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Phylogenetic footprinting is a method for the discovery of regulatory elements in a set of orthologous
regulatory regions from multiple species. It does so by identifying the best conserved motifs in those
orthologous regions. We describe a computer algorithm designed specifically for this purpose, making use of the
phylogenetic relationships among the sequences under study to make more accurate predictions. The program is
guaranteed to report all sets of motifs with the lowest parsimony scores, calculated with respect to the
phylogenetic tree relating the input species. We report the results of this algorithm on several data sets of
interest. A large number of known functional binding sites are identified by our method, but we also find
several highly conserved motifs for which no function is yet known.

One of the great challenges currently facing biologists is to
understand the varied and complex mechanisms that regulate
gene expression. We focus on one important aspect of this
challenge, the identification of binding sites for the factors
involved in such regulation.

A number of computer algorithms have been proposed
for the discovery of novel regulatory elements in nucleotide
sequences. Most of these try to deduce the regulatory ele-
ments by considering the regulatory regions of several (puta-
tively) coregulated genes from a single genome. Such algo-
rithms search for overrepresented motifs in this collection of
regulatory regions, these motifs being good candidates for
regulatory elements. Examples of this approach include van
Helden et al. (1998), Hertz and Stormo (1999), Hughes et al.
(2000), Sinha and Tompa (2000), and Workman and Stormo
(2000).

We adopt an orthogonal approach of deducing regula-
tory elements by considering orthologous regulatory regions
of a single gene from several species. This approach is called
“phylogenetic footprinting” (Tagle et al. 1988). The simple
premise underlying phylogenetic footprinting is that selective
pressure causes functional elements to evolve at a slower rate
than that of nonfunctional sequences. This means that un-
usually well conserved sites among a set of orthologous regu-
latory regions are excellent candidates for functional regula-
tory elements. This approach has proved successful for the
discovery of regulatory elements for many genes, including
�-globin (Tagle et al. 1988; Gumucio et al. 1993), �-globin
(Tagle et al. 1988), rbcL (Manen et al. 1994), cystic fibrosis
transmembrane conductance regulator (Vuillaumier et al. 1997),
tumor necrosis factor-� (Leung et al. 2000), and interleukin (IL)-
4, IL-13, and IL-5 (Loots et al. 2000). See the review by Duret
and Bucher (1997) for more details. The same idea of using
comparative analysis to identify conserved elements, but
among only two or three species (particularly human and
mouse), has recently become popular (Hardison et al. 1997;

Jareborg et al. 1999; Dubchak et al. 2000; Wasserman et al.
2000; Mouchel et al. 2001; Wu et al. 2001).

The major advantage of phylogenetic footprinting over
the single genome, multigene approach mentioned earlier is
that the latter requires a reliable method for assembling the
requisite collection of coregulated genes. In contrast, phylo-
genetic footprinting is capable of identifying regulatory ele-
ments specific even to a single gene, as long as they are suf-
ficiently conserved across many of the species considered. Ge-
nome projects are quickly producing sequences from a wide
variety of organisms, so the data necessary for phylogenetic
footprinting are becoming increasingly available.

The standard method that has been used for phyloge-
netic footprinting is to construct a global multiple alignment
of the orthologous regulatory sequences and then to identify
conserved regions in the alignment. A tool such as CLUSTALW
(Thompson et al. 1994) is appropriate for this purpose, as it
can take advantage of knowledge of the phylogeny relating
the species. To see why this approach to phylogenetic foot-
printing does not always work, consider typical lengths of the
sequences involved. Regulatory elements tend to be quite
short (5 to 20 nucleotides long) relative to the entire regula-
tory region in which we search for them (a 1000-bp promoter
region would be typical). Given these relative lengths, if the
species are somewhat diverged, it is likely that the noise of the
diverged nonfunctional background will overcome the short
conserved signal. The result is that the alignment may not
align the short regulatory elements together. In that case, the
regulatory elements would not appear to belong to conserved
regions and would go undetected. Thus, when the entire regu-
latory regions considered are moderately to highly diverged,
global multiple alignment is likely to miss significant signals.

Cliften et al. (2001) made similar observations in con-
junction with their comparative analysis of several Saccharo-
myces species. They discovered that if the species are too
closely related, the sequence alignment is obvious but unin-
formative, because the functional elements are not suffi-
ciently better conserved than the surrounding nonfunctional
sequence. On the other hand, if the species are too distantly
related, it is difficult or impossible to find an accurate align-
ment (for discussion of these issues, see Tompa 2001).
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Rather than relying on multiple alignment, a more suc-
cessful recent approach to phylogenetic footprinting is to use
one of the existing motif discovery programs—such as MEME
(Bailey and Elkan 1995), Projection (Buhler and Tompa
2001), Consensus (Hertz and Stormo 1999), AlignAce (Roth
et al. 1998), or ANN-Spec (Workman and Stormo 2000)—or
the segment-based multiple alignment program DIALIGN
(Morgenstern et al. 1998, Morgenstern 1999). Cliften et al.
(2001), for instance, reported some successes using AlignAce
when global multiple alignment tools failed. Another ex-
ample of this approach is the work of McCue et al. (2001),
who used a Gibbs sampler to perform phylogenetic footprint-
ing in bacterial sequences. Such general motif discovery algo-
rithms were designed for a different purpose, however, and
have their own drawback: None take into account the phylo-
genetic relationship of the given sequences; that is, these
methods assume the input sequences to be independent. This
can be problematic, for example, in data sets containing a
mixture of some closely related species and some distant ones.
If the phylogeny underlying the data is ignored, similar se-
quences from the set of closely related species will have an
unduly high weight in the choice of motifs reported. Even if
these methods were modified to weight the input sequences
unequally, this would still not capture the information in an
arbitrary phylogenetic tree. The method we present does cap-
ture this information.

In this paper, we describe an algorithmic method de-
signed specifically for phylogenetic footprinting in multiple
species. Because it is tailored to this purpose, it avoids the
drawbacks described above of both multiple alignment and
general motif discovery algorithms. Given a set of unaligned
orthologous sequences, our approach identifies all DNA mo-
tifs that appear to have evolved unusually slowly compared
with the surrounding sequence. More precisely, given n or-
thologous input sequences and the phylogenetic tree T relat-
ing them, our algorithm is guaranteed to produce every set of
k-mers, one from each input sequence, that have parsimony
score at most d with respect to T, where k and d are parameters
that can be specified by the user.

As orthologous sequences from more and more species
are included in the input, the distinction between conserved
motif and diverged background generally becomes clearer.
However, when including many orthologous sequences, par-
ticularly distantly related ones, there is increased chance that
some of them may have lost or completely altered some regu-
latory elements over the course of evolution. For example, a
species may not need the regulatory mechanism in which
some regulatory element was involved, in which case selective
pressure would no longer operate. As an example of an altered
regulatory element, LexA has an entirely different binding
motif in gram-positive bacteria than in gram-negative bacte-
ria (McGuire et al. 2000). For these reasons, we developed a
variant of our phylogenetic footprinting algorithm that iden-
tifies motifs that occur in many, but not necessarily all, of the
input sequences. This variant requires some way of compar-
ing the levels of conservation among motifs that occur in
different subsets of the input species and with different par-
simony scores. For example, should one prefer a motif that
occurs in all the species with parsimony score 2 or a motif that
occurs in most of the species but with parsimony score 0? To
address this, for each parsimony score s, we allow the user to
set a minimum threshold on the fraction of the phylogeny
that must be spanned by any reported motif with score s. For
example, the user can ask to see all motifs with parsimony

score 0 that span at least 200 Myrs of the phylogenetic tree
(i.e., the sum of all branch lengths induced by the leaves con-
taining the motif is at least 200 Myrs), plus those with score 1
that span at least 350 Myrs, plus those with score 2 that span
at least 500 Myrs. Thresholds are to be set in such a way that
the motifs reported are conserved at a statistically significant
level (see Methods).

The focus of the present paper is an explanation of what
the new algorithms do and a discussion of the results ob-
tained on several interesting data sets available in the public
databases. Although a high-level description of how the algo-
rithm works is given in Methods, the details of the algorithm,
and in particular several algorithmic optimizations that ren-
der it practical on realistic problems, are beyond the scope of
the present paper. These algorithmic details are described in a
companion paper devoted to that purpose (Blanchette et al.
2002).

The algorithms are implemented in a program called
FootPrinter that has been used to obtain the results pre-
sented here. FootPrinter is available at http://bio.cs.
washington.edu/software.html.

RESULTS
In this section, we report the highly conserved motifs found
by FootPrinter in nine sets of orthologous or paralogous
sequences. We identified many previously known regulatory
elements, as well as many highly conserved motifs with un-
known function. The data sets considered in this study were
chosen according to two main criteria: (1) the availability of
several orthologous promoter sequences in GenBank and (2)
the availability of information about the regulation of the
genes considered (to validate our results). Some sets of or-
thologous sequences come from the ACUTS database (Duret
and Bucher 1997), which lists a number of genes for which
regulatory regions have been sequenced in several vertebrates.
Other data sets were built by the authors directly from Gen-
Bank. The sequences, accession numbers, phylogenetic trees,
and detailed results from FootPrinter can be found at
http://bio.cs.washington.edu/GR/. The phylogenetic relation-
ships among the sequences considered were derived from
Murphy et al. (2001) and Maddisson (2002), unless men-
tioned otherwise (see Discussion). All results are summarized
in Table 1, but there is more detail available at the web site
mentioned above.

Metallothionein Gene Family
The metallothionein gene family is particularly well suited to
show the merits of our approach, as a large number of pro-
moter sequences are available from a wide variety of species,
the phylogenetic relationships among these sequence have
been studied, and a large number of regulatory elements have
been experimentally determined in several species. Notice
that although we described phylogenetic footprinting as ap-
plied to orthologous sequences, the approach applies equally
well to paralogous sequences, in which two sequences di-
verged because of duplication rather than speciation, as long
as the gene family tree is known.

The primary function of proteins in the metallothionein
family is to bind to heavy metal ions and to mediate cellular
detoxification of metals. They have also been shown to act as
antioxidant agents, protecting DNA from free radicals (for re-
view on the function of metallothionein, see Ghoshal and
Jacob 2001).
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Table 1. Motifs Found by Phylogenetic Footprinting

DNA region(a) Species(b) Motif (length) (position)(c) Score (species)(d) Ref.(e)

Metallothionein family
5� UTR + promoter
(590 bp)

Human (Ia, Ih, II, IV),
rat (I, II, III), mouse
(III), hamster (I, II),
sheep (Ia, II), rabbit
(I), cow (I), frog (a),
trout (a), pike, icefish
(I, II), carp, loach,
urchin (I, II), mussel,
C. elegans (I, II)

1. GCTATAAAc (8) (Human II,�103)
2. CATGCGCAGg (9) (Rat III, �143)
3. cCGTGTGCAg (8) (Human II, �239)

CGTGTGCAggc (8) (Human II, �156)
4. TTTGCACACG (10) (Pike, �142)
5. tGCGCCCGG (8) (Human II, �222)

TGCACTCG (8) (Human II, �126)
6. TAACTGATAAA (10) (C. ele. I, �324)
7. TACACTCAG (9) (Rat III, �207)
8. TCCCACCAA (9) (Rat III, �497)
9. CAGGCACCT (9) (Rat III, �284)

10. TGCACACGG (9) (Human II, �374)
11. tGTACATTGTga (9) (C. elegans I, �129)
12. GCTTTAAAA (9) (Pike, �114)

2 (see Figure 1)
2
9 (*)
9 (*)
4
5
4
0
1
1
1
1
2
0

1.1

1.2
1.3
1.4
1.5
1.6

1.7

Insulin family
5� promoter
(500 bp)

Human, chimp, aotus,
pig, rat (I, II), mouse
(I, II)

1. gttAAGACTCTAAtgacc (10) (�223)
2. tcagcccccaGCCATCTGCC (10) (�122)
3. CTATAAAGcc (8) (�32)
4. GGGAAATG (8) (�145)

0 (Mutated in rodents (I))
1
0
0 (Absent from rodents)

2.1
2.2
2.3
2.4

c-myc
5� promoter
(1000 bp)

Goldfish, frog, chicken,
rat, pig, marmoset,
human

1. aGTTTATTC (8) (�611)
2. TTGCTGGG (8) (�570)
3. GGCGCGCAGT (10) (�359)
4. CAGCTGTTCCgc (10) (�325)
5. TGTTTACATCc (10) (�173)
6. ccaCCCTCCCC (8) (�105)
7. AGCAGAGGGCG (10) (�69)
8. GGCGTGGG (8) (�62)
9. ATCTCCGCCCAcc (8) (�26)

1 (Absent from goldfish)
3 (Absent from chicken)
2 (Chicken + mammals)
2 (Chicken + mammals)
2 (Chicken + mammals)
4
2 (Chicken + mammals)
2 (Absent from goldfish)
2 (Chicken + mammals)

3.1
3.2
3.3
3.4

c-myc second intron
(971 to 1376 bp)

Chicken, pig, rat,
marmoset, gibbon,
human

1. CATTTTAATT (10) (303)
2. TGAATGAATT (10) (375)
3. tTTTGAACACT (10) (542)
4. TAGGGAGTTG (10) (670)
5. ATTTGCAGCTat (10) (698)
6. GAAGTGTTCT (10) (725)
7. TTGGTAAAGT (10) (733)
8. GCTTTGCTTTGGGTGTGT (10) (780)
9. GCCTCATTAAGTCTTAGGTAAG (10) (795)

10. TTCCTTTCTT (10) (1362)

0 (Mammals)
0 (Mammals)
0 (Mammals)
2
2
2
0 (Mammals)
0 (Mammals)
0 (Mammals)
2 4.1

c-fos 5� UTR +
promoter (800 bp)

Tetraodon, chicken,
mouse, hamster, pig,
human

1. CAGGTGCGAATGTTC (10) (�615)
2. TTCCCGCCTCCCCTCCCC (10) (�583)
3. GAGTTGGCTGcagcc (10) (�527)
4. GTTCCCGTCAATCcct (10) (�504)
5. CACAGGATGTcc (10) (�479)
6. AGGACATCTG (10) (�462)
7. GTCAGCAGGTTTCCACG (10) (�439)
8. TACTCCAACCGC (10) (�159)

0 (Mammals)
0 (Mammals)
3 (Tetraodon + mammals)
1 (Chicken + mammals)
4
1 (Chicken + mammals)
0 (Mammals)
0 (Mammals)

5.5

5.1
5.2
5.3
5.4

c-fos first intron
(376 to 758 bp)

Fugu, tetraodon,
chicken, pig, mouse,
hamster, human

1. GGGTGTGTAAgg (10) (404)
2. GTTTCATTGATAAAAAGCGAGTTCATTCT

GGAGACTCCGGAGCGGCG (10) (417)
3. agcgcagacgtcAGGGATATTTA (10) (472)

3 (Absent from fugu)

1 (Absent from fishes)
1

6.1

6.1
6.1

Growth-hormone
5� UTR + promoter
(380 bp)

Salmon, trout, white
fish, seriola, lates,
tilapia, fugu, grass
carp, catfish,
chicken, rat, mouse,
dog, sheep, goat,
human

1. GGGAGGAG (8) (�198)
2. ATTATCCAT (9) (�183)
3. TTAGCACAA (9) (�174)
4. GTCAGTGG (8) (�162)
5. gcATAAATGTA (9) (�146)
6. GAAACAGGT (9) (�131)
7. cagggTATAAAAAGggc (9) (�97)
8. TCATGTTTt (9) (Salmon, �138)

3 (Chicken + mammals)
1 (Mammals)
3 (Human, rodents, chicken)
3 (Chicken + mammals)
2 (Chicken + mammals)
1 (Human, rodents, salmonida)
6 (Absent from catfish)
2 (Fishes, except catfish, trout)

7.1
7.2

7.3
7.4

7.5

Interleukin-3 5� UTR +
promoter (490 bp)

Rat, mouse, cow,
sheep, human,
macaca

1. TTGAGTACTagaaagt (8) (�228)
2. GATGAATAATt (8) (�208)
3. GTCTGTGGTTTtCTATGGAGGTTCCATGT

CAGATAAAG (8) (�195)
4. TCTTCAGAGc (8) (�56)
5. AGGACCAG (8) (�40)

1
1

0
1
1

8.1

8.2

(Table continued on following page.)
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The metallothionein gene family appears to have
evolved through a series of gene tandem duplications and
losses. Most mammals have four major isoforms (MT-I, -II,
-III, and -IV). Humans actually have 13 copies of the MT-I
gene. Some nonmammals (Caenorhabditis elegans, sea urchin,
icefish, and trout) also have several copies of the metallothio-
nein gene, but the duplication events that led to this situation
most likely took place quite recently, in such a way that, for
example, the MT-I C. elegans gene is not more closely related
to the MT-I mouse gene than to the MT-II mouse gene. The
phylogenetic relationships among the various members of the
gene family have been studied by Binz and Kägi (1997), and the
phylogenetic tree used here (see Fig. 1) is derived from theirs.

Genes from the metallothionein family are known to be
regulated by a number of transcription factors. The most im-
portant of them, MTF-1, required for basal expression, binds
to cis-acting elements known as metal response elements
(MREs). A metallothionein promoter typically contains sev-
eral MREs. In addition to MREs, the mouse MT-I promoter
contains one or more GC boxes bound by Sp1, and major late
transcription factor/antioxident response element (MLTF/
ARE) binding site. The human MT-II promoter contains three
basal level enhancer (BLE) elements known to bind transcrip-
tion factors from the AP-2 family, and a glucocorticoid-
responsive element (GRE), bound by the glucocorticoid recep-
tor. Some of these bindings sites have also been identified in
other metallothionein promoters. Most binding sites known
in any of the species we consider occur within 300 bp of the
start codon (for more on the regulation of genes in the metal-
lothionein family, see Ghoshal and Jacob 2001).

We ran FootPrinter on the 590 bp of sequence located
upstream of the start codon of each of the metallothionein
genes listed in Figure 1. The 5�-UTR is usually short (between
50 and 100 bp for species for which the transcription start site
is known), and was included in the sequences considered. We
searched for conserved elements of the lengths 7, 8, 9, and 10,

in consecutive runs, each time adjusting the parameters to
ensure that the motifs reported are well conserved at a statis-
tically significant level (see Methods).

Because the family contains both orthologous and
paralogous genes, the ability of FootPrinter to allow for
losses of regulatory elements is particularly crucial. Indeed,
duplicated copies of a gene may evolve to have slightly dif-
ferent functions, and it is likely that the same holds for their
promoter regions.

Our analysis identified 12 motifs, plotted in Figure 1 and
listed in Table 1. Motifs labeled 3, 4, 5, and 10 all correspond
to different variants of MREs. That is, they are all experimen-
tally verified binding sites of the same transcription factor
MTF-1 in at least one of the sequences. The most common
motif, labeled 3, corresponds to MREs located on the reverse
strand, whereas the others are on the forward strand. Motif 3
is present in all isoforms of all deuterostomes (echinoderms
and vertebrates) studied. It is often present in multiple copies,
with up to four copies in human MT-IV and rat and hamster
MT-II. Note that other promoter regions in Figure 1 may also
contain more copies of this motif than shown, but not suffi-
ciently conserved to be reported (see Discussion). Motif 5 was
only found in mammalian MT-I and MT-II, and motif 10 was
only found in mammalian MT-II, whereas motif 4 appears to
have been lost on the branch leading to mammalian MT-I, -II,
and -IV. In all, FootPrinter identified five of the seven
MREs documented in the TRANSFAC database for human MT-
II, but only two of the six known in rat MT-I (see Discussion
for an explanation of why these were missed).

The other motif known to have regulatory function is
motif 1, a TATA-box, which was found in all isoforms of all
mammals, except in MT-I of nonrodents. Had we insisted that
the motif be present in all genes of the MT-I/MT-II mammal
phyla, its parsimony score would have increased greatly, as it
is so poorly conserved in nonrodent MT-I, to a point at which
it would no longer have been significant.

Table 1. (Continued)

DNA region(a) Species(b) Motif (length) (position)(c) Score (species)(d) Ref.(e)

Histone H1 5� UTR +
promoter (650 bp)

Chicken, duck, frog,
mouse

1. CAATCACCAC (10) (Mouse, �107)
2. gAAACAAAAGTtt (10) (Mouse, �427)

3
1

9.1

aDNA regions considered.
bSpecies (and isoforms) considered.
cHighly conserved motifs found by FootPrinter. Overlapping motifs reported by FootPrinter have been merged, but all nucleotides of
the motifs in this Table belong to at least one solution of the given length and with a parsimony score matching our statistical significance
threshold. (See Methods.) Capitalization is only relevant with respect to column d. The sequences and positions reported are those for the
human sequences, except where otherwise noted. Negative positions are measured in the 5� direction from the start codon, and positive
positions in the 3� direction from the 5� end of the intron. A few conserved regions found by FootPrinter that are of low complexity or
otherwise uninteresting are not reported.
dParsimony score of the capitalized motif in the subset of species listed. The capitalized region is that with the lowest parsimony score. When
no subset is mentioned, the motif is found in all sequences. FootPrinter identified motifs marked by an asterisk in several subsets of the
species where shown in Fig. 1, but not in the whole set of species. These subsets were merged by hand to produce Fig. 1. The parsimony score
given is that for the whole set of species.
eKnown functional information about the motif. Unless otherwise noted, the information comes from TRANSFAC (Wingender et al. 1996), with
accession number in brackets. Metallothionein: 1.1 TATA-box [R03173], 1.2 MREe [R08295], 1.3 MREb [R08294], 1.4 MREa [R01816], 1.5
MREa [R08293], 1.6 MREd [R08298], and 1.7 MREg [R08296]. Insulin: 2.1 CT-II [R02709], 2.2 IEB1 [R04457], 2.3 TATA-box [GenBank
annotation], and 2.4 GG-II [R02711]. C-myc: 3.1 Near NRE [R02571], 3.2 NHE [R01804], 3.3 P1 promoter [R04076], and 3.4 TCE [R04076].
C-myc second intron: 4.1 Part of 3� splice site. C-fos: 5.1 SIF-E, SIE [R00458, R08485], 5.2 [many factors bind in this region; R00466,
R00465, R00464, R01889], 5.3 [many factors bind in this region; R00467, R00463, R04047, R04046, R00462, R00461], 5.4 [part of DSE in
SRE; R00467], 5.5 MatInspector (Quandt et al. 1995) hit: MTZ1 (Myeloid zinc factor 1). C-fos first intron: 6.1 (Transcription elongation
signals; Mechti et al. 1991), Motif 3 contains a CREB binding site (Lange and Bading 2001). Growth hormone: 7.1 GHF-2 [R02050 in rat],
7.2 dGHF-1 [R00611], 7.3 [R04639 in rat], 7.4 pGHF-1 [R00612], and 7.5 nT3RE [R03959 in rat]. IL-3: 8.1 [R02736], 8.2 [R02682, R05026,
R05027]. Histone H1: 9.1 CAAT signal [GenBank annotation].
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The other seven conserved motifs identified are not
documented in TRANSFAC (Wingender et al. 1996). None of
them were found in the mammalian MT-I and MT-II families,
which may partly explain our lack of knowledge about them,
as genes in these families have received much more attention
than the other isoforms. Motifs 7, 8, and 9, found only in frog
and in the MT-III gene family, may be of particular interest.
(Motif 2 also occurs in this set of sequences, but its order with
respect to that of the other motifs is not as well conserved.)
Another interesting point is that most of the motifs found are
present in more than one isoform family, which indicates
that we gained accuracy by considering the gene family as a
whole, instead of running FootPrinter separately on each
of the four mammal isoforms.

Insulin Gene Family
The upstream sequences of insulin
genes are currently known only for
three primates, two rodents (with
two gene copies in each), and pig.
This set of species is much less di-
verged than the metallothionein
gene family. Because of this, we
searched only for motifs with 0
mutations (for motif length 8) or 1
mutation (for motif lengths 9 and
10) at most, as motifs with more
mutations would be likely to hap-
pen by chance in nonfunctional se-
quences. Our search identified four
conserved motifs, all of them cor-
responding to known binding sites
for that gene. (See Table 1 for this
gene family and those that follow
in the remainder of this section.)
Several other binding sites were
missed by FootPrinter because
they contained a few too many
mutations (see Discussion). Had we
had a few more diverged species (or
many other mammalian se-
quences), we may have been able
to identify these sites as well. An-
other way to counteract the lack of
diversity is to search for longer mo-
tifs, as we would then be able to
accept motifs with more muta-
tions. However, in this case,
searches for motifs of the lengths
12 and 15 did not yield any new
motifs.

IL-3
The data set for IL-3 is quite similar
to that of insulin, as only six mam-
malian sequences are available. We
were thus limited to reporting only
motifs with at most one mutation.
Two of the five motifs identified
are known binding sites. In fact,
motif 3 actually contains binding
sites for a number of factors.

C-myc Promoter
The upstream sequences of c-myc are known for only 7 spe-
cies, but these contain members from diverse animal phyla
(fishes, batrachians, birds, and mammals). This allowed us to
do a much more sensitive motif search. Four of our nine pre-
dictions are known binding sites. Notice that some of these
were found only in mammals and chicken, others in all ter-
restrial animals, and one in all species considered, which
again illustrates the necessity to search for conservation in
subsets of the species. All these known binding sites are lo-
cated in a 120-bp promoter region known to be very rich in
binding sites. We also identified motifs with unknown func-
tion but which are as well conserved as those corresponding
to known sites. Most of these novel motifs are located well

Figure 1 FootPrinter identified 12 highly conserved motifs in the metallothionein gene family.
Each input sequence is the 590 bp located upstream of the start codon. For more details on each motif,
see Table 1. The phylogenetic tree is derived from Binz and Kägi (1997; branch lengths not to scale).
Numbers along branches indicate when each motif was created (unboxed) or lost (boxed), ignoring
any less conserved occurrences of the motif not reported by FootPrinter.
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upstream of the known regulatory-rich region, in an area
where very few binding sites were previously known.

C-myc Second Intron
Although regulatory elements are often located in the 5�-
promoter region, some genes also have regulatory elements in
their introns, and this is believed to be the case for c-myc. The
second intron of c-myc varies in size between 971 bp (in
chicken) and 1376 bp (in human). This intron was shown by
Spicer and Sonenshein (1992) to contain an antisense pro-
moter that results in the transcription of the reverse strand of
part of the c-myc gene. Our analysis indeed identified 10
highly conserved motifs. Many of these are located just down-
stream of the transcription start site for the reverse strand
(located at position 832 in rat, corresponding to position 860
in human). All but one of these are novel motifs.

C-fos Promoter
Our set of sequences for c-fos covers a set of species that is
similar to that for c-myc. The results are also quite similar.
Five of our eight predictions are known binding sites, four of
them concentrated in an 80-bp area located about 500 bp
upstream of the start codon.

C-fos First Intron
The first intron of the c-fos gene is known to contain a long
sequence that acts as a transcription terminator by blocking
elongation (Mechti et al. 1991). The presence of Ca2+ has been
shown to prevent this premature termination of transcrip-
tion. The mechanism that underlies this interesting regula-
tion mode is still unclear. FootPrinter very clearly identi-
fied that long sequence, as it is almost perfectly conserved in
all tetrapoda considered. However, we also observed that this
103-bp-long sequence is broken into three segments. The first
segment is conserved in all species considered, except fugu.
The second one was found only in tetrapoda. The third seg-
ment is conserved in all species and contains a cAMP response
element in humans (Lange and Bading 2001). This division
into three segments indicates that each segment has a differ-
ent function. Notice that in the absence of the two fish spe-
cies, we would not have seen this division and would not
have learned anything new about the region.

Growth Hormone 1
The growth hormone data set is our second largest; it contains
sequences from nine fishes, one bird, and six mammals.
Again, the subsets of species containing the motifs found vary
greatly, from mammals only or fishes only to 15 of the 16
species. Five of the eight motifs identified are known binding
sites in either rat or human.

DISCUSSION

Known Versus Predicted Binding Sites
In the Results section, we showed that FootPrinter identi-
fies a large number of binding sites with a function that has
been established experimentally. However, there are also
many known binding sites that were not found by our ap-
proach. It is illuminating to analyze why FootPrinter did
not detect those motifs. Of course, in the end, the reason must
be that these motifs were not sufficiently well conserved to be
reported, but a more detailed study is instructive.

The known binding sites missed by FootPrinter can be

divided into five categories. First, some binding sites appear to
have no significant matches in most other species. For ex-
ample, the thyroid hormone receptor T3R binding site up-
stream of the rat growth hormone 1, and the Pur-1 binding
site upstream of the rat insulin gene are both conserved only
in rodents. There is very little hope of detecting these sites by
phylogenetic footprinting, unless a large number of closely
related species (in this case, rodents) are available.

Second, some binding sites show very good conserva-
tion, but only over a region that is shorter than the ones we
looked for. This is the case for the GC-box of metallothionein,
the sequence GGGGCGG of which is perfectly conserved in
the four MT-II sequences and has only one mutation in the
MT-III sequences. The substring GGGG is actually conserved
in almost all mammalian isoforms. We may have been able to
detect these kinds of motifs, had we searched for motifs of
that length. (We did search for motifs of length 7, but the
GC-box was not reported because it did not span a large
enough part of the tree.) However, such short motifs are often
likely to occur simply by chance in nonfunctional sequences.
We could have allowed such short motifs, but our results
would have been more likely to contain false positives.

Third, a small number of binding sites appear to be rela-
tively well conserved but have had insertions or deletions
(although it is not clear if the sequences with insertions or
deletions are still functional). FootPrinter can allow for in-
sertions and deletions in the motifs found, but we chose not
to use this option, as it is believed that insertions and dele-
tions are rare in binding sites. Allowing for insertions and
deletions would thus have produced a few more true posi-
tives, but most likely at the price of many more false positives.

Fourth, some motifs are quite well conserved, but they
barely fail to meet our statistical significance thresholds. This
is the case for the CREB binding sites and CT-I regulatory
element of insulin, both of which have parsimony score 3
over a motif of length 8. Again, allowing for that many mu-
tations would have produced a number of false positives.
However, if sequences from more organisms had been avail-
able, these two motifs might have been detected without in-
creasing the false positive rate.

Fifth, some transcription factors bind as dimers, in which
case the binding site may consist of two conserved regions,
separated by a few variable nucleotides. For example, in
metallothionein MT-II, transcription factors from the AP-2
dimer family are known to bind the BLE element. Visual in-
spection reveals that the pattern TGACnnnnnGCGG (where
n is a variable nucleotide) is perfectly conserved in all four
MT-II genes. Because of the variable internal sequence, Foot-
Printer did not discover this motif. However, a future ver-
sion of the program will allow one to search for motifs con-
taining a variable sequence in the middle, where mutations
should not be counted. More generally, it is well known that
some transcription factors can tolerate more than one type of
nucleotide at a given position of the binding site. For ex-
ample, the MRE binding sites of metallothionein can be de-
scribed by the consensus string CTCTGCRCNCSGCCC, in
which bold characters are absolutely required for metal re-
sponse, R is A or G, and S is C or G (Ghoshal and Jacob 2001).
In this case, one would want to assign a smaller penalty to
purine-purine transitions at position 7 of the motif than to
other substitutions. The current implementation of Foot-
Printer assigns equal cost to each type of substitution, but
we are investigating ways for the program to learn different
mutation cost matrices for each position in the sequence.
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When reading the results presented in Figure 1 or Table
1, the reader should be aware that there may be more occur-
rences of regulatory elements than shown, if they are not
sufficiently well conserved.

Comparison to Other Computational Methods
A number of existing computational techniques have been
used or could be used to identify conserved motifs in ortholo-
gous sequences, although none has been designed precisely
for that purpose (see Introduction). By far the tool most com-
monly used for phylogenetic footprinting is CLUSTALW
(Thompson et al. 1994), a tree-based global multiple align-
ment program. We also consider DIALIGN (Morgenstern
1999), a segment-based multiple alignment program, and
MEME (Bailey and Elkan 1995), a motif-finding technique
based on expectation maximization.

The output of both CLUSTALW and DIALIGN is a global
multiple alignment of the input sequences. Given a correct
multiple alignment, one can easily identify conserved motifs,
for example, by computing the parsimony score of each col-
umn of the alignment and outputting motifs with low overall
parsimony score. One could also allow for motif losses and
compare the score of a motif to its evolutionary span, as we
propose in this paper. (Note that neither CLUSTALW nor DI-
ALIGN currently uses either of these approaches.) However,
correctly aligning a set of diverged sequences is a difficult task.
For example, CLUSTALW produces very good alignments for
closely related sequences (e.g., those from the insulin family
and from IL-3, which all come from mammals), but most
often incorrectly aligns more highly diverged sequences, thus
failing to show the conservation of some motifs. DIALIGN
produces better alignments for the purpose of phylogenetic
footprinting, because it starts by identifying short conserved
regions and then incorporates them into a multiple align-
ment. In fact, for most data sets, DIALIGN correctly aligned
most of the conserved motifs found by FootPrinter (and
vice versa: Most conserved regions present in the alignment of
DIALIGN were reported by FootPrinter). However, in the
metallothionein data set, several conserved sites were mis-
aligned by DIALIGN. In general, we believe that for large data
sets containing weakly conserved motifs, or motifs present in
a small subset of the input sequences, the advantage of Foot-
Printer over DIALIGN will become clearer.

MEME is a motif-finding program that searches for motifs
with high information content, but makes no use of phylo-
genetic information. Moreover, MEME does not consider the
position at which motifs are found in each sequence, so that
the motifs reported may occur in a different order in each
input sequence (see Methods). Nonetheless, the majority of
the motifs reported in this paper are also found by MEME. This
is probably because these motifs are very highly conserved,
which makes them relatively easy to identify. A notable ex-
ception is again the large metallothionein gene family, for
which MEME fails to find many of the motifs that occur in
small subsets of the input sequences.

From the point of view of running time, DIALIGN is
about 10 times slower than FootPrinter on large data sets,
with motif lengths and scores as in Table 1, whereas CLUSTALW
and MEME run roughly as fast as FootPrinter.

A more quantitative analysis of the accuracy of each
method on biological data such as that considered here is
problematic, as there is no definitive classification of false
positives and false negatives. We are currently conducting

such comparative experiments on simulated data. Please refer
to Blanchette et al. (2002) for more details on how the meth-
ods compare on biological sequences.

Phylogenetic Information
Throughout this paper, we assume that we are given the cor-
rect phylogenetic relationship among the sequences under
study. It is the use of this phylogenetic information that al-
lows FootPrinter to accurately identify regions of interest.
The phylogenetic tree should represent the evolutionary his-
tory of the sequences considered, which may be different
from that of the species they come from, because of lateral
gene transfers. In vertebrates, such events appear relatively
rare, and we thus used the species tree as an estimate of the
sequence tree. When such a trusted tree is unavailable, one
could infer the phylogenetic tree directly from the sequences
considered or from their neighboring coding regions. (This is
what Binz and Kägi [1997] did in the case of the metallothio-
nein gene family, and this is what we did for the insulin gene
family.) In cases in which the correct topology of the phylo-
genetic tree remains unclear, an unresolved multifurcating
tree can be used.

The correctness of the parsimony scores computed obvi-
ously depends on that of the tree. Using a completely incor-
rect tree may greatly affect the accuracy of FootPrinter.
However, using a tree with a small number of topological
errors should still yield better results not than using a tree at
all.

Improving Accuracy
The predictions of FootPrinter could be made more accu-
rate by injecting more prior knowledge as to what interesting
solutions ought to look like. For example, the order and ori-
entation in which regulatory elements occur in a sequence
should be the same in all species, unless large-scale genome
rearrangements occurred. Using this information may allow
us to reject spurious motifs with order that is not consistent
across species. Regulatory elements often occur several times
in the same promoter (e.g., some metallothionein promoters
contain up to 15 imperfect copies of MREs). Incorporating
this type of information may allow us to detect regulatory
element that are not sufficiently conserved to be reported by
FootPrinter but that occur in several copies in each input
sequence, thus boosting the statistical significance of the mo-
tif. Finally, if one had some idea about the transcription fac-
tors potentially regulating a given gene, one may want to
allow motifs that look like potential binding sites for those
factors to have slightly larger parsimony scores.

METHODS

Algorithm
For the sake of clarity, we present here the simplest (but least
efficient) version of the algorithm of FootPrinter, and we
also assume that the only mutations allowed are point sub-
stitutions. The interested reader can find the extension to
handle more general mutations, and the details of optimiza-
tions that make the algorithm truly practical, in a companion
paper (Blanchette et al. 2002). The basic method is a dynamic
programming algorithm similar to one presented by Sankoff
and Rousseau (1975) for the computation of the parsimony
score of a fixed set of aligned sequences (whereas what we
seek is the most parsimonious choice of k-mer from each of
the input sequences).

The inputs to the algorithm are n homologous sequences
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S1, S2, �, Sn; the phylogenetic tree T relating them; the length
k of the motifs sought; and the maximum parsimony score d
allowed. The algorithm proceeds from the leaves of T to its
root. At each node u of T, it computes a table Wu containing
4k entries, one for each possible k-mer. For each such k-mer s,
let Wu[s] be the best parsimony score that can be achieved for
the subtree of T rooted at u, if the ancestral sequence at u was
forced to be s. Let the set of children of u be denoted C(u); let
h(s,t) be the number of positions at which k-mers s and t
differ; and let � = {A,C,G,T}. The table Wu is computed accord-
ing to the following recurrence:

Wu[s] = 0, if u is a leaf and s is a substring of Su,
+�, if u is a leaf and s is not a substring of Su,

�
v ∈ C�u�

min
t ∈ �k

Wv�t� + h�s,t� if u is not a leaf.

A straightforward implementation of this recurrence com-
putes all W tables in time O(nk(42k + l)), where l is the average
length of the input sequences S1, S2, �, Sn. The main term
nk · 42k in this expression comes from the fact that, for each of
the O(n) edges (u,v) of T, for each of the 4k possible values of
s labeling u, and for each of the 4k values of t labeling v, the
recurrence calls for the computation of h(s,t).

If r is the root of T, each entry of Wr that is at most d gives
rise to one or more solutions to be reported. For each such
entry, the corresponding k-mers of the n input sequences can
be recovered by retracing the recurrence from the root back to
the leaves. By maintaining appropriate pointers that reflect
the computation of the W tables, the set of solutions can be
recovered in time linear in its size. In nonrepetitive biological
sequences, the number of solutions is usually small (when d is
small), and the time to enumerate them is negligible com-
pared to the time to compute the W tables.

The 42k factor in the complexity of the algorithm as de-
scribed makes it impractical to use for most interesting values
of k. In the companion paper (Blanchette et al. 2002), we
show how various algorithmic optimizations can reduce the
running time to O(nk min (l(3k)d/2, 4k + l)), which makes it
quite practical for the type of data sets given in Results. Notice
that the running time is proportional to nl, which is the total
length of all the input sequences. This means that the perfor-
mance of the algorithm’s scales, as well as the number of spe-
cies or length of regulatory region provided, is increased.

Although the running time is exponential in either d/2
or k (depending on which of l(3k)d/2 or 4k + l is the lesser), in
practice both of these parameters are quite small: Typical val-
ues in our experiments were k = 10 and d = 3. Using a desktop
workstation, a typical run of the algorithm on a data set of
n = 10 sequences of length l = 700 each might take 30 seconds
if only substitutions are allowed or a few minutes if insertions
and deletions are allowed as well.

Handling Motif Losses
Here we discuss the generalization of the phylogenetic foot-
printing algorithm to identify motifs that may be missing (or
highly mutated) in some of the input sequences. For this
problem to make sense, there must be a way to compare two
solutions containing motifs from different subsets of species.
To do so, consider the total amount of evolution (measured,
e.g., in millions of years) that the motif has survived. Motifs
that have resisted a large amount of evolution are more likely
to be interesting than those that span a short time.

To be able to estimate the amount of evolution spanned
by a set of species, the algorithm must be given not only the
phylogenetic tree T that relates the species, but also the length
of each of its branches. We estimated branch lengths by com-

puting pairwise alignment scores for the input sequences and
using the Fitch-Margoliash algorithm (Fitch and Margoliash
1967) from the PHYLIP package (Felsenstein 1989) to find the
branch lengths that make the tree distances match the pair-
wise distances as closely as possible. Estimating branch
lengths is a notoriously difficult problem, and our estimates
may be inaccurate. However, our experience indicates that
the quality of the results obtained by the method does not
depend very strongly on the accuracy of these estimates.

The algorithm identifies motifs that have small parsi-
mony score but span a large part of T. More precisely, the
algorithm solves the following problem. In addition to the
inputs provided to the basic phylogenetic footprinting algo-
rithm (described above), the user also provides thresholds �0,
�1, �, �d. The problem is to find all sets of k-mers, one from
each of the leaves i1, i2, �, im, where {i1, i2, �, im} is any subset
of the n leaves of T, such that the parsimony score P of this set
of k-mers on the subtree induced by the leaves i1, i2, �, im is at
most d, and such that the subtree induced by the leaves i1, i2,
�, im has total branch length at least �P. For example, the user
can ask to see all motifs with parsimony score 0 that span at
least 200 Myrs of T (i.e., �0 = 200 Myrs), plus those with score
1 that span at least 350 Myrs (i.e., �1 = 350 Myrs), plus those
with score 2 that span at least 500 Myrs (i.e., �2 = 500 Myrs).

The algorithm that solves this generalized problem is
very similar in spirit to the dynamic programming algorithm
described above. It is a few times slower than the algorithm
that does not allow losses, but it produces much more accu-
rate results. This is the algorithm that was used to identify the
motifs reported in Table 1. The interested reader can find
further details of the algorithm in Blanchette et al. (2002).

Other Useful Parameters
FootPrinter has a number of options that help to find more
actual binding sites, although leaving out spurious hits. We
briefly discuss some of them here. First, notice that in our
formulation of the phylogenetic footprinting problem, the
position at which a motif is found in each sequence is ig-
nored. This is a typical feature of local alignment methods, to
which our approach belongs. However, in some circum-
stances, it is desirable to penalize motifs with positions in the
set of homologous sequences that vary too much and are thus
unlikely to be instances of a single conserved binding site.
There is a natural way to incorporate the notion of position
into a parsimony score: We simply augment the definition of
motif (which until now was just a k-mer) with a number that
indicates the approximate position of the k-mer in the se-
quence. For this study, we usually divided each input se-
quence into 10 equal-sized regions and assigned a cost of one
mutation for a motif to move to an adjacent region. In fact, to
avoid inaccuracies when a motif occurs near a region bound-
ary, we view each motif as also occurring in the two adjacent
regions. This approach of dividing the sequences into regions
only makes sense if we believe that corresponding regions of
each input sequence are approximately homologous. For up-
stream sequences, this may be a reasonable assumption. How-
ever, for introns we did not use this option, as the variation in
intron size makes it unclear which portions are homologous.

In our original definition of the phylogenetic footprint-
ing problem allowing for regulatory element losses, there is
no cost associated with losing a regulatory element, except
that the motif spans a smaller part of the tree. This sometimes
leads to undesirable situations, in which FootPrinter finds
a motif that seems well conserved in two very distantly related
species X and Y (thus spanning a large part of the tree) but
that appears to have been lost independently in all phyla
branching between X and Y. These multiple independent
losses are quite unlikely in evolution, and one would like to
penalize motifs that have been lost along too many branches.
Once again this fits very nicely into our parsimony frame-
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work. We do so by assigning a cost to losing a motif along a
given branch. For the results reported in this paper, we equate
this cost to one substitution. However, one could also assign
different loss costs along different branches, so that losses
along long branches cost less than those along short
branches. In the case of gene families, one may want to assign
a smaller cost to motifs lost on branches that follow duplica-
tion events, as regulatory elements may be likely to be lost at
these times.

Finally, it is often useful to restrict the number of muta-
tions along any given branch of the phylogenetic tree. For
example, in cases in which a motif is very well conserved in
some subset of the sequences, this avoids finding spurious
poorly conserved instances of the motif in sequences that
actually do not contain the true binding site. Limiting the
number of mutations per branch also has a very positive effect
on the running time of the algorithm.

Statistical Significance
Any set of sequences contains some best conserved motif, but
that does not mean that this motif was actually under selec-
tive pressure. To make sure that the motifs reported have a
mutation rate significantly less than that of the surrounding
nonfunctional sequence, we generated a set of random se-
quences with approximately the same evolutionary history as
the input sequences. This set of sequences was generated by
simulating evolution over the given phylogenetic tree with
the inferred branch lengths. These simulated sequences thus
mimic the real input sequences, except that the mutation rate
is the same at all sites, and thus we should not find any un-
usually well conserved motifs in them. In this paper, a motif
M with parsimony score s over a tree of size �s was reported
only if the probability of finding such a motif (or one better
conserved) in simulated sequences is <5% (for more details on
measuring statistical significance, see Blanchette et al. 2002).
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