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Peptide identification by tandem mass spectrometry is the dominant proteomics workflow for
protein characterization in complex samples. Traditional search engines, which match peptide
sequences with tandem mass spectra to identify the samples’ proteins, use protein sequence
databases to suggest peptide candidates for consideration. Although the acquisition of tandem mass
spectra is not biased toward well-understood protein isoforms, this computational strategy is failing
to identify peptides from alternative splicing and coding SNP protein isoforms despite the
acquisition of good-quality tandem mass spectra. We propose, instead, that expressed sequence tags
(ESTs) be searched. Ordinarily, such a strategy would be computationally infeasible due to the size
of EST sequence databases; however, we show that a sophisticated sequence database compression
strategy, applied to human ESTs, reduces the sequence database size approximately 35-fold. Once
compressed, our EST sequence database is comparable in size to other commonly used protein
sequence databases, making routine ESTsearching feasible. We demonstrate that our ESTsequence
database enables the discovery of novel peptides in a variety of public data sets.
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Introduction

Peptide identification by tandem mass spectrometry is the
dominant proteomics workflow for protein characterization in
complex samples. Traditional search engines, which match
peptide sequences with tandem mass spectra to identify the
samples’ proteins, use protein sequence databases to suggest
peptide candidates for consideration. This algorithmic strategy
for peptide identification has been extremely successful,
making peptide identification by tandem mass spectrometry
one of the cornerstones of the systems biology revolution.
However, only peptides contained in the protein sequence
database can be identified. The Swiss-Prot protein sequence
database (Apweiler et al, 2004) contains only well-character-
ized protein sequences and deliberately suppresses sequence
variations and alternative splicing to reduce redundancy. The
IPI protein sequence database (Kersey et al, 2004) preserves
alternative splicing isoforms, if they are present in its source
databases, but suppresses small variations in the amino-acid
sequence.

An unfortunate consequence of the reliance on protein
sequence databases is a computational bias against the
identification of peptides from poorly understood protein
isoforms, such as those from alternative splicing or coding SNP

isoforms. As protein sequence databases seek to address this
problem and capture more of these variants they become
highly redundant, at the level of exact peptide sequence
repetition. This is not only a computational inefficiency,
leading to increased running times for no additional benefit,
but it can also distort statistical significance estimates, in the
form of E-values, computed by search engines (Edwards,
2005).

Expressed sequence tags (ESTs), single-pass sequencing
reads from mature RNA transcripts, account for the majority of
experimental evidence for alternative splicing in humans. To
date, nearly 8 million ESTs have been generated from human
samples and their sequences deposited in Genbank. ESTs,
obtained from mRNA after intronic sequence is removed,
provide experimental evidence for intron–exon boundaries
and splicing that is used by all of the gene, transcript, and
protein sequence prediction infrastructure that underlies
protein sequence databases. Compared with genomic se-
quence, using ESTs as a source of putative peptide sequences
eliminates the guesswork involved in finding coding sequence
and determining its intron–exon structure, leaving only the
question of translation frame unresolved.

We propose to remove the computational bias imposed by
the use of protein sequence databases in peptide identification
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by searching species-specific EST databases instead. Although
searching ESTs is not new (Yates et al, 1995; Neubauer et al,
1998), a number of issues have stymied the widespread
adoption of routine EST searches.

First, the set of human ESTs from the dbEST database
(Boguski et al, 1993) is large, currently consisting of more than
4 billion nucleotides in 7.6 million entries. Searched using a
naive six-frame translation, the resulting sequence of more
than 8 billion amino acids is more than 300 times the size of the
commonly used IPI Human protein sequence database. As
tandem mass spectrometry search engines typically require
running time linear in the input amino-acid sequence
database, this naive EST search strategy is quite impractical.

The second issue with EST sequences is that they are error-
prone. ESTsequences, single-pass DNA sequencing reads, have
a relatively high error rate—approximately 1 in every 100
nucleotides with conventional capillary electrophoresis sequen-
cing technology. As with genome sequencing, however, many
EST sequences cover most transcribed bases, so uncorrelated
sequencing errors can be corrected by the consensus.

We apply a number of computational strategies to the human
EST database to make it more suitable for searching by tandem
mass spectrometry search engines. First, we require that the
EST sequence map to the vicinity of a known gene, as defined
by the UniGene database (Pontius et al, 2003). Second, we
require that peptides be contained in a 30-amino-acid open-
reading-frame (ORF). This enforces a conservative filter on out-
of-frame translation. Third, we require that all peptide
sequences be confirmed by at least two ESTs, a conservative
error correction for sequencing errors in the ESTs. Finally, we
represent the peptide sequences in a way that ensures that most
of the peptide sequence repetition is eliminated. This novel
computational strategy compresses the human EST sequence
database to less than 3% of the size of the naive six-frame
translation with negligible impact on its peptide sequence
content. This reduction in size makes routine searching of
human ESTs feasible using existing search engines.

We demonstrate that our compressed human EST peptide
sequence database makes it possible to re-search publicly
available tandem mass spectra from human samples, such as
that in the PeptideAtlas (Desiere et al, 2006) and the Human
Proteome Organization (HUPO) Plasma Proteome Project
(PPP) (Omenn et al, 2005) data repositories, to look for, and
find, known coding SNPs, novel coding mutations, alternative
splicing isoforms, alternative translation start sites, micro-
exons, and alternative translation frames. Many of these novel
peptides, which are missing from current protein sequence
databases, straddle exon boundaries and therefore could not
have been observed by searching the six-frame translation of
the human genome directly, a strategy proposed by Fermin
et al (2006) for the HUPO PPP project.

In addition to speeding up search times, our compression
technique also increases search engine sensitivity, reducing
the E-value estimates associated with each peptide identifica-
tion. For our compressed human EST peptide database, we
observe E-value estimates reduced by a factor of about 50 from
their original values, increasing the number of significant
peptide identifications.

Our redundancy elimination technique relies on the
observation that the peptides selected for fragmentation by

tandem mass spectrometry are relatively short, compared to
the typical length of protein sequences. A conservative upper
bound on peptide length, 30 amino acids, encompasses the
vast majority of tryptic peptides reliably identified by popular
LC/MS/MS workflows. In what follows, we will show that it is
possible to compress any amino-acid sequence database such
that the new, smaller, amino-acid sequence database is:
Complete

Every 30-mer from the original sequence database is
present, and
Correct

Only 30-mers from the original sequence database are
present.

This is an extension of previous work (Edwards and Lippert,
2004) that showed how to achieve the optimal complete, correct
representation of the amino-acid 30-mers of a sequence
database, with the additional constraint that each 30-mer
appears exactly once (termed compactness). Counterintuitively,
dropping the compactness constraint results in superior
compression. The optimal complete, correct (C2) sequence
database construction is described in the Materials and methods
section.

Results and discussion

Compressed human EST peptide sequence
database

Rather than construct a monolithic peptide sequence database
as described previously (Edwards and Lippert, 2004), we
applied our compression technique to construct 20774 distinct
gene-centric peptide sequence databases. For each UniGene
gene, we extracted its ESTsequences, retained ORFs of at least
30 amino acids, eliminated amino-acid 30-mers observed only
once, and C2 compressed the result. As essentially all of the 30-
mer repetitions are found in ESTs that map to the same gene,
this gene-based EST partitioning had negligible impact on the
compression achieved. Each gene’s sequences were then
concatenated into a single FASTA entry, separated by a special
character (‘J’—molecular weight 10 kDa).

The final compressed human EST sequence database
contains 223 Mb of amino acids in 20774 FASTA entries, each
labeled with the name of a human gene. The gene-centric
ORFs of at least 30 amino acids represented 2129 995 618
(597020 903 distinct) amino-acid 30-mers. After elimination of
30-mers observed only once, 1 615 810 968 (82 836 253 distinct)
amino-acid 30-mers remain.

Compared to the naive six-frame translation of the human
EST database (approximately 8 billion amino acids), our
compressed version represents a 35-fold compression,
with negligible loss of potential peptide sequence. The
compressed human EST peptide sequence database can be
downloaded from the author’s home page (direct URL: ftp://
ftp.umiacs.umd.edu/pub/nedwards/PepSeqDB).

Faster, more sensitive, peptide identification

To benchmark the speed and sensitivity advantages of our
compressed human EST peptide sequence database, we re-
searched a single data file from the PeptideAtlas ‘raftflow’ data
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set (von Haller et al, 2003) using the Mascot search engine
(Perkins et al, 1999). The data file ‘raft-flow37.mzXML’
contains 1994 tandem mass spectra acquired on a Thermo-
Finnegan LCQ-DECA ion-trap mass spectrometer.

The first search, using Mascot’s nucleotide database
configuration option, which effectively searches the naive
six-frame translation of the human EST sequences, took 22 h.
The second, on the compressed human EST peptide sequence
database, took 15 min, 1% of the time of the first search. The
alternatively spliced peptide LQGSATAAEAQVGHQTAR was
identified with the significant E-value of 0.0049 in the first
search, and had the same score (73) in the second search, but
with an improved E-value of 9.6�10�5. The E-values of each
of the 37 identifications with Mascot score X50 improved by
approximately the same factor. The first, naive enumeration
search made 16 significant peptide identifications of 13 distinct
peptides at the 0.05 E-value threshold, whereas the second
made 47 significant peptide identifications of 30 distinct
peptides at the same E-value threshold.

Novel peptides in public data sets

The compressed human EST peptide sequence database has
made it possible to re-search many of the tandem mass
spectrometry data sets available in public repositories, using
relatively modest computational infrastructure. In doing so,
we have uncovered tandem mass spectra that represent
peptides missing from IPI and other protein sequence
databases, summarized in Table I.

These peptides represent only the most convincing of novel
peptide identifications uncovered in our searches. Many other
significant novel peptide identifications, with varying levels of
spectral, genomic, and transcript sequence evidence, can be
easily extracted from the search results, but they often do not
stand up to careful manual scrutiny. In addition, while these
public bottom-up LC/MS/MS data sets identify many proteins,
they typically cover only a small percentage of each protein’s
sequence. Consequently, we are not guaranteed to observe
peptides that confidently elucidate novel isoforms, even if they
are present in the sample. A possible alternative workflow for
targeting these isoforms would separate proteins before

enzymatic digestion and LC/MS/MS analysis to drive se-
quence coverage to 80% or more.

Novel alternative splice isoform

The peptide LQGSATAAEAQVGHQTAR was observed in the
‘raftflow’ data set contributed to the PeptideAtlas Raw Data
Repository by the Institute for Systems Biology. This data set
represents the flow-through fraction of lipid rafts from human
Jurkat T-cells stimulated via T-cell receptor/CD28 cross-linking
and from control cells (von Haller et al, 2003). The annotated
Thermo-Finnegan LCQ-DECA ion-trap MS/MS spectrum is
shown in Figure 1A. This peptide identification, computed by
X!Tandem, has a highly significant E-value (o10�8). This
peptide sequence is found in eleven EST sequences and three
mRNA from Genbank. Further investigation finds the ESTs and
the peptide sequence align to an alternative splice form of the
LIME1 gene on chromosome 20. This sequence straddles an
intron using the same donor splice site as the primary isoform,
but a different acceptor splice site. The MS/MS spectrum
contains a good y-ion tag on both sides of the intron. A screen
shot from the UCSC genome browser (Kent et al, 2002) in the
region of this peptide is also shown in Figure 1B. This
identification is supported by the weaker identification of
peptide TAGSPLCLPTPGAAPGSAGSCSHR from the ICAT frac-
tion of the same experiment, which appears in a novel frame
consistent with the frame shift introduced by the alternative
splicing event (Supplementary Figures 1–3). Nesvizhskii et al
(2006) also identified the peptide LQGSATAAEAQVGHQTAR
and other novel peptides from this LC/MS/MS data set
using an early version of the compressed EST sequence
database.

Micro-exon isoform

The peptide LQTASDESYKDPTNIQLSK is also found in the
PeptideAtlas ‘raftflow’ data set. This peptide, from the SPTAN1
gene, is present as an isoform annotation in Swiss-Prot, but is
missing from the IPI protein sequence database. Its annotated
MS/MS spectrum is shown in Supplementary Figure 4. This
peptide identification, computed by X!Tandem, has a highly
significant E-value (o10�6). This peptide is found in about 10

Table I Novel peptides found in LC/MS/MS data sets from public data repositories

Data set Peptide Type E-valued ESTs mRNA SPVe IPI Straddle intron? Gene

Raftflowa LQGSATAAEAQVGHQTAR Novel splice o10�8 11 Y N N Y LIME1
Raftauga TAGSPLCLPTPGAAPGSAGSCSHR Novel frame B10�4 34 Y N N N LIME1
Raftflowa LQTASDESYKDPTNIQLSK Micro-exon o10�6 10 N Y N Y SPTAN1
A8 IPb HEQASNVLSDISEFR Novel start o10�9 86 Y N N Y THOC2
PPP 29c KADDTWEPFASGK Novel mutation o10�7 2 N N N Y TTR
PPP 40c DTEEEDFHVDQATTVK Known cSNP o10�9 54 N Y N N SERPINA1
PPP 40c DTEEEDFHVDQVTTVK Wild type o10�9 337 Y N Y N SERPINA1
PPP 28c LQHLVNELTHDIITK Known cSNP o10�9 4 N Y N N SERPINA1
PPP 28c LQHLENELTHDIITK Wild type o10�6 351 Y N Y N SERPINA1

aHuman lipid raft T-cell study from PeptideAtlas (von Haller et al, 2003).
bHuman erythroleukemia K562 cell line study from PeptideAtlas (Resing et al, 2004).
cHUPO Plasma Proteome Project data set from numbered laboratory (Omenn et al, 2005).
dE values computed by X!Tandem.
eSwiss-Prot variant annotation.
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ESTs and one full-length mRNA sequence. The relevant region
of the human genome is shown in Supplementary Figures 5–7.
The last three amino acids of this peptide are contained in a
micro-exon of just five amino acids.

Novel translation start site

The peptide HEQASNVLSDISEFR was observed in the ‘A8_IP’
data set contributed to the PeptideAtlas Raw Data Repository
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Figure 1 (A) MS/MS spectrum from novel peptide LQGSATAAEAQVGHQTAR, found in PeptideAtlas data set ‘raftflow’, and (B) UCSC genome browser (http://
genome.ucsc.edu/) screen shot of genomic region.
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by the Ahn laboratory at the University of Colorado (Resing
et al, 2004). The data set is generated from a human
erythroleukemia K562 cell line using a Thermo-Finnigan
LCQ classic ion-trap mass spectrometer. The annotated
spectrum is shown in Supplementary Figure 8. This peptide
identification, computed by X!Tandem, has a highly significant
E-value (o10�9).

This peptide sequence is found in 86 ESTs and one mRNA
from Genbank. Further investigation finds this sequence aligns
to chromosome X, far upstream of the annotated translation
and transcription start site of gene THOC2, despite full-length
mRNA and significant EST evidence for transcription in this
region. Screen shots from the UCSC genome browser in the
region of this peptide is shown in Supplementary Figures 9 and
10. We point out that the last three amino acids of the peptide
align perfectly to the first nine nucleotides of the 30 exon
defined by these EST and mRNA sequences.

Novel mutation

The peptide KADDTWEPFASGK was observed in the HUPO
PPP (Omenn et al, 2005) LC/MS/MS data set from Lab 29, also
downloaded from the Peptide Atlas Raw Data Repository. This
peptide contains a completely novel mutation in the TTR gene.
The wild-type peptide, KAADDTWEPFASGK, suggests an Ala
deletion at position 2 (or 3). This peptide identification,
computed by X!Tandem, has a highly significant E-value
(o10�7) (Supplementary Figure 11). The corresponding three-
nucleotide deletion was observed in two ESTs, derived from
two clones in the same clone library. Screen shots (Supple-
mentary Figures 12–14) of the relevant region in the UCSC
genome browser shows the deleted nucleotides. Furthermore,
the deleted Ala at position 2 is associated with familial
amyloidotic polyneuropathy, when the Ala is changed to Pro.
We stress that this peptide also straddles an intron and could
not have been identified by scanning the human genome
directly, even under a mutation model that permitted amino-
acid insertion and deletion.

Known coding SNPs

Two different known coding SNPs and their wild-type alleles
were observed for the gene SERPINA1 in HUPO PPP data sets
from laboratories 28 and 40. In the HUPO PPP data set from
laboratory 40, a known coding SNP was observed in the wild-
type peptide DTEEEDFHVDQVTTVK, substituting Val at
position 12 with Ala (Supplementary Figures 15–17), whereas
in HUPO PPP data set from laboratory 28, a known coding SNP
was observed in the wild-type peptide LQHLENELTHDIITK,
substituting Glu at position 5 with Val. E-values in each case
were o10�9, except for the wild-type version of LQHLE-
NELTHDIITK, which had an E-value o10�6.

Materials and methods

Human EST peptide enumeration

The human EST database and the associated human UniGene index
used in this work were downloaded from NCBI’s ftp site in March 2006.
EST sequences and the UniGene index were loaded into a relational
database, which was then used to construct gene-centric ESTsequence

databases. Each ESTsequence was translated in six frames and ORFs of
at least 30 amino acids were retained. Codons containing ambiguous
nucleotides, such as N, were treated as a stop codon only if the
resulting amino acid was also ambiguous.

Compressed SBH graphs

The compressed sequencing-by-hybridization graph (CSBH graph)
representation of a sequence database is used to select those amino-
acid 30-mers that are observed at least twice in each gene-centric EST
peptide enumeration. In addition, the C2 and C3 compression
algorithms make use of this representation.

A sequencing-by-hybridization graph (SBH graph) contains a
directed edge for each k-mer in the sequence database, from a node
representing the first k�1 symbols to a node representing the last k�1
symbols. This construction is a subgraph of the de Bruijn graph (de
Bruijn, 1946), which represents all possible k-mers. The de Bruijn
sequence, which is the shortest string containing all possible k-mers
from some alphabet, can be trivially extracted using an Eulerian path
on the corresponding de Bruijn graph. We strive for a similar result for
the SBH graph, which represents a specific subset of the set of all
k-mers.

As described in Edwards and Lippert (2004), and by analogy with
suffix trees, we suppress trivial nodes in the SBH graph—those nodes
with a single edge in and out, and substitute a single edge representing
the multiple adjacent k-mers. In addition, we consider the nodes
representing the beginning and end of sequences to be non-trivial. We
call the resulting representation of the sequence database, for a fixed
mer-size k, the compressed SBH graph of the sequence database.

The CSBH graph, which we build for each of the human EST peptide
enumeration databases, has a number of important properties. First,
each k-mer in the original sequence database is represented by some
edge of the CSBH graph. Second, all k-mers represented by some edge
are found in the original sequence database, and any path of edges
forms a set of overlapping k-mers, all of which are found in the original
sequence database. Therefore, any set of paths on the k-mer CSBH
graph that uses all of the edges generates a complete, correct sequence
database of the k-mers of the original sequence database. Notice that
the original sequence database, which is, of course, complete and
correct, traces out a set of paths on the CSBH graph that uses all of the
edges. We will show how to choose a different set of paths on the CSBH
graph that minimizes the size of the resulting sequence database.

The CSBH graph construction algorithm computes, as a natural side
effect, the number of times each k-mer is observed in the original
sequence database. The non-trivial end-of-sequence nodes ensure that
every trivial node’s (k�1)-mer sequence has a k-mer to the right for
every k-mer to the left. As a trivial node’s left k-mers must all be the
same (as trivial nodes have in-degree one) and its right k-mers must all
be the same (out-degree one), the two k-mers to the left and right of
each trivial node must have the same mer-count. By induction, all k-
mers represented by a CSBH graph edge have the same mer-count.
Consequently, collapsing and counting CSBH graph edge occurrences
effectively determines mer-counts for all k-mers in the original
sequence database. Labeled with edge counts, the CSBH graph
representation for the original sequence database can be quickly and
easily restricted to the subgraph representing k-mers that occur at least
c times in the original sequence database.

For each EST peptide enumeration, we construct the 30-mer CSBH
graph, and then delete all edges with count 1, thereby ensuring that all
amino-acid 30-mers we output occur at least twice in the original
sequence database.

Optimal complete, correct, compact (C 3)
compression

As outlined above, the problem of constructing a complete, correct
representation of the amino-acid 30-mers of our EST peptide
enumeration amounts to determining a set of paths on the 30-mer
CSBH graph that use all of the edges. The additional compactness
constraint, which requires each 30-mer to be represented exactly once,
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can be modeled by ensuring that each CSBH-graph edge is contained in
exactly one path.

Edwards and Lippert (2004) showed that the optimal C3 compres-
sion of a sequence database contains Nkþk (mþBþ ) symbols, where
Nk is the number of distinct k-mers in the original sequence database, k
is the mer-size, m is the number of components of the CSBH graph with
no unbalanced nodes, and Bþ is the total net degree of nodes with
positive net degree. The net degree of a node is the number of in-edges
minus the number of out-edges; a node with zero net-degree is called
balanced. The optimal C3 compression must use at least mþBþ paths,
and each path incurs a cost of k symbols to start (one sequence
separator, plus the k�1 symbols of the initial node of the path), plus
the length of its edges.

The construction of the optimal C3compression path set proceeds by
determining an Eulerian path for each component of the CSBH graph.
For balanced components or those with exactly one pair of unbalanced
nodes with net degree 1 and �1, this is carried out using the standard
Eulerian path algorithm. For components with Bþ41, Bþ�1 artificial
restart edges are added to the component, from nodes with positive net
degree to nodes with negative net degree. Each artificial restart edge
‘costs’ k symbols—a sequence separator symbol, plus the k�1
symbols of the node it points to. These artificial edges make it possible
to run the standard Eulerian path algorithm on the component. Once
the Eulerian path is determined, guaranteeing the optimal compres-
sion length, the artificial edges are removed, leaving the correct
number of paths on the original edges.

Optimal complete, correct (C 2) compression

Although it might seem that dropping the compactness constraint
should increase the length of the resulting compressed sequence
database, in fact, the opposite is true. Suppose that instead of using an
artificial restart edge, at a cost of k symbols, we can find a path in the
CSBH graph component from a node of positive net degree to a node of
negative net degree that costs less than k symbols. Using the edges of
this path to connect two elements of the path set, rather than using an
artificial restart edge, results in a shorter compressed sequence. Note
that we cannot necessarily use all such shortcuts; choosing the right
combination of restart edges and shortcuts requires some care.

As an aside, we note that the problem of finding a minimum cost
tour that visits every edge of a directed graph at least once is known in
the operations research literature as the ‘Chinese Postman Problem’
(Edmonds and Johnson, 1973). The Chinese Postman Problem can be
solved in polynomial time by using a matching formulation to
determine which edges to reuse. Our problem differs in the respect
that we can use an artificial restart edge at fixed cost instead of reusing
real edges if this is more cost-effective. Similar too, is the work on DNA
sequence assembly from SBH experiments by Pevzner (1989), in
which a minimum cost-flow instance is used to make the SBH graph
Eulerian. This work presumes that a single unique DNA assembly is
desired and that missing k-mers may be added. In our formulation, we
are unconcerned with the question of forming a single unique output
string and insist that no new k-mers be created (correctness).

We will also use a matching style formulation to choose the optimal
combination of restart edges and shortcuts for each unbalanced
component. Our subproblem is easiest stated as a minimum cost
network flow problem. This formulation consists of supply, demand,
and transit nodes, and capacitated arcs with a cost per unit flow.
Minimum cost network flow problems can be solved in polynomial
time and for suitable instances, such as ours, they have integer optimal
solutions (Chvátal, 1983).

We use a minimum cost network flow instance for each component
with Bþ41. The instance has supply nodes S for each positive net
degree node and demand nodes T for each negative net degree node.
The magnitude of the supply or demand at the nodes of S,T is the net
degree of the corresponding CSBH graph node. We add an arc between
a node of S and a node of T if there is a path between the corresponding
nodes that uses less than k symbols. The cost of these arcs is the
number of symbols on the shortcut path. Figure 2A gives an example of
these elements of the formulation. We add a special widget, shown in
Figure 2D, to account for the use of artificial restart edges between any
pair of nodes from S and T. The use of this widget, instead of the

complete bipartite graph on S and T (Figure 2C) reduces the number of
edges in the formulation due to artificial restart edges from O(|S|� |T|)
to O(|S|þ |T|). Lastly, as we must leave one node with net degree 1
(and hence one other node with net degree �1) we add the widget of
Figure 2B, which selects the Eulerian path start and end nodes. Unlike
the widget that represents the artificial restart edges, this structure is
not merely an efficiency, it is necessary to ensure that shortcut edges
are not used to satisfy all supply and demand constraints, as this would
represent a cycle on the CSBH graph component.

Solved to optimality for each component using the CS2 minimum
cost network flow solver (Goldberg, 1997), these minimum cost
network flow instances determine the optimal use of restart edges and
shortcut paths. Artificial edges representing each of the selected restart
edges and shortcuts are added to the component, and an Eulerian path
is determined, as before. The resulting sequence database represents
the optimal C2 compression of the original sequence database.

Re-searching public LC/MS/MS data sets

Public LC/MS/MS data sets are downloaded from their respective data
repositories. Sources include PeptideAtlas (Desiere et al, 2006) and
HUPO PPP (Omenn et al, 2005). In all, more than 2.3 million spectra
are stored locally for searching, representing 722 data files, and about
33 different laboratories or projects. Tandem mass spectra are searched
using the X!Tandem (Craig and Beavis, 2004) or Mascot (Perkins et al,
1999) search engines with conservative search parameters, such as
one missed cleavage, tryptic N- and C-termini, methionine oxidation
and cysteine alkylation modifications only, and precursor mass
tolerance of 2 Da. We use a computational grid of approximately 250
Linux processors, managed by the condor scheduling infrastructure,
and the X!Tandem search engine for re-searching the public data sets.
The Mascot search engine, tied to a single processor, is used for
benchmarking, comparison studies, and to confirm specific identifica-
tions.
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Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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