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Peptidoglycan muropeptides, potent proinflammatory components, are amidated in Staphylococcus aureus for
unknown reasons. To study whether this modification may modulate proinflammatory capacity, cytokine
induction by isogenic S. aureus strains with different amidation levels and by synthetic amidated/nonamidated
muramyldipeptides was evaluated. However, amidation did not significantly affect cytokine induction. This
finding contributes to defining peptidoglycan receptor specificities and indicates that further rationales for
muropeptide amidation have to be considered.

Staphylococcus aureus is a frequent constituent of human
nasal microflora and a major cause of severe endogenous in-
fections (11). The staphylococcal cell wall determines several
key aspects of the infection process, such as adherence (11, 28),
immune recognition (13), and resistance to host defenses (21,
22). While many adhesive surface proteins have been investi-
gated (12), the structure, function, and variability of nonpro-
teinaceous polymers, such as peptidoglycan (PG) or teichoic
acids, have remained parts of a neglected field of research. S.
aureus is known to modify the canonical PG structure by O
acetylation of the glycan strand and by amidation of the �-car-
boxyl group of the D-glutamate (D-Glu) residue in muropep-
tides, resulting in the formation of D-isoglutamine (16, 29).
While O acetylation confers lysozyme resistance (3), the pri-
mary role of D-Glu amidation has remained unclear. Never-
theless, the latter modification is known to affect the level of
methicillin resistance (4, 17) and to contribute to vancomycin
susceptibility in S. aureus (8). The amino group for D-Glu
amidation in S. aureus muropeptides is most probably derived
from free glutamine (17, 23). However, the responsible trans-
amidase enzyme has not yet been identified. Gustafson et al.
described a femC mutant with 48% decreased muropeptide
amidation (17, 26). The femC mutant has a disrupted glnR gene
encoding the regulator of the glutamine synthetase (Fig. 1A),
which results in reduced glutamine synthetase activity. As a
consequence of lower amounts of the amino group donor,
muropeptide amidation is reduced in this mutant (17).

PG has potent proinflammatory properties (5). It is sensed
by the human innate immune system via NOD1 or NOD2
proteins (15, 18). An additional role of the TLR2 receptor in
PG sensing has been described previously (10) but remains a

matter of debate (27). The minimal structure required for
NOD1 recognition is a dipeptide consisting of D-Glu and
meso-diaminopimelate (mesoDAP), which is mainly produced
by gram-negative bacteria (14, 15). D-Glu amidation (leading
to D-isoglutamine) strongly impairs PG recognition by NOD1
(7), and the amidation of mesoDAP completely abrogates the
ability of NOD1 to detect PG (15). NOD2 has a different
substrate specificity as it requires a muramyldipeptide (MDP)
composed of N-acetylmuramic acid, L-alanine, and D-Glu (Fig.
1B) (19, 27). S. aureus PG is recognized by NOD2 but not by
NOD1 since it contains L-lysine instead of meso-DAP (7, 15).
However, the relevance of D-Glu amidation for the efficiency
of NOD2 recognition has remained unclear. MDP amidation
has a profound impact on the physicochemical properties of
the molecule since it removes the negative charge from the
D-Glu �-carboxyl group (Fig. 1B). Accordingly, the net
charge of MDP changes from �2 to �1 at physiological pH
as a result of D-Glu amidation. In an attempt to study
whether this structural difference has an impact on proin-
flammatory activity, we evaluated the tumor necrosis factor
alpha (TNF-�)-stimulating capacities of S. aureus strains
with different levels of PG amidation and of synthetic MDPs
with and without amidation.

Proinflammatory capacities of S. aureus wild type and femC
mutant. S. aureus NCTC8325 wild type and the isogenic femC
mutant (17) were grown overnight in glutamine-deficient,
lipopolysaccharide-free RPMI 1640 medium (Sigma), har-
vested, and washed twice in phosphate-buffered saline (PBS).
The mutant grew slower than the wild type did, but both strains
reached similar bacterial densities. After heat inactivation at
90°C for 15 min, bacteria were washed again with PBS and
adjusted to 109 bacteria/ml by using a Neubauer chamber.
Endotoxin contamination of these preparations was below the
detection limit of 10 pg/ml of the Limulus amoebocyte lysate
test (Cambrex). A total of 360 �l whole blood from healthy
volunteers was incubated with 40 �l of PBS containing increas-
ing numbers of bacteria at 37°C for 8 h. Subsequently, samples
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Strasse 6, 72076 Tübingen, Germany. Phone: (49)-7071-2981515. Fax:
(49)-7071-293435. E-mail: andreas.peschel@uni-tuebingen.de.

� Published ahead of print on 29 January 2007.

2084



were centrifuged and TNF-� levels in the supernatant were
determined by enzyme-linked immunosorbent assay (R&D
Systems). Both bacterial strains stimulated TNF-� production
in a dose-dependent fashion (Fig. 2A). However, there was no
significant difference in TNF-� levels induced by wild-type or
femC mutant bacteria, suggesting that the modulation of mu-
ropeptide structure by D-Glu amidation may not affect the
inflammatory activity of S. aureus cells.

In an attempt to obtain a mutant strain that completely lacks
D-Glu amidation and might cause a stronger phenotypic dif-
ference, we deleted the entire operon composed of glutamine
synthetase (glnA) and a corresponding regulator gene (glnR)
(Fig. 1A). However, the resulting mutant grew only upon sup-
plementation with significant amounts of glutamine and did
not have any advantage relative to the femC mutant (data not
shown).

Proinflammatory capacities of synthetic MDPs with or with-
out D-Glu amidation. In order to study whether S. aureus
MDPs with or without D-Glu amidation differ in their levels of
proinflammatory activity when administered in the absence of
other bacterial molecules, we chemically synthesized a nonami-
dated MDP with a D-Glu residue at position 2 of the peptide
strand MDP(E), which is not commercially available. Synthesis
of the acetylmuramyl-L-alanyl-D-glutamyl peptide was accom-
plished using Fmoc/tBu solid-phase peptide synthesis meth-
odology (1) on acid-sensitive chlorotrityl chloride resin (2).
Briefly, to 0.5 g 2-chlorotrityl chloride resin (0.6 mmol chlo-
ride/g resin) in 5 ml dichloromethane, 1 mmol of Fmoc-D-
Glu(OBut)-OH and 2.5 mmol diisopropylethylamine (DIPEA) in
4 ml dichloromethane were added. After vigorous shaking for
60 min, the resin was filtered off, washed twice with dimethyl-
formamide (DMF), and deactivated with a mixture of dichlo-
romethane-methanol-DIPEA (80:15:5) for 15 min. After wash-
ing with DMF, the Fmoc group was deprotected with 5 ml of
20% piperidine in DMF for 5 min. After intensive washing
with DMF, isopropanol, and diethyl ether, 1 mmol Fmoc-Ala-
OH, 1 mmol diisoproyplcarbodiimide, and 1 mmol 1-hydroxy-
benzotriazole in 5 ml DMF were added and incubated for 60
min. Deprotection with piperidine and further coupling with
N-acetylmuramic acid yielded the protected peptide. Removal
of the side chain-protecting group and detachment from the
resin were accomplished by treatment with trifluoroacetic acid-
water-phenol (90:5:5). The peptide was precipitated by the
addition of diethyl ether and lyophilized. The crude peptide
was purified by preparative, reversed-phase, high-performance
liquid chromatography on a Reprosil C8 column (150 � 10
mm) using a flat gradient from 100% A to 40% B in 40 min (A,
0.055% trifluoroacetic acid; B, 80% acetonitrile-0.05% trifluo-
roacetic acid) while monitoring absorbance at 214 nm. Ap-
propriate fractions were lyophilized, and the identity of the
product was confirmed by electrospray ionization mass spec-
trometry (ESI-MS). Our synthetic MDP(E) and the amidated

FIG. 1. The S. aureus glutamine synthetase operon, with the insertion site of Tn551 in the femC mutant and the deleted region in the glnRA
mutant (A), and structures of amidated MDP(iQ) and nonamidated MDP(E) (B).

FIG. 2. TNF-� induction by S. aureus strains (A) and synthetic
MDPs (B). (A) Increasing numbers of S. aureus wild-type (gray bars)
or femC mutant bacteria (white bars) were incubated with whole hu-
man blood, and TNF-� levels were determined. (B) MDP(iQ) (gray
bars) or MDP(E) (white bars) was incubated with whole human blood,
and TNF-� levels were determined. The means and standard errors of
the means (error bars) of four independent experiments, run in dupli-
cates, are shown. The small differences between the strains in panel A
are not significant as calculated by Student’s t test.
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MDP(iQ) purchased from Bachem were found to have the
expected mass difference of 1 (Fig. 3).

MDP(E) and MDP(iQ) were dissolved in PBS. Again, the
endotoxin contamination of the preparations was below the
detection limit. Forty microliters of PBS containing increasing
concentrations of these substances was incubated with 360 �l
whole human blood at 37°C for 8 h to stimulate TNF-� pro-
duction. TNF-� was quantified as described above. Both com-
pounds stimulated TNF-� production in a dose-dependent
manner. However, amidated and nonamidated MDP did not
differ in their potency levels (Fig. 2B), which is in accordance
with the equal proinflammatory activities of S. aureus wild type
and the femC mutant.

Concluding comments. The inflammation-eliciting capacity
of S. aureus plays a crucial role in the host response to infec-
tions and contributes to life-threatening complications in sep-
ticemia (5, 13). However, the diversity, relative importance,
and variability of proinflammatory staphylococcal molecules,
such as peptidoglycan, lipopeptides, lipoteichoic acid, formy-
lated peptides, and others have remained uncertain. While the
relative importance of lipoproteins and formylated peptides
has recently been confirmed using defined mutants lacking the
corresponding classes of molecules (6, 9, 25), such a strategy is
impossible for PG, which is essential for bacterial viability.
However, bacterial mutants with altered PG structures might
help to investigate the relative role of PG, along with the
modulation of PG structure. This study demonstrates that the
amidation of muropeptides does not influence the capacity of
S. aureus or its MDP to stimulate the production of TNF-�,
which contributes to our understanding of the specificity of
PG-sensing host receptors. Why S. aureus amidates its mu-
ropeptides remains an open question. A possible reason may
be the concomitant alteration of the net charge in the S. aureus
cell envelope, which may play a role in the maintenance and
turnover of the bacterial cell wall. Accordingly, muropeptide
amidation has been implicated in PG cross-linking efficiency
(20, 24). Identifying the muropeptide amidase gene would en-
able the construction of an S. aureus mutant lacking any mu-
ropeptide amidation without affecting the intracellular glu-
tamine pool. Such an approach represents an important
challenge for future studies.
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deficient in lipidation of prelipoproteins is attenuated in growth and immune
activation. Infect. Immun. 73:2411–2423.

26. Strandén, A. M., M. Roos, and B. Berger-Bachi. 1996. Glutamine synthetase
and heteroresistance in methicillin-resistant Staphylococcus aureus. Microb.
Drug Resist. 2:201–207.

27. Travassos, L. H., S. E. Girardin, D. J. Philpott, D. Blanot, M. A. Nahori, C.
Werts, and I. G. Boneca. 2004. Toll-like receptor 2-dependent bacterial
sensing does not occur via peptidoglycan recognition. EMBO Rep. 5:1000–
1006.

28. Weidenmaier, C., J. F. Kokai-Kun, S. A. Kristian, T. Chanturyia, H. Kalbacher,
M. Gross, G. Nicholson, B. Neumeister, J. J. Mond, and A. Peschel. 2004.
Role of teichoic acids in Staphylococcus aureus nasal colonization, a major
risk factor in nosocomial infections. Nat. Med. 10:243–245.

29. Wilkinson, B. J. 1997. Biology, p. 1–38. In K. B. Crossley and G. L. Archer
(ed.), The staphylococci in human disease. Churchill Livingstone, New
York, NY.

Editor: J. N. Weiser

VOL. 75, 2007 NOTES 2087


