD Å)b Surface residues Ndc Npr n0tp
c Coverage (%) Accuracy (%)

1brnL 1a2pC (0.4) 81 18 24 11 (3) 44 46
1cl8A,B 1qc9A (1.6) 320 53 47 39 (8) 58 83
1cqtA,I 132 48 33 30 (9) 44 91
1d5yA,B 405 33 64 43 (23) 61 67
1dh3A,C 104 27 42 42 (15) 100 100
1f5eP 2alcA (5.8) 54 21 32 29 (10) 90 91
1gd2E,F 119 32 44 43 (12) 97 98
1gm5A 525 32 41 40 (14) 81 98
1gxpA,B 1qqiA (1.7–1.8) 152 44 50 41 (8) 75 82
1imhC,D 393 32 44 26 (13) 41 59
1l1mA,B 1lqc (1.8–2.2) 110 57 79 73 (19) 95 92
1leiA,B 1iknA,C (16.3) 413 39 48 34 (16) 46 71
1m3qA 1ko9A (0.9) 199 25 15 14 (2) 48 93
1mowA 176 71 49 47 (12) 49 96
1ornA 2abk (2.4) 149 27 27 26 (5) 78 96
1r7mA 150 53 79 69 (22) 89 87
1rfiB 1qzqA (0.3) 241 14 33 14 (6) 57 42
1s40A 133 33 15 12 (2) 30 80
1sfuA,B 115 17 18 17 (7) 59 94
1u1qA 1l3kA (2.0) 137 48 31 30 (9) 44 97
1xyiA 1xx8A (2.4) 56 20 13 13 (1) 60 100
1zrfA,B 1g6nA,B (2.0) 292 43 44 41 (8) 77 93
1ztwA 1mml (1.6) 181 8 6 4 (1) 38 67
1zziA 1zzkA (1.3) 67 19 15 12 (5) 37 80
2aq4A 300 56 62 54 (18) 64 87
All 5004 870 955 804 (248) 63.9 84.2

aFor each entry, the PDB code is followed by the chains that make up the DNA-binding protein multimer.
bCa RMSD were obtained by using the Dali server (http://www.ebi.ac.uk/DaliLite/). In three cases the bound structures (1cl8, 1gxp and 1l1m) are
homodimers, but the unbound structures (1qc9, 1qqi and 1lqc) have only one chain. The RMSD of the unbound monomer against both subunits of
the bound homodimer are listed. In reporting predictions using the unbound structures for these three proteins, both true and false positives were
multiplied by two in order to make a fair comparison with predictions using bound structures. The sequence identity between 1orn and 2abk is only
45%; in all other cases the aligned sequences of bound proteins and their unbound counterparts have perfect or almost perfect identity.
cThe number in parentheses lists n0tp � ntp, i.e. the number of predictions that are considered true positives because they are among the four nearest
neighbors of actual DNA-contacting residues.
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reach this coverage, the threshold was successively
lowered to 50 and 40%.

In the second stage, the selected list of weight matrices
from the first stage was added to all possible combinations
of weight matrices of training with one-third non-interface
trimming, again from the beginning round to the round in
which coverage reached maximum. Applied to the cross-
training set, the combination of weight matrices with the
highest coverage among those with accuracies within 1 or
3 percentage points of the highest accuracy was selected as
the final collection of weight matrices.

The same two-stage optimization procedure was used
for both the three-tier and two-tier divisions of the data
set. The only difference was in the final collection of
weight matrices, with the three-percentage-point accuracy
window for the former and the one-percentage-point
accuracy window for the latter. The optimal collection for
the two-tier cross-training set was composed of weight
matrices from rounds 3 and 13 of training without non-
interface trimming and rounds 5 and 6 of training with
one-third non-interface trimming.

RESULTS AND DISCUSSION

Characteristics of DNA-contacting residues

As noted in the Introduction, a number of properties
distinguishing DNA-contacting residues from non-con-
tacting residues on proteins have been reported in
previous studies. As such distinctions form the basis of
DISPLAR, the database for constructing the prediction
method was analyzed to find the level of contrast between
interface and non-interface residues.

Figure 1A displays the distributions of the 20 types of
amino acids in the interface and non-interface groups. It is
clear that, in the interface group, positively charged Arg
and Lys residues are enriched whereas negatively charged
Asp and Glu are depleted. Together Arg and Lys account
for 30.3% of the interface group, relative to 16.9% in the
non-interface group. Asp and Glu account for only 6.8%
of the interface group, relative to 18.2% in the non-
interface group. Residues with polar side chains (Thr, Ser,
Tyr and Asn) are also relatively enriched in the interface
group, perhaps reflecting their hydrogen-bonding ability.
In contrast, residues with nonpolar side chains (Leu, Ala,
Val and Ile) are diluted in the interface group. The
conservation scores, calculated from the PSI-blast posi-
tion specific scoring matrix, for the 20 types of amino
acids are shown in Figure 1B. Except for Leu, all amino
acids in the interface group show a higher conservation
score than in the non-interface group.

The contrast in solvent accessibility between the inter-
face and non-interface groups also shows an interesting
pattern (Figure 1C). The strongest conclusion that can be
made is that Arg and Lys are more exposed in the
interface group than in the non-interface group, whereas
for Asp and Glu the opposite is true. The positively
charged residues in the interface group presumably are
poised for interacting with the DNA, while their counter-
parts in the non-interface have to contend with neighbor-
ing atoms on the same proteins. Interactions with the

neighboring atoms likely lower the solvent accessibility in
the non-interface group. The negatively charged residues
in the interface group perhaps tend to minimize their
contact with the DNA, thereby reducing their solvent
accessibility.
Compared to similar statistical analysis for protein–

protein interfaces (1,2), the contrasts between the interface
and non-interface groups shown here appear to be
significantly stronger and better correlated among the
three different measures. The hope is then that the neural
network approach will work even better for DNA-binding
site prediction.
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non-contacting surface residues. A Percentages of the 20 types of amino
acids in the interface and non-interface groups. The abscissa is in
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Results were obtained from analysis of 56 093 surface residues in the
data set of 264 representative DNA-binding proteins.

Nucleic Acids Research, 2007, Vol. 35, No. 5 1469



Overall assessment of predictions

With the three-tier division of the data set, the accuracies
of the 10 test sets averaged 76.4%, with a standard
deviation of 4.7%; the corresponding coverages averaged
60.1%, with a standard deviation of 5.3%. The variations
of accuracy and coverage were partly related to their
anticorrelation: higher accuracy corresponded to lower
coverage.
The test-set results were regrouped according to

homology levels of the protein entries. The 140 entries
without homologs had an accuracy of 73.7% and coverage
of 51.3%. In comparison, protein entries with homologs
had higher accuracy, averaging 79.7%, and higher cover-
age, averaging 71.6%, among identity brackets of 10–20,
20–30, 30–40 and 40–50%. Variations of accuracy and
coverage among identity levels fell within the standard
deviations. The insensitivity to identity level suggests that
the better predictions were not due to homology between
test protein and training set per se. Instead it points to
benefits from alignments with other DNA-binding pro-
teins in the generation of PSI-blast sequence profiles.
Nevertheless it is quite encouraging that DISPLAR
yielded prediction accuracy over 70% at a coverage of
over 50% for DNA-binding proteins without other
homologs in the PDB.
We can now list a number of important differences

between DISPLAR and the method of Ahmad et al. (6)
[these authors have recently adapted their method for
predicting DNA-binding sites from protein sequence only
(21); such predictions were also done in two other studies
(19,20)]. We eliminated buried residues from the data set.
They included only two sequential neighbors whereas we
included 14 spatial neighbors. We added a second neural
network. Our method benefited from a much more
exhaustive training set and a much more exhaustive
sequence database for generating sequence profiles.
Another technical reason for the poor performance of
their method is that they used a 3.5-Å cutoff for defining
DNA-contacting whereas we used 5 Å. The shorter cutoff
distance leads to an excessively small fraction (�6.5%) of
interface residues among the data set. Such a small
interface fraction makes it trivial to predict non-interface
residues and leads to a tendency for over-predicting
interface residues to ensure a reasonable coverage
(Ahmad et al.’s positive interface predictions were three
times the actual interface residues). The over-prediction
was masked in their study because they chose to include
negative predictions in accuracy assessment. In our
opinion, only positive interface predictions are meaningful
for accuracy assessment, since the goal is to identify DNA-
binding sites. This point is especially important because of
the imbalance between interface and non-interface
residues.
An obvious difference between DISPLAR and the

method of Kuznetsov et al. (15) is the use of neural
networks versus support vector machine (SVM).
In implementing the predecessor of DISPLAR, i.e.
PPISP, we compared neural network and SVM predic-
tions and did not find the latter to be better (2), even
though in another study we found the two methods to be

competitive in predicting solvent accessibility (22). The
more substantive difference between DISPLAR and the
method of Kuznetsov et al. lies in the use of structural
information. As noted, the list of 14 spatial neighbors is
coded in DISPLAR. In contrast, Kuznetsov et al. used six
sequential neighbors and included information of spatial
neighbors in the form of occurrence frequencies for the 20
types of amino acids within a 12-Å sphere around each
residue. This use of spatial information appears to have
limited value, improving accuracy by just a few percentage
points (15). Kuznetsov et al. has provided their method in
a web server (http://lcg.rit.albany.edu/dp-bind/). Applying
their method on our data set of 264 protein entries, the
coverage and accuracy (calculated in the same way as for
our predictions) are found to be 60 and 56%, respectively.
At the same coverage of 60%, the gap of 20 percentage
points from our average prediction accuracy is over five
times the latter’s standard deviation, thus clearly demon-
strating better performance of our method.

Predictions for the two-tier cross-training set

To help resolve whether the three-tier division or the two-
tier division was a better use of the data set, test results
and cross-training results from the three-tier training were
gathered for the two-tier cross-training set of 25 protein
entries. The accuracy and coverage of the test results were
64.7 and 79.6%, respectively. The cross-training results
showed only slight increases in accuracy and coverage, at
64.8 and 80.2%, respectively. In comparison, the cross-
training resulting from the two-tier training had accuracy
and coverage of 63.9 and 84.2%, respectively (Table 1).
While the difference in accuracy of 4% is within the
standard deviation (4.7%) found from the three-tier test
sets, other comparisons also consistently showed modestly
better performance for the two-tier training. These included
interface predictions for the prion protein and two large
DNA-binding proteins and classification of proteins into
DNA binding and non-binding. We therefore concluded
that the two-tier training was superior and from here on,
results from the two-tier training are reported.

We also used the two-tier cross-training set to
investigate contributing factors to the performance of
DISPLAR. One such factor is consensus prediction, based
on the weight matrices from rounds 3 and 13 of training
without non-interface trimming and rounds 5 and 6 of
training with one-third non-interface trimming. Without
non-interface trimming, the highest coverage was obtained
in round 14; that coverage was 58.5% and the correspond-
ing accuracy was 79.7%. With one-third non-interface
trimming, the highest coverage was expectedly raised, to
64.0%, in round 12, but the corresponding accuracy was
lowered, to 75.9%. The consensus prediction had statis-
tically higher coverage than the best single training
without non-interface trimming and statistically higher
accuracy than the best single training with non-interface
trimming.

For a multimeric protein, in generating the position-
specific scoring matrix there are two alternatives. One is to
use the individual chains of the protein as separate query
sequences and then concatenate the resulting scoring
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matrices. The other is to concatenate the sequences first
and then generate a single scoring matrix. We found the
scoring matrix of the first alternative to be more robust.
The contrast in sequence conservation between the inter-
face and non-interface groups is stronger, and the
predictions of interface residues are more accurate.
Apparently using the separate chains as queries allows
PSI-blast to focus the search on the chains, generating
higher quality alignments. This method is what was used
in generating the results reported in Table 1. A similar
method was used for predicting protein–protein interfaces
of a multimeric protein complex (2).

We also found the second neural network to be very
useful. The idea of a second network was inherited from
neural network predictions of protein secondary struc-
tures (23). The second network plays the role of
reconciling conflicting predictions for (sequentially or
spatially) neighboring residues. We found that in
DISPLAR the second neural network indeed plays this
role. The predictions from the first network tend to be
scattered throughout the protein surface. After the second
network, the predictions are more clustered, and the
accuracy is much higher.

Detailed comparison of predicted and actual interface
residues on four proteins

The accuracies and coverages of the 25 protein entries in
the two-tier cross-training set are listed in Table 1. The
coverages for individual entries range from 30% (for
1s40A) to 100% (for 1dh3A,C), while the accuracy is
above 50% for all but two entries (1briL and 1rfiB). To
illustrate the range of prediction quality, we now present
detailed comparison between predicted and actual DNA-
contacting residues for four proteins. They include a
worst-case scenario (PDB 1brn), for which both the
coverage and accuracy were low; a representative (PDB
1gd2) of the successful cases with both high coverage and
high accuracy; and two (PDB 1s40 and 1u1q) of the more
typical situations with medium coverage and high
accuracy.

Figure 2A displays PDB 1brn, the complex between
barnase and a tetradeoxynucleotide, d(CGAC) (24). Eight
of the 18 DNA-contacting residues are among the 24
predicted interface residues. These are S38, I55-E59, F82
and R83, shown in blue in Figure 2A. Three other
predicted residues (G61, T70 and G81) are spatial
neighbors of the actual interface residues and are shown
in cyan. The remaining 13 predictions (T16-H18,
G65-R69, T79, S80, S92, Q97 and F106) were deemed
incorrect and are shown in green. Barnase represents the
worst-case scenario for the performance of DISPLAR,
yet even here the predictions correctly line the
DNA-binding site.

Pap1 is a basic region leucine zipper transcription factor
that binds the consensus DNA sequence TTACGTAA. In
the structure of the complex (PDB 1gd2; Figure 2B), 32
protein residues contact the DNA (25). DISPLAR
performed very well in predicting the DNA-binding site.
The 44 predicted residues include all but one of the
32 actual DNA-contacting residues (shown in blue in

Figure 2B). Of the remaining 13 predictions, 12 are nearest
neighbors of DNA-contacting residues (shown in cyan).
In the complex between the DNA-binding domain of

yeast telomere-binding protein Cdc13 and a cognate
telomeric single-stranded DNA (PDB 1s40; Figure 2C),
33 surface residues are found to contact the DNA (26).
DISPLAR predicted only 15 DNA-contacting residues.
Of these 10 (Y27, S38, D40, K41, A43, F44, S46, K81, I83
and N136) are actually in the protein–DNA interface,
providing an outline of the ridge to which the DNA binds
(Figure 2C). Of the remaining five predictions, two (R8
and F39) are close neighbors of DNA-contacting residues.
The UP1 region (residues 1–195) of heterogeneous

ribonucleoprotein A1 contains two RNA recognition
motifs, which have high affinity for both single-stranded
RNA and the telomeric sequence d(TTAGGG)n. In the
complex between UP1 and d(TTAGGG)2 (Figure 2D),
two copies of the single-stranded DNA ligand bind to two
copies of the protein molecule (27). The PDB file (1u1q)
contains one copy each of the protein and the DNA.
The second copy is related to the first by a 2-fold rotation.
Each protein molecule binds to both copies of DNA, with
the N-terminal RNA recognition motif interacting
with the 50 end of one DNA chain and the C-terminal
RNA recognition motif interacting with the 30 end of the
other DNA chain. Together there are 48 surface
residues contacting the DNA chains. DISPLAR predicted
31 DNA-contacting residues, 21 of which are
actual DNA-contacting residues, covering both the
N-terminal and C-terminal RNA recognition motifs
(Figure 2D).

Prediction with unbound protein structures

Fourteen of the 25 proteins in the two-tier cross-training
set have unbound structures deposited in the PDB (see
Table 1). These provided an opportunity to apply
DISPLAR in a real situation. At the outset it should be
noted that DISPLAR and its predecessor PPISP by design
only include input parameters that are not particularly
sensitive to binding-induced conformational changes, and
the preservation of prediction coverage and accuracy
using unbound structures has been demonstrated for
PPISP (1,2). Indeed, the solvent accessibility, the property
that is most likely to be affected by conformational
changes upon binding DNA, calculated using the 14
unbound structures show the same distinction between
interface and non-interface residues as seen in Figure 1C.
The coverage and accuracy of DISPLAR using bound
structures of the 14 proteins were 64.2 and 82.1%,
respectively, which are comparable to those found for
the full cross-training set of 25 proteins. Using the
unbound structures, the coverage and accuracy became
57.9 and 77.4%, respectively. Both performance para-
meters show statistically significant, but modest deteriora-
tion with the unbound structures.
For 12 of the 14 proteins, the root-mean square

deviations (RMSD) of Ca atoms between bound and
unbound structures are below 2.5 Å. The two exceptions
are 1f5e/2alc and 1lei/1ikn, representing two different
types of gross conformational changes. The former is a
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(A) (B) 

(C) (D) 

Figure 2. Predicted DNA-contacting residues shown on the protein–DNA complexes. Predictions are shown in three different colors: actual DNA-
contacting residues are in blue, their nearest neighbors are in cyan and incorrect predictions are in green. The rest of the protein surface is in yellow;
the bound DNA is shown as red lines. (A) 1brn. (B) 1gd2. (C) 1s40. (D) 1u1q. In the last panel, there are two protein chains related by a 2-fold
rotation, one on the left and one on the right. Within the left chain, the C and N-terminal RNA recognition motifs are at the top and bottom,
respectively. The pictures here and those in Figures 4 and 6 are generated with PyMOL (http://www.pymol.org).
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case of global distortion, with the overall RMSD of 5.8 Å
distributed throughout the protein structure (Figure 3A).
DISPLAR made very similar predictions using both
structures. Using the bound structure 1f5e, 19 predictions
are among actual DNA-contacting residues, 10 are their
nearest neighbors, and three predictions are incorrect.
With the unbound structure 2alc, these numbers changed
to 19, 8 and 5, respectively.

The second type of gross conformational changes is
rearrangement between protein domains. The DNA-
bound structure 1lei has two different chains (A and B),
both consisting of two domains. Only three of the
domains are present in the unbound structure 1ikn
(missing the N-terminal domain of chain B; the C-terminal
domain of chain B is labeled as chain C in 1ikn). The
N-terminal domain of chain A (residues 19–188) in 1lei
superimposes to its counterpart in 1ikn with a RMSD
of 1.1 Å; the C-terminal domain of chain A (residues
191–291) and the C-terminal domain of chain B (residues
245–350) together in 1lei superimpose to their counter-
parts in 1ikn with a RMSD of 0.8 Å. However, these two
portions experience a relative rotation of about 1808 upon
binding DNA (Figure 3B), with an overall RMSD of
16.3 Å for the three domains together. In the bound
structure, all four domains contact DNA, with the N- and
C-terminal domains of chain A contributing 21 and 4
residues and the N- and C-terminal domains of chain B
contributing 9 and 5 residues, respectively, to the DNA-
binding site. Correspondingly DISPLAR predicted 14, 9,
22 and 3 DNA-contacting residues for these four domains
using the bound structure. With the N-terminal domain of
chain B missing in the unbound structure, DISPLAR
predicted 19 and 1 residue, respectively, for the N- and
C-terminal domains of chain A, and nothing for the
C-terminal domain of chain B. The results using the
unbound structure are probably as good as can be
expected based on those using the bound structure,
demonstrating that DISPLAR also performs well when
binding-induced domain rearrangements occur.

Specific versus non-specific DNA binding

In addition to specific DNA sequences, many proteins also
bind to non-specific DNA. In the dataset of 264 proteins,
there are structures for a few non-specific complexes.
Three of the proteins, the � Cro repressor, the lac
repressor headpiece dimer and the DNA-adenine methyl-
transferase, have structures for both specific and non-
specific complexes (28–32). The binding sites for specific
and non-specific DNA largely overlap, with the same set
of residues switching from electrostatic interactions with
the DNA backbone in a non-specific complex to specific
interactions with base pairs in a cognate DNA sequence.
There are also many additional residues that interact with
DNA in the specific complexes. The numbers of DNA-
contacting surface residues are 18, 57 and 33 in the three
specific complexes, compared to 12, 49 and 17 in the non-
specific complexes. The numbers of interface residues that
are in common in specific and non-specific complexes are
7, 38 and 5, respectively.

The lac repressor headpiece dimer is in the two-tier
cross-training set. Using the unbound structure (PDB
1lqc), DISPLAR predicted mostly residues that contact
DNA in both the specific and non-specific complexes.
With the specific complex (PDB 1l1m) as target, the
coverage was 77% and accuracy was 100%. Another
protein in the two-tier cross-training set is Sac7d (PDB
1xyi and 1xx8 for the bound and unbound structures,
respectively), which is a small chromatin protein that
binds to DNA without any particular sequence preference
(33,34). DISPLAR predictions using both the bound and
the unbound structures had a coverage of440% and an
accuracy 490%. These values fall within the range of
DISPLAR performance shown in Table 1.

(A) 

(B) 

Figure 3. Two types of gross conformational changes upon DNA
binding. (A) Global distortion from the unbound (PDB 2alc; in yellow)
to the bound (PDB 1f5e; in green) structures. (B) Domain rearrange-
ment from the unbound (PDB 1ikn) to the bound (PDB 1lei)
structures. The N- and C-terminal domains of chain A in 1ikn are
shown in orange and yellow; the C-terminal domain of chain C in 1ikn
are shown in magenta. The N- and C-terminal domains of chain A in
1lei are shown in dark and light green; the N- and C-terminal domains
of chain B in 1lei are shown in dark and light blue. The light green and
dark blue domains in 1lei are rotated by �1808 from the corresponding
yellow and magenta domains in 1ikn when the dark green domain of
1lei and the orange domain of 1ikn are superimposed. The counterpart
of the light blue domain of 1lei is missing in 1ikn. Bound DNA are
shown as red lines in both panels. The pictures are generated with
VMD (http://www.ks.uiuc.edu/Research/vmd/).
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Application to prion protein

Lima et al. (16) recently showed that the prion protein
binds DNA and used NMR chemical shift perturbation to
characterize the binding interface. In the structured region
(residues 125–228) of the protein, 15 residues are
implicated for DNA binding as indicated by large changes
in 1H or 15N chemical shifts upon DNA binding. We
applied DISPLAR to this protein (PDB 1b10) and
obtained 23 predicted DNA-contacting residues. As
shown in Figure 4, the two groups of residues largely
overlap. This application demonstrates that DISPLAR is
sufficiently accurate to complement experimental techni-
ques in characterizing protein–DNA interfaces.

Classification of DNA binding and non-binding proteins

An inherent assumption in using DISPLAR is that a
protein is known to bind DNA. What would DISPLAR
predict if it is applied to a non-binding protein? Can
DISPLAR prediction results be used to predict whether a
protein is a binder or non-binder? To answer these
questions, we applied DISPLAR to the full set of 264
DNA-binding proteins and to a set of 250 non-binders
collected by Stawiski et al. (4). For this purpose we used
consensus predictions based on weight matrices from
rounds 3 and 13 of training without non-interface
trimming. This consensus approach resulted in less
number of positive predictions than the one including
weight matrices also from rounds 5 and 6 of training with
non-interface trimming; we thought less positive predic-
tions would be helpful for obtaining more balanced
success rates for classifying both binders and non-binders.
An immediate difference in DISPLAR results between

the binders and non-binders is that only three of the 264
proteins in the former group had no positive predictions,
but 100 of the 250 proteins in the latter group had
no positive predictions. Of the proteins with positive
predictions, the predicted residues also show very
different characteristics. First, the binder group has a
total of 80 983 residues, of which 56 093 are on the surface,
and 11 050 (or 20%) were predicted as DNA-contacting.
In contrast, the non-binder group has a total of 41 091

residues, of which 25 820 are on the surface, and only 2307
(or 9%) were predicted as DNA-contacting. Second, the
distributions of the positive predictions among the 20
types of amino acids were different. The distribution of the
binder group reflected that of the DNA-binding interface,
whereas the distribution of the non-binder group appeared
similar to the non-interface of DNA-binding proteins (see
Figure 1A). The positive predictions of the binder group
had an R2

¼ 0.71 correlation with the interface surface
residues in distribution (compared to R2

¼ 0.43 for the
non-binder group), while the positive predictions of the
non-binder group had an R2

¼ 0.60 correlation with the
non-interface surface residues in distribution (compared
to R2

¼ 0.44 for the binder group). Third, more of the
positive predictions were close neighbors of each other in
the binder group than in the non-binder group. The
difference could be quantified by calculating the average
number of other predictions that were among the list of
five closest neighbors for each protein. The average
number of neighboring predictions thus defined ranged
from 0 to 5. Figure 5 shows the distributions of the 261
binders and 150 non-binders within this range. Relative to
the non-binder group, the average number for the binder
group was significantly shifted to the high end of the
range.

These large differences between the two groups moti-
vated us to develop a classifier using DISPLAR prediction
results. First of all, a protein without any positive
predictions was automatically classified as a non-binder.
If positive predictions were obtained, then the results were
processed and fed to a neural network for further
classification. This neural network had 23 inputs for
each protein, 20 of which were the percentages of the 20
types of amino acids among the positive predictions. The
remaining three inputs were: the average number of
neighboring predictions, the percentage of positive pre-
dictions among all surface residues and the percentage of
surface residues among all residues. One hundred and
forty-nine binders were randomly picked to mix with 149
of the non-binders to train the neural network. The non-
binder that was left out was then tested. In all, only 42 of
the non-binders were misclassified, giving a success rate of

(A) (B) 

Figure 4. Comparison of prion protein (PDB 1b10) residues
(A) implicated by NMR chemical shift perturbation and (B) predicted
by DISPLAR for DNA binding. Putative DNA-contacting residues are
shown in red or blue.
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Figure 5. The distributions of average numbers of neighboring
predictions for protein binding and non-binding proteins.
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83% for classifying non-binders. A final training was
carried out with 149 binders and all the 150 non-binders.
Tested on the remaining 112 binders, 15 were found to be
misclassified. On account of the three binders that were
misclassified due to the lack of positive DISPLAR
predictions, the overall success rate for classifying binders
was 86%. These success rates are competitive against
classification methods that directly use structural data (4–
6). That this level of success was achieved using prediction
results provides another demonstration of the accuracy of
DISPLAR.

Application to RNA-binding proteins

Many proteins bind to both RNA and DNA. It is thus
interesting to see whether DISPLAR could also predict
RNA-binding sites. We collected a representative set of
106 RNA-binding proteins with sequence identity less
than 50%. DISPLAR had modest success on these
proteins, with a coverage of 31.3% of the 3695 actual
RNA-contacting residues and a prediction accuracy of
54.1%. Using the two-tier approach of DISPLAR, we
randomly picked 86 of the RNA-binding proteins to train
a neural network. When tested on the remaining 20
proteins (with less than 30% identity among themselves
and with the training set), the coverage and accuracy
improved to 57.1 and 63.3%, respectively. The accuracy is
significantly less than the counterpart for DNA-binding
proteins. The difference may be partly due to the smaller
training set and partly due to higher diversity among
RNA-binding proteins than among DNA-binding
proteins.

Application to large protein–nucleic acid complexes

Most nucleic-acid-targeting proteins form multi-subunit
complexes in their biological processes. Two of such large
complexes, the RNA polymerase II elongation complex
and the RecBCD–DNA complex, have their structures
determined (PDB 1i6h and 1w36) (35,36). These two
complexes, without any homologs in the data set of 264
protein entries, were not included in the development of
DISPLAR partly because of the concern that the scarcity
of large complexes would not allow for accurate predic-
tions on them and partly because of the thought that
alternative approaches, such as one focusing on one
subunit or one domain therein at a time, might be more
suited.

Once DISPLAR was found to be quite accurate on the
test sets, we became curious about its applicability to the
two large protein–DNA complexes. The two complexes
(1i6h and 1w36) have 10 and 3 protein subunits,
respectively; we took each subunit as a separate test
protein. The prediction of DNA-contacting residues
appears very encouraging. Figure 6A displays the
predicted DNA-contact residues of the RNA polymerase
II elongation complex on the 1i6h structure. Out of a total
of 2495 surface residues on the whole complex, 177
residues were predicted to contact DNA. The percentage
of positive prediction, 7%, is substantially lower than the
portion of DNA-contacting residues (18%) among surface
residues in the database for constructing DISPLAR.

(A)

(B) 

(C) 

3′ exit 

downstream DNA 

Figure 6. Predicted nucleic acid-contacting residues shown on the
protein–nucleic acid complexes. Predicted residues are shown as
spheres, with blue indicating actual DNA-contacting residues, cyan
their nearest neighbors, and green incorrect predictions. The rest of the
protein surface is in semi-transparent gray; the backbone trace of
bound DNA is displayed by red lines. (A) RNA polymerase II
elongation complex (PDB 1i6h). A cylinder is drawn to indicate
downstream DNA; predicted residues in its binding site are shown in
magenta. (B) RecBCD–DNA complex (PDB 1w36). An arrow is drawn
to indicate the 30 exit; predicted residues along the exit are shown in
magenta. (C) Ribosome (PDB 1vqp). In (A) and (B) residues shown in
magenta were not used in reporting prediction accuracy since at these
sites DNA structures were not resolved.
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Apparently DISPLAR was able to correctly avoid making
positive predictions throughout the complex. Indeed, 146
of the 177 predictions are located on the three chains, A, B
and E, that are known to contact DNA (a simple
procedure was able to automatically filter out all the
small numbers of isolated predictions located on chains C,
H, I and J; hence these are not shown in Figure 6A). These
predictions line the binding site for the DNA–RNA
hybrid substrate, and also define the binding site for
downstream DNA. The former 102 residues, shown in
blue, cyan or green, cover 52% of the DNA-contacting
residues at the substrate binding site of 1i6h with an
accuracy of 66%; the latter 44 residues are shown in
magenta (downstream DNA is not resolved in 1i6h).
Predictions for the RecBCD–DNA complex are shown

in Figure 6B. Out of 1836 surface residues of the three
protein chains, 50 and 20 residues, respectively, on chains
B and C were predicted to contact DNA. Forty-six of
these residues, shown in blue, cyan or green, cover 45%
of the binding site for the duplex DNA and the first few
bases of the split strands, with an accuracy of 85%. The
remaining 24 predicted residues, shown in magenta, line
one of two alternative exits for the 30-terminated strand
(36).
We also applied DISPLAR to the largest complex in the

PDB, ribosome, which turned out to be a very easy target.
Using training with RNA-binding proteins, we predicted
1560 of the of 2938 surface residues on the large ribosomal
subunit of Haloarcula marismortui (37) to be RNA-
contacting (Figure 6C). These cover 75% of the actual
RNA-contacting residues (as found in PDB 1vqp) and
have an accuracy of 95%.

Further studies

We have shown that protein residues making up a binding
site for DNA have strong characteristics, such as
enrichment of Arg and Lys and depletion of Asp and
Glu, and based on these characteristics we have developed
a method, DISPLAR, for predicting residues that form
the DNA-binding site. Mutations of DNA-contacting
residues, such as those on the tumor repressor protein P53
(38), may be directly involved in human diseases.
DISPLAR can thus be used to predict such disease
mutations. Perhaps most importantly, the predictions of
DISPLAR can be used to guide the docking of a protein
and its cognate DNA to build a structure for the complex
(39). Such an approach has already been shown to be
successful for protein–protein complexes (40) and seems
promising for protein–DNA complexes.
The performance of DISPLAR can be further improved

in several respects. Dividing the data set into subgroups
with similar properties for separate training has been
found to be useful in PPISP (2). Such a strategy may be
adapted for protein–DNA complexes; the division could
be based on clustering the interfaces through spatial
relations of protein residues and DNA bases (41,42).
Additional spatial features, such as the electrostatic
potential surface (5,11–13) and the protein surface
curvature (11), may also increase accuracy. Besides
neural networks, the input data can be used to train

other predictors such as support vector machine (15), and
the results of different predictors can be pooled to give an
ensemble prediction (22). These improvements will be
explored in the future.

The prediction of DNA-binding sites on protein
surfaces by DISPLAR complements work on prediction
of protein-binding sites on DNA. A number of methods
have been developed to predict DNA sequences recog-
nized by transcription factors (TF), including position-
specific weight matrix (43) and threading of DNA
sequences through a TF–DNA complex either by a
statistical potential (44,45) or by an atomistic energy
function (7,46,47). Work on both the protein side and the
DNA side will contribute to our understanding of their
interactions.

The DISPLAR web server can be found at http://
pipe.scs.fsu.edu/displar.html.

SUPPLEMENTARY DATA

Supplementary Data is available at NAR Online.
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Biochemistry, 33, 1644–1653.

25. Fujii,Y., Shimizu,T., Toda,T., Yanagida,M. and Hakoshima,T.
(2000) Structural basis for the diversity of DNA recognition by
bZIP transcription factors. Nat. Struct. Biol., 7, 889–893.

26. Mitton-Fry,R.M., Anderson,E.M., Theobald,D.L., Glustrom,L.W.
and Wuttke,D.S. (2004) Structural basis for telomeric single-
stranded DNA recognition by yeast Cdc13. J. Mol. Biol., 338,
241–255.

27. Myers,J.C. and Shamoo,Y. (2004) Human UP1 as a model for
understanding purine recognition in the family of proteins
containing the RNA recognition motif (RRM). J. Mol. Biol., 342,
743–756.

28. Albright,R.A. and Matthews,B.W. (1998) Crystal structure of �-Cro
bound to a consensus operator at 3.0 Å resolution. J. Mol. Biol.,
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