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Microsporidians are a group of emerging pathogens typically associated with chronic diarrhea in immuno-
compromised individuals. The number of reports of infections with these organisms and the disseminated
pathology is growing as diagnostic tools become more readily available. However, little is known about the
innate immune response induced by and generated against these parasites. Using a coculture chemotaxis
system, primary human macrophages were infected with Encephalitozoon cuniculi or Encephalitozoon intestinalis,
and the recruitment of naı̈ve monocytes was monitored. Encephalitozoon spp. induced an average threefold
increase in migration of naı̈ve cells 48 h postinfection, which corresponded to optimal infection of monocyte-
derived-macrophages. A limited microarray analysis of infected macrophages revealed several chemokines
involved in the inflammatory responses whose expression was upregulated, including CCL1, CCL2, CCL3,
CCL4, CCL7, CCL15, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, and CXCL8. The levels of 6 of 11 chemokines
also present in the microarray were confirmed to be elevated by protein profiling. Kinetic studies confirmed
that secreted CCL2, CCL3, and CCL4 were expressed as early as 6 h postinfection, with peak expression at 12
to 24 h and expression remaining until 48 h postinfection. Neutralization of these chemokines, specifically
CCL4, significantly reduced the number of migrating cells in vitro, indicating their role in the induction of
monocyte migration. This mechanism of recruitment not only supports the evidence that in vivo cellular
infiltration occurs but also provides new hosts for the parasites, which escape macrophages by rupturing the
host cell. To our knowledge, this is the first documentation that chemokine production is induced by micro-
sporidian infections in human macrophages.

Microsporidiosis is a disease that is caused by an obligate
intracellular eukaryotic parasite and has gained recognition as
an opportunistic infection in AIDS patients, commonly causing
chronic diarrhea leading to malabsorption of nutrients and
wasting (23, 32). The true extent of microsporidiosis is difficult
to determine, because it is often underreported due to a lack of
proper facilities to diagnose this disease (13). Epidemiological
reports indicate that anywhere from 5 to 50% (19) of patients
with chronic diarrhea are positive for microsporidians, most
notably Enterocytozoon bieneusi and Encephalitozoon spp. (7).
Based on projections that in the course of human immunode-
ficiency virus (HIV) AIDS about 93% of individuals have at
least one bout of chronic diarrhea (10), these pathogens could
conservatively account for chronic diarrhea in approximately
1.3 to 13.5 million people suffering from a life-threatening loss
of nutrients and liquids in the sub-Saharan region alone. (The
number of cases of microsporidiosis was estimated using pre-
viously published reports [19] of the incidence [5 to 50%] of
infection in individuals who have chronic diarrhea and are HIV
positive. An estimated 93% of AIDS patients develop chronic
diarrhea [10] in regions, such as sub-Saharan Africa, where
water treatment and highly active antiretroviral therapy are
limited. According to the 2005 UNAIDS/WHO AIDS report,
29 million individuals are infected with HIV in this region.)

More recently, cases of microsporidiosis in patients who
received immunosuppressive therapy (2, 12, 14) or in immu-
nocompetent individuals (26) who presented with symptoms of

chronic diarrhea have been described. Although the most com-
mon symptoms of the disease are enteric, there have been
many reports of more severe disseminated diseases, such as
keratoconjunctivitis, sinusitis, tracheobronchitis, encephalitis,
interstitial nephritis, hepatitis, cholecystitis, osteomyelitis, and
myositis (7, 22).

Microsporidians are ubiquitous in nature and are known to
infect a variety of vertebrate and invertebrate organisms (4, 6,
38, 40). Although these organisms were once classified as pro-
tozoans, new evidence based on phylogenetic analysis suggests
that they are more closely related to fungi (4, 11, 39). Of the
more than 1,200 species of microsporidians, only 14 have been
reported to infect humans (4). Microsporidian infections are
believed to occur when a spore in contaminated water or food
is ingested (4). Infections of epithelial and endothelial cells
and macrophages are common (19). Classically, cellular inva-
sion occurs when a spore encounters a host cell and everts a
polar tube, which penetrates the cell membrane of the host cell
and injects the sporoplasm. Alternatively, spores can be inter-
nalized through phagocytosis or endocytosis (8). Further pro-
liferation and spore production occur through merogony and
sporogony within a parasitophorous vacuole, followed by lysis
of the host cell and release of mature spores (9).

While most studies of microsporidians have focused on their
genomes and life cycles (7), there are limited data on the host
responses to these opportunistic pathogens and especially their
roles in human macrophage infection and disseminated disease
(8, 30). Some reports indicate that macrophages/monocytes
are the source of the disseminated pathogen (33). In individ-
uals with multifocal organ involvement, infiltrates of infected
macrophages are evident in lesions, microabscesses, and gran-
ulomas (37). In animal models, injection of infectious spores
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results in a peritoneal infiltrate with predominately monocytes/
macrophages, which is followed by disappearance of these cells
and presumably spread to the lymph nodes and other tissues
(28, 36). Determining which chemokines are present is critical
in the development of therapeutic strategies that prevent dis-
semination of the pathogen and the resulting disease. Based on
previous reports, we investigated two species of microsporid-
ians that are known to cause disseminated diseases, Encepha-
litozoon cuniculi and Encephalitozoon intestinalis, and defined
the production of a chemotactic gradient that is induced by
infection with these intracellular parasites. This paper provides
the first description of the innate immune response in dissem-
inating infections with regard to chemokines and provides a
foundation for describing the initial host reaction to these
pathogens involving human macrophages.

MATERIALS AND METHODS

Reagents and antibodies. Unless indicated otherwise, all tissue culture media
and plastic ware were purchased from VWR (West Chester, PA), all neutralizing
antibodies and protein array kits were purchased from R&D Systems (Minne-
apolis, MN), all enzyme-linked immunosorbent assay (ELISA) reagents were
purchased from Biosource (Invitrogen, Carlsbad, CA), and all gene microarray
materials were purchased from SuperArray Bioscience Corp. (Frederick, MD).

Cell culture. Peripheral blood mononuclear cells were isolated from buffy
coats from healthy donors (Our Lady of the Lake Regional Medical Center,
Baton Rouge, LA) by gradient centrifugation on lymphocyte separation media
(Cambrex). Monocyte-derived macrophages (MDM) were obtained by adher-
ence assays. Briefly, monocytes were plated in 75-cm2 flasks (1 � 107 monocytes),
six-well culture plates with cover glasses, or 24-well culture dishes (Greiner
Bio-One; Cellstar) (1 � 106 monocytes/ml) for 3 h in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 2 mM L-glutamine, 100 U/ml
penicillin, 100 �g/ml streptomycin, 0.1 �g/ml gentamicin, and 0.25 �g/ml am-
photericin B. Cells were stringently washed with phosphate-buffered saline to
remove nonadherent mononuclear cells and then allowed to differentiate for 7
days in complete medium with 10% fetal calf serum (FCS). Monocytes used as
target cells for recruitment in chemotaxis assays were isolated from mononuclear
cells by magnetic bead separation using a Dynal monocyte negative isolation kit
(Invitrogen) and resuspended in complete medium with 10% FCS.

Microsporidians. E. cuniculi III and E. intestinalis (a generous gift from
Elizabeth Didier, Tulane National Primate Research Center, Covington, LA)
were grown in a rabbit kidney cell line (ATCC CCL-37) and harvested from
tissue culture supernatants. Spores were washed once in phosphate-buffered
saline containing 0.2% Tween 20, resuspended in supplemented DMEM, and
counted with a hemacytometer (5). Some spores were inactivated by treatment
with a 10% bleach solution for 30 min and washed once with water. All spores
were used at a spore-to-MDM infection ratio of 5:1 (5 � 106 spores and 1 � 106

macrophages), unless indicated otherwise.
Microscopy. MDM adhering to cover glasses were monitored for spore uptake

by challenging them with either E. cuniculi or E. intestinalis spores labeled with
PKH26 fluorescent cell linker used according to the manufacturer’s instructions
(Sigma, St. Louis, MO) for various times at 37°C in 5% CO2. Cells were fixed in
10% formalin (Sigma) and labeled with PKH67 fluorescent cell linker (Sigma),
a general cell membrane label. Cover glasses were mounted in Prolong Gold
antifade reagent with 4�,6�-diamidino-2-phenylindole (DAPI) (Invitrogen) to
detect nuclear staining of MDM.

Microsporidian proliferation and infection were monitored using the bro-
modeoxyuridine (BrdU) assay system (Invitrogen). MDM were challenged with
spores for 3 days and fixed with 4% paraformaldehyde. Twenty-four hours prior
to fixation, 100 �M BrdU was added to each well. Cells were washed with 1%
Triton X-100 and treated with 1 N HCl for 10 min on ice, with 2 N HCl for 10
min at room temperature, and with 2 N HCl for 20 min at 37°C. Cells were
neutralized in 0.1 M borate buffer and washed with 1% Triton X-100. Coverslips
were incubated on ice with a 1/50 dilution of anti-BrdU (Invitrogen) in 0.5%
bovine serum albumin and 1% Triton X-100 for 90 min. The coverslips were
washed with 1% Triton X-100 and mounted in Prolong Gold antifade reagent
(Invitrogen).

Cells were viewed using a Leica DMI 6000 B inverted fluorescence micro-
scope, and images were captured and analyzed with a Leica DFX300 FX charge-

coupled device camera and the Image Pro Plus v5.1 software (MediaCybernetics,
Silver Spring, MD).

Chemotaxis assay. Coculture chemotaxis assays were performed as previously
described (15). Briefly, 7-day-old MDM were infected with E. cuniculi or E.
intestinalis for 24 h at 37°C in 5% CO2. Sterile 3-�m polycarbonate transwell
inserts (Corning Costar) were placed in 24-well plates that contained infected
MDM. Target monocytes were labeled with a red fluorescent cell linker (Sigma)
by following the manufacturer’s instructions, added to the top of the transwell
inserts (1 � 106 cells), and cocultured with infected MDM for 24 h at 37°C in 5%
CO2. After this coculture step, supernatants were removed, and cells were fixed
with 10% formalin. For some of the cultures, supernatants were removed and
collected after 24 h of infection and then replaced with complete DMEM with
10% FCS containing one of the following neutralization antibodies: anti-CCL2
(0.9 �g/ml), anti-CCL3 (0.5 �g/ml), anti-CCL4 (0.3 �g/ml), or mouse immuno-
globulin G1/immunoglobulin G2b (1.0 �g/ml). The migration of fluorescently
labeled target cells was observed and quantified using an inverted fluorescence
microscope (Leica DMI 6000 B) and the Image Pro Plus v5.1 software (Media-
cybernetics). Each experiment was performed in duplicate, and 10 fields of view
were counted for each condition. Ten donors were analyzed for infection with E.
cuniculi, and three donors were analyzed for infection with E. intestinalis. Fold
changes in monocyte recruitment were calculated by dividing the number of cells
migrating under the experimental conditions by the number of cells in the
untreated wells.

Focused microarray. All focused microarray analyses were performed accord-
ing to the manufacturer’s instructions (R&D Systems). Total RNA was isolated
from MDM that were infected for 6 h with E. cuniculi and were grown in 75-cm2

flasks using a QIAGEN RNeasy mini kit (Valencia, CA); then the RNA was
quantified with a NanoDrop ND-1000 spectrophotometer, and the quality was
assessed with an Experion automated electrophoresis system (Bio-Rad). Total
RNA was amplified and labeled with biotin-16-UTP (Roche Applied Science)
using a TrueLabeling-AMP 2.0 kit (SuperArray). Amplified cRNA was quanti-
fied again and equal amounts of cRNA from three donors was pooled. Pools of
cRNAs were hybridized to a chemokine and receptor Oligo GEArray (OHS-022)
overnight in a hybridization oven at 60°C. Expressed genes were detected
using a CDP-Star chemiluminescence kit (SuperArray), and images were
obtained using the Bio-Rad Gel Doc 2000 system and Quantity One software
(Bio-Rad). The data were analyzed with the GEArray expression analysis
suite (SuperArray). All data were normalized to data for the glyceraldehyde-
3-phosphate dehydrogenase and �-actin housekeeping genes and background
corrected using blank values. Fold changes in gene expression are expressed
as the means of two experiments.

Focused protein array. All focused protein array analyses were performed
according to the manufacturer’s instructions. Supernatants from overnight infec-
tions with E. cuniculi were grouped by using pools from six donors and incubated
overnight with human cytokine array panel A (R&D Systems). Horseradish
peroxidase substrate (Bio-Rad) was used to detect protein expression, and data
were captured by exposure to Kodak BioMax Light film. Arrays were scanned
into a computer, and optical density measurements were obtained with the
Image Pro Plus v 5.1 software (Mediacybernetics). The data are expressed below
as the mean fold changes for two experiments.

ELISA. Supernatants were collected from MDM cultures at different times
after infection with E. cuniculi or E. intestinalis, and CCL2, CCL3, and CCL4
chemokine production was analyzed by ELISA. Samples were assayed in dupli-
cate.

Statistical analysis. Student’s paired two-tailed t test was used. P values of
�0.05 were considered significant. Analyses were performed using the InStat
software (GraphPad).

RESULTS

Infection of primary human macrophages with Encephalito-
zoon spp. recruits monocytes in vitro. To evaluate the host
response to the initial spore entry, experiments were con-
ducted to determine the proper kinetics for obtaining cultures
of primary macrophages in which the majority of cells had
visible vacuoles containing microsporidians. MDM grown on
cover glasses were challenged with labeled spores (red) and
fixed in 10% buffered formalin at various times. Host cells were
labeled with a green membrane stain and a blue nuclear stain.
Using fluorescence microscopy, the cells positive for spores in
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10 consecutive fields were counted. In agreement with the
kinetics reported previously (9), it was established that more
than 50% of cells had perinuclear vacuoles containing spores
between 24 and 48 h postinfection (Fig. 1A). Distinct vacuoles
containing labeled spores could be readily observed by 48 h
postinfection (Fig. 1B). To determine if spore uptake resulted
in microsporidian proliferation and productive infection, a

BrdU assay was performed. Since MDM are terminally differ-
entiated, only replicating meronts incorporated the BrdU nu-
cleotide. At 72 h postinfection, approximately 27% of the cells
contained a perinuclear vacuole that stained positive for BrdU
(Fig. 1C).

To determine whether infection of macrophages by Encepha-
litozoon spp. induces recruitment of monocytes, a previously
described (15) coculture chemotaxis system was used to detect
a functional chemotactic gradient. Initial experiments were
conducted to determine the ratio of spores to MDM (2:1, 5:1,
and 10:1) needed to provide reproducible infection rates and
immune responses. An infection ratio of 5:1 gave consistent
responses for all donors and was used in all experiments de-
scribed here (Fig. 2A). The fluorescently labeled target cells in
the transwell system allowed the times of optimal cell migra-
tion to be monitored. MDM were infected for 24 h before the
analysis was performed. After 24 h, the supernatants contain-
ing free spores were removed, and new media were added.
Monocytes were labeled and placed into the upper chamber of
a coculture plate. The cells were analyzed for an additional
24 h to determine the prime chemotaxis response. In the initial
experiments, the incubated cocultures were monitored at 30-
min intervals for up to 2 h, and subsequently they were mon-
itored at 1-h intervals up to 8 h and at 24 h (data not shown).
Incubation for 24 h yielded the optimal response. Infection of
macrophages with either E. cuniculi or E. intestinalis induced a
2.9-fold increase in monocyte migration after infection for 48 h
(Fig. 2B). To ensure that the observed monocyte migration was
induced by an MDM-generated gradient, only E. cuniculi
spores were added to some wells. Spores by themselves did not
induce migration (Fig. 2B).

Focused gene array reveals upregulation of chemokines and
receptors by E. cuniculi infection. To establish which chemo-
kines and receptors may be responsible for initiating monocytic
infiltration, a limited, pathway-focused gene array analysis of
chemokine signaling was performed to screen for possible can-

FIG. 1. Encephalitozoon spp. uptake and replication in macro-
phages. (A) MDM were challenged with labeled E. cuniculi spores
(red), and the number of cells having vacuoles containing spores was
determined in 10 fields at several times. By 48 h postchallenge a
majority of MDM were positive for parasitophorous vacuoles. (B) La-
beled spores in vacuoles that are perinuclear (blue) are indicated by
arrows (n � 3). (C) By 72 h postinfection, approximately 27% of MDM
were positive for vacuoles containing replicating microsporidians, as
indicated by the incorporation of BrdU (green) (n � 3). Replication
was not observed in MDM challenged with chlorine-treated spores.
DIC, Differential interference contrast microscopy.

FIG. 2. Encephalitozoon spp. infection of human macrophages in-
duces monocyte migration. (A) MDM were infected with E. cuniculi
spores for 24 h at spore-to-MDM ratios of 2:1, 5:1, and 10:1 to deter-
mine the optimal spore infection ratio for monocyte recruitment. At
24 h, labeled monocytes were added to transwell inserts and cocultured
with infected MDM for an additional 24 h. A spore-to-MDM ratio of
5:1 resulted in consistent infection rates with human donors. (B) In
coculture chemotaxis assays, infection of MDM with either E. cuniculi
or E. intestinalis resulted in 2.9-fold recruitment of naı̈ve monocytes.
There were no significant differences in the chemotactic response
between the Encephalitozoon spp. Wells that contained only spores
and no MDM did not induce a chemotactic response. The error bars
indicate standard errors of the means. An asterisk indicates that the
P value is �0.05.
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didates. Total RNA was isolated from MDM in medium or
from MDM infected with E. cuniculi for 6 h, converted to
biotinylated cRNA, and amplified. The amplified cRNA was
hybridized overnight and detected using a chemiluminescent
substrate.

Stimulation with E. cuniculi spores induced a twofold or
greater increase in expression of 40 of 128 genes. Among the
40 genes whose expression was increased were the genes en-
coding several key chemokines and chemokine receptors, as
shown in Tables 1. E. cuniculi infection of MDM elicited ex-
pression of several important chemokines which are capable of
recruiting the granulocytes (CXCL1, CXCL2, CXCL3,
CXCL5, and CXCL8), supporting the hypothesis that other
cell types are present at sites of infection (29, 37). However,
the vast majority of chemokines whose expression was in-
creased by microsporidian infection were found to recruit
monocytes, including CCL1, CCL2, CCL3, CCL4, CCL4L1,
CCL5, and CCL7. It is important to note that these chemo-
kines can also act on lymphocytes, such as TH1 cells, and
dendritic cells to influence their migration. Additionally, in-
creases in the levels of two vital monocyte receptors, CCR1
and CCR5, were also observed.

Proteomic profiling confirmed that levels of chemokines in-
creased after E. cuniculi infection. To verify the results ob-
tained with the DNA arrays, an analysis of a focused protein
array which included several, but not all, of the chemokines of
interest was performed. Equal amounts of supernatants from
MDM cultures from six donors infected for 6 h with E. cuniculi
were pooled and incubated overnight with human cytokine
array panel A. Detection using chemiluminescence revealed
significant increases (�2-fold) in the levels of only a few of the
proteins screened for by the limited array (Table 2). For both

CCL3 and CCL4, which are monocyte chemoattractants, there
was a �15.0-fold increase, and for CCL5, a potent chemokine
for lymphocytes, there was an approximately 25.0-fold in-
crease. Moderate increases (�1.5-fold) were observed for
CCL1, CCL2, and CXCL1. The modest increase in the level of
CXCL1 can be attributed to high levels in both the control and
treated arrays, and this was also true for CXCL8.

TABLE 1. Microsporidian infection increases chemokine and receptor gene expression

Chemokine or
receptor class Gene Common name of chemokine Accession no. Avg fold increase

in expressiona

C-C chemokines Ccl1 I-309 NM_002981 11.2
Ccl2 Monocyte chemoattractant protein 1 NM_002982 2.3
Ccl3 Macrophage inflammatory protein 1� NM_002983 2.3
Ccl4 Macrophage inflammatory protein 1� NM_002984 12.3
Ccl4l1 LAG-1 NM_207007 22.7
Ccl5 RANTES NM_002985 25.6
Ccl7 Monocyte chemoattractant protein 3 NM_006273 2.9
Ccl15 Macrophage inflammatory protein 1	 NM_004167 8.4
Ccl20 Macrophage inflammatory protein 3� NM_004591 6.2

C-X-C chemokines Cxcl1 Growth-regulated oncogene � NM_001511 20.7
Cxcl2 Growth-regulated oncogene � NM_002089 21.4
Cxcl3 Growth-regulated oncogene 
 NM_002090 5.2
Cxcl5 Epithelial cell-derived neutrophil-activating

protein 78
NM_002994 5.7

Cxcl8 Interleukin-8 NM_000584 9.9
Cxcl16 NM_022059 6.4

C-C receptors Ccr1 NM_001295 2.9
Ccr5 NM_000579 4.5
Ccr7 NM_001838 10.9
Ccr12 NM_003965 3.6

C-X-C receptor Cxcr4 NM_003467 2.2

a Average fold increases in MDM gene expression were determined at 6 h after infection with E. cuniculi. Each array experiment was performed with pooled cRNA
from three donors (n � 2).

TABLE 2. Proteome profiler array

Chemokine Common name

Avg fold
increase in
expression

Protein
arraya

Gene
arrayb

CCL1 I-309 1.6 11.2
CCL2 Monocyte chemoattractant protein 1 1.9 2.3
CCL3 Macrophage inflammatory protein 1� 16.4 2.3
CCL4 Macrophage inflammatory protein 1� 23.3 35.0e

CCL5 RANTES 25.2 25.6
CXCL1 Growth-regulated oncogene � 1.5 20.7
CXCL8c Interleukin-8 1.1 9.9
CXCL10c Interferon-inducible protein 10 0.9 1.0
CXCL11d I-TAC 1.0 1.0
CXCL12d Stromal cell-derived factor 1 1.0 1.0
G-CSFd Colony-stimulating factor 3 1.0 6.9

a The average fold increase was calculated by dividing the mean optical density
of infected MDM by the mean optical density of uninfected MDM (n � 2).

b Average fold increases in gene expression from Table 1.
c Equivalent levels of protein were detected under both experimental condi-

tions.
d Protein was not detected under either condition.
e Sum of the average fold increases for both CCL4 and CCL4L1 gene expres-

sion. These two protein products are represented by macrophage inflammatory
protein 1� on the protein array.
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Sustained chemotactic levels are different among Encepha-
litozoon spp. Because microsporidian dissemination is thought to
be associated with moncytic infiltrates, the data presented here
focus on the chemokines that primarily recruit monocytes,
namely, CCL2, CCL3, and CCL4. To establish the time at which
the levels of these selected chemokines are elevated during En-
cephalitozoon infections, kinetic data were obtained at 1, 3, 6, 12,
24, 48, and 72 h, and protein levels were determined by ELISA
(Fig. 3). Significant differences in the levels of all three chemo-
kines were detected at 6 h postinfection for infections with both E.
cuniculi and E. intestinalis. Infections with E. cuniculi resulted in
peak levels of CCL3 and CCL4 at 24 and 12 h, respectively,
followed by declines. The levels of these cytokines appeared to
undulate but remained moderately high after the initial peak.
CCL2 production continued to increase until 48 h and then ap-
peared to remain at the elevated level. Similarly, infection with E.

intestinalis resulted in peak levels of CCL3 and CCL4 at 24 h,
followed by decreases. The amount of CCL2 that was produced in
response to E. intestinalis peaked by 12 h, and the level remained
elevated up to 72 h. The levels of all the chemokines produced
were similar for the Encephalitozoon spp. throughout the kinetics
of infection.

Inhibiting expression of CCL4 significantly reduces the
number of cells responding to Encephalitozoon infection. To
evaluate whether any or all of the chemokines evaluated by
ELISA contributed significantly to the infiltration of monocytes in
the coculture system, MDM were infected for 24 h with E. cunic-
uli or E. intestinalis. The spent media were removed, and fresh
complete media containing antibodies against CCL2, CCL3, or
CCL4, a combination of the three antibodies, or an isotype-
matched control were added prior to introduction of the respond-
ing monocytes into the coculture chemotaxis system.

In E. cuniculi assays, neutralizing antibodies against CCL2
or CCL3 resulted in modest but significant decreases in the
levels of recruited monocytes (25% and 31%, respectively). In
contrast, inhibition of CCL4 markedly decreased the number
of migrating cells (49% decrease) (Fig. 4A). Similar results
were obtained in cultures infected with E. intestinalis (Fig. 4B),
in which antibodies against CCL2, CCL3, and CCL4 decreased
migration by 28%, 36%, and 50%, respectively. Furthermore,
E. cuniculi cultures inhibited with combinations of two anti-
bodies resulted in modest decreases in the levels of infiltrating
monocytes (38% with CCL2 and CCL3 and 45% with CCL2
and CCL4), while antibodies against CCL3 and CCL4 further
reduced recruitment by one-half. Cultures containing a mix-
ture of all three antibodies reduced the size of the population
of migrating cells by 58%.

DISCUSSION

Limited data concerning the innate immune response
against microsporidians are available. The number of reports
of microsporidian infections not only in immunocompromised
individuals but also in immunocompetent individuals is in-
creasing, indicating that the incidence of infection may be
higher than the incidence that is typically reported (1, 2, 12, 14,
26). Histological studies of microsporidiosis show that infil-
trates are often composed of several cell types, including

FIG. 3. Levels of CCL2, CCL3, and CCL4 increase over time.
ELISA confirmed the results of the gene array and protein array
analyses for CCL2, CCL3, and CCL4. Supernatants were collected
from cocultures of MDM and E. cuniculi or E. intestinalis at multiple
times during infection. Both Encephalitozoon spp. induced a strong
chemotactic profile after approximately 24 h of infection. After this,
the expression of both CCL3 (n � 6) and CCL4 (n � 6) began to
decline, whereas the CCL2 levels (n � 5) remained the same after 24 h.
The error bars indicate standard errors of the means. An asterisk
indicates that the P value is �0.05.

FIG. 4. Neutralization of chemokines results in decreased mono-
cyte recruitment. Neutralizing CCL2 or CCL3 resulted in small but
significant decreases in monocyte recruitment, whereas blocking CCL4
resulted in a �50% decline in monocytic infiltration. Significant dif-
ferences in cellular recruitment due to infection with either E. cuniculi
(n � 10) or E. intestinalis (n � 3) were not observed. The error bars
indicate standard errors of the means. An asterisk indicates that the P
value is �0.05.
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monocytes, granulocytes, and lymphocytes (1, 3, 31, 41); how-
ever, infected macrophages have been observed in dissemi-
nated disease (30) and are thought to be the vehicle for mul-
tiorgan infections.

The production of chemokines to recruit various immune
cells during parasitic infections is important in innate immunity
(24). Our data indicate that MDM infected with Encephalito-
zoon spp. induce a functional chemokine gradient that sup-
ports the recruitment of monocytes to sites of infection. In our
study, E. cuniculi- and E. intestinalis-infected primary human
macrophages induced an approximately threefold increase in
migration of naı̈ve monocytes after 24 h of incubation in a
chemotaxis system. The delay in migration may reflect parasitic
evasion of the immune response, providing time to invade and
replicate (Fig. 1C).

Focused microarray analyses of MDM infected with E.
cuniculi revealed increases in expression of several critical che-
mokines and receptors needed to recruit a variety of effector
cells in order to mount a successful immune response. In a case
study, Boldorini et al. found that in a patient with AIDS, an
Encephalitozoon sp. infection of kidney epithelium was sur-
rounded by lymphocytes, plasma cells, and macrophages (1),
suggesting that these cells have a role in clearing the infection.
We found that several genes involved in neutrophil recruit-
ment (namely, the genes encoding C-X-C chemokines) were
strongly induced, as were genes involved in the chemotaxis of
dendritic and TH1 cells (namely, the genes encoding CCL1
and CCL5) (24). Khan and Moretto reported that in a murine
model a TH1 response against microsporidian infections was
critical (18), and later Khan et al. further defined a role for
CD8� and 
	 T cells in resolving these infections in mice (20,
25). CCL5 is a potent chemoattractant for memory T cells,
interleukin-2-activated T cells, and eosinophils (24). Among
the upregulated genes that are important in monocyte recruit-
ment (24) are the genes encoding CCL2, CCL3, CCL4, and
CCL4L1. These four chemokines have been identified as ago-
nists for the key monocyte receptors CCR1 and CCR5 (27),
both of which exhibited increased expression in our model of
infection. A similar response has also been demonstrated for
Candida albicans infection of human monocytes, where in-
creased expression of CCL2, CCL3, and CCL4 chemokine
genes and CCR1 and CCR5 receptor genes has been observed
(21). Interestingly, as observed in our model, C. albicans in-
duces CCL4 expression that is many-fold greater than expres-
sion of either CCL2 or CCL3 at 6 h postinfection (21).

To determine which of the genes give rise to protein prod-
ucts, a focused protein analysis was performed using proteome
profiler arrays. Data obtained from the limited array revealed
that there were �15-fold increases for the chemokines CCL3,
CCL4, and CCL5 (Table 2). Both CCL3 and CCL4 are known
to be strong inducers of movement of monocytes to areas of
infection and are also ligands for CCR5, an HIV coreceptor,
whereas CCL5 predominately recruits T cells. In addition, the
levels of expression CCL2, which is another potent monocyte
chemoattractant, were moderate but significant.

The secretion kinetics of the monocyte chemokines most
likely to participate in the spread of infection were further
analyzed by ELISA to determine whether their expression
coincided with the delayed recruitment observed. The in-
creases in levels began around 6 h, and the levels peaked

between 12 and 24 h. These times corresponded to the ob-
served chemotactic response. It has yet to be determined
whether microsporidians can dampen immediate immune re-
sponses during host uptake until they have established the
meront stage within the macrophage. Delayed responses to
other fungal pathogens, including Aspergillus fumigatus, have
been attributed to altered host responses based on the recog-
nition of conidia verses hyphal forms or to C. albicans yeast
and hyphal forms which are thought to contribute to the pa-
thology observed in opportunistic infections (35).

To determine the individual roles of these chemokines in the
recruitment of potential new hosts for microsporidians, neu-
tralizing antibodies were employed in the coculture system.
This analysis revealed that CCL2 and CCL3 contributed to the
migration of monocytes, but inhibiting CCL4 in the cultures
resulted in the most dramatic reduction (Fig. 4). Neutraliza-
tion of all three major chemokines reduced the levels of mi-
grating monocytes to levels near the level of uninfected MDM,
suggesting that these three chemokines were the chemoattrac-
tants responsible for the monocytic infiltration and, therefore,
are potential targets of chemotherapeutic agents for control-
ling microsporidiosis (34). In comparison, using a murine
model, Huffnagle et al. showed that Cryptococcus neoformans,
a yeast-forming fungus known to cause disseminated disease,
could evoke a monocyte chemoattractant protein 1 and mac-
rophage inflammatory protein 1� response; in neutralization
studies, the cryptococcal burden in the lungs of mice increased,
while a decrease in macrophage and CD4� T-cell recruitment
was observed, resulting in inhibited clearance of the infection
(16, 17).

While the immune response generated against Encephalito-
zoon spp. can result in recruitment of monocytes, it also has the
potential to mediate adaptive immunity. However, in individ-
uals with impairment of the adaptive arm of the immune sys-
tem, such as AIDS patients, organ transplant recipients, the
young, and the very old, the same recruited monocytes could
amplify the infection. Understanding how macrophages func-
tion in propagating disease and how the life cycle of micros-
poridians can influence their responses is critical in developing
antimicrosporidial compounds or anti-inflammatory interven-
tion strategies. Studies to define host recognition of the para-
site, signaling pathways, and subsequent cytokine profiles are
under way.
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