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Variant surface antigens (VSA) on the surface of Plasmodium falciparum-infected red blood cells play a major
role in the pathogenesis of malaria and are key targets for acquired immunity. The best-characterized VSA
belong to the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. In areas where P. falciparum is
endemic, parasites causing severe malaria and malaria in young children with limited immunity tend to
express semiconserved PfEMP1 molecules encoded by group A var genes. Here we investigated antibody
responses of Tanzanians who were 0 to 19 years old to PF11_0008, a group A PfEMP1. PF11_0008 has
previously been found to be highly transcribed in a nonimmune Dutch volunteer experimentally infected with
NF54 parasites. A high proportion of the Tanzanian donors had antibodies against recombinant PF11_0008
domains, and in children who were 4 to 9 years old the presence of antibodies to the PF11_0008 CIDR2�
domain was associated with reduced numbers of malaria episodes. These results indicate that homologues of
PF11_0008 are present in P. falciparum field isolates and suggest that PF11_0008 CIDR2�-reactive antibodies
might be involved in protection against malaria episodes.

Variant surface antigens (VSA) appear to play a major role
in malaria pathogenesis and to be key targets for acquired
immunity (10, 13, 17, 46). Moreover, severe disease in children
is associated with parasites expressing a restricted subset of
VSA (VSASM), and children possessing antibodies against
these antigenic types seem to be protected against severe,
noncerebral malaria (7, 32, 33). In line with this, a mathemat-
ical model based on actual data (42) estimated that immunity
to severe, noncerebral malaria is apparent after a few disease
episodes and is essentially complete before the age of 5 years,
whereas immunity to mild disease takes many years to develop
(18). Furthermore, Plasmodium falciparum isolates associated
with severe malaria and young host age are recognized by
human plasma immunoglobulin G (IgG) in areas where ma-
laria is endemic more frequently than isolates associated with
uncomplicated malaria are recognized (7, 9, 32). The best-
characterized VSA, P. falciparum erythrocyte membrane pro-
tein 1 (PfEMP1), mediates cytoadherence and antigenic vari-
ation (4, 41, 44). PfEMP1 is encoded by 50 to 60 var genes per
haploid parasite genome (15, 39, 44, 45), but only one or a few
genes are expressed by each parasite at any given time (12, 14,
34, 45, 48). The availability of the complete genome sequence
of P. falciparum laboratory clone 3D7 (16) and the ability to
select 3D7 for VSASM-like expression (43) have made it pos-
sible to identify the group A var genes likely to code for

VSASM types (21, 25, 28). Group A var genes belong to three
major groups (groups A, B, and C) of 3D7 var gene sequences
that have been categorized on the basis of chromosomal loca-
tion and transcription direction, domain structure of the en-
coded proteins, and sequence similarities in coding and non-
coding regions (25, 28). Unlike the members of the other
groups, group A var genes encode large PfEMP1 variants, in
agreement with the finding that parasites causing (cerebral)
malaria as opposed to nonsevere malaria express high-molec-
ular-weight PfEMP1 (5). Moreover, group A var genes possess
structural features (e.g., DBL1� sequences lacking cysteine
residues) linked to severe malaria (6, 24). Such structural fea-
tures may confer better cytoadherence and rosetting, two main
phenomena associated with the pathogenesis of severe malaria
(11, 26, 36, 37).

We have previously shown that a group A var gene,
PF11_0008, was transcribed at increased levels in an NF54
(isogenic line of 3D7) isolate from a naı̈ve human host com-
pared with the levels of expression of this gene in the parental
isolate prior to infection (27). Such a naı̈ve human host is
comparable to young children living in areas where malaria is
endemic who have not yet acquired immunity. In this study, we
characterized the antibody response to PF11_0008 since para-
sites causing severe malaria seem to be dominant early in life
in individuals living in areas where malaria is endemic.

MATERIALS AND METHODS

Expression of recombinant PF11_0008 domains. The DBL1�, DBL2�, and
CIDR2� domains of PF11_0008 were PCR amplified from 3D7 genomic DNA and
cloned into the pBAD-TOPO vector (Invitrogen) using the following primers:
DBL1�-FW (5�-GAATTCTGTTATGGCAGACAAGCAA-3�), DBL1�-RV (5�-G
TATTTATTTTTTTGTTTATCTAATTCATTTTC-3�), DBL2�-FW (5�-GAATTC
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TGTAATCCAAAAAAGGAT-3�), DBL2�-RV (5�-TGGTTTATTCTGACTTTT
ATCAATATC-3�), CIDR2�-FW (5�-GAATTCAAAAAACAAGAAAAACTAT
AT-3�), and CIDR2�-RV (5�-ACATGGATTTGCTGGAACA-3�).

For production of a carboxy-terminal V5 epitope and histidine-tagged protein,
the DBL1� and DBL2� inserts were excised by EcoRI and PmeI digestion and
subcloned into the EcoRI and blunt-ended BglII sites of the Baculovirus transfer
vector pAcGP67-A (BD Biosciences). The CIDR2� domain sequence, which
had a PmeI site, was PCR amplified from pBAD-TOPO-CIDR2� to introduce
EcoRI and NotI sites and then subcloned into the EcoRI and NotI sites of
pAcGP67-A. Recombinant Baculovirus was generated by cotransfection of the
pAcGP67-A-PF11_0008 domain construct and Bsu36I-linearized Bakpak6 Bac-
ulovirus DNA (BD Biosciences) into insect Sf9 cells. Recombinant PF11_0008
domains were expressed by infection of insect High Five cells with recombinant
Baculovirus, purified from culture supernatants or pellets on Co2�-metal chelate
agarose columns, and eluted with 25 mM HEPES-KOH (pH 7.6), 0.5 mM
MgCl2, 0.5 mM dithiothreitol, 100 mM NaCl, 10% glycerol, and 100 mM imi-
dazole.

Plasma donors. To determine the human antibody reactivity to PF11_0008
domains, we used 60 plasma samples collected in April 2001 as part of a longi-
tudinal study from each of three villages in the Tanga region in northeastern
Tanzania. The villages are located close to each other but are markedly different
in terms of malaria transmission and endemicity due to differences in altitude.
The lowland village Mgome is subject to holoendemic transmission, Ubiri at
1,200 m above sea level is characterized by seasonal and mesoendemic transmis-
sion, and Magamba at 1,700 m is located in an area where endemicity is low (29).
The plasma samples represented the following age groups: 2 to 4 years (n � 15),
5 to 9 years (n � 15), 10 to 14 years (n � 15), and 15 to 19 years (n � 15).

Correlations of PF11_0008 antibody levels in human plasma with protection
from malaria episodes were assessed using 225 plasma samples collected in
March 2004 as part of an on-going longitudinal study in Mkokola. Mkokola is a
village situated in an area where there is a high level of malaria transmission and
is in the region described above (30). Parasite density and hemoglobin levels
were determined at the time of enrollment. Anemia was defined as a hemoglobin
level of �11.0 g/dl. The 225 individuals were 0 to 19 years old, and 65 of them had
at least one malaria episode, as defined by a parasite-positive slide and a history
of fever or temperature of �37.5°C, while 160 did not have a malaria episode
during the 7-month follow-up. Informed consent was obtained from all individ-
uals studied and/or their parents. Ethical clearance was granted by the Ministry
of Health and the Ethics Committee of the National Institute for Medical
Research in Tanzania.

Enzyme-linked immunosorbent assay (ELISA) of PF11_0008 domains. Dilu-
tions (1:100) of plasma samples were incubated in 96-well MaxiSorp plates
(Nunc, Denmark) precoated with recombinant PF11_0008 domains at a concen-
tration of 1 or 2 �g/ml (depending on the point of signal saturation using
antihistidine antibodies) in 100 �l coating buffer (0.1 M glycine HCl, pH 2.75)
and processed as described previously (22). Antibody responses were expressed
in arbitrary units calculated as follows: (optical density of sample 	 optical
density of background)/(optical density of positive control sample 	 optical
density of background). A Tanzanian plasma pool known to react strongly with
recombinant PfEMP1 domains was used as a positive control. The mean optical
density plus 2 standard deviations obtained with plasma from 20 healthy Danish
donors who had not been exposed to malaria was used as a negative cutoff value.
Individuals having plasma antibody levels above this negative cutoff value were
considered to have responded positively to the domain tested.

Statistical analysis. Logistic and Cox regression models were used to deter-
mine associations between PF11_0008 IgG levels and the incidence of malaria
episodes. A two-sample t test with equal variances was used to determine the
significance of differences between PF11_0008 IgG levels. Regression models
were used to determine the relationship between PF11_0008 IgG levels and
hemoglobin (linear regression model) or anemia (logistic regression model) at
the time of enrollment. The Stata/SE 8.2 software (StataCorp, Texas; http://www
.stata.com) was used for statistical analysis. A P value of �0.05 was considered
statistically significant.

RESULTS

PF11_0008 antibody levels depend on age and transmission
intensity. To compare the acquisition of PF11_0008 antibodies
in areas where the malaria transmission intensities are differ-
ent, we tested plasma collected in three villages in northeastern
Tanzania by ELISA using three recombinant PF11_0008 do-

mains as catching antigens. Age group-specific responder fre-
quencies and IgG levels were related to transmission intensity
(Fig. 1). In the high-transmission village (Mgome), all donors
carried plasma IgG that reacted with one or more of the
PF11_0008 domains, and the antibody levels were generally
high even in children as young as 2 years old. In the moderate-
transmission village (Ubiri), the antibody prevalence and levels
were high in individuals more than 10 years old, whereas the
antibody levels were low and the occurrence was sporadic in all
age groups in the village with low transmission (Magamba).

Since antibody levels were already high in children who were
2 years old in Mgome, we performed a more detailed analysis
of the age-specific acquisition of antibodies in Mkokola, an-
other village in the area characterized by high and perennial
malaria transmission (Fig. 2). In this setting, antibody reactiv-
ities to all three recombinant domains were acquired early in
life, and more than 40% of the 1-year-old children exhibited a
detectable response. The antibody levels also increased sharply
in the first years of life and seemed to plateau around the age
of 5 years.

These results show that the plasma levels of IgG to the
recombinant PF11_0008 domains increase with age and trans-
mission intensity and that the antibodies are acquired early in
life in areas where the levels of malaria transmission is high.
The observation that recombinant PF11_0008 domains were
recognized by most individuals who had been exposed to ma-
laria indicates that homologues of PF11_0008 are present in P.
falciparum field isolates.

Antibodies against CIDR2� of PF11_0008 correlate with
protection from malaria. Malaria morbidity was monitored in
the village of Mkokola, and this enabled us to analyze whether
the levels of antibodies to the PF11_0008 domains were asso-
ciated with reduced risk of developing disease or other para-
sitological parameters. Plasma collected at the initiation of the
study was available from a total of 225 children and adoles-
cents who completed the clinical monitoring. The mean para-
site density at the time of enrollment, as well as the risk of
malaria episodes during the follow-up period, had a tendency
to decrease with age (Fig. 3), consistent with what would be
expected in an area in which there is holoendemic transmission
of P. falciparum (29, 47). Logistic regression models were used
to determine the effect of PF11_0008 IgG plasma levels at the
time of enrollment on the risk of having a malaria attack. We
found that an increase in the PF11_0008 CIDR2� IgG level of
1 arbitrary unit decreased the risk of having a malaria episode
by 60% (95% confidence interval, 19 to 82%; P � 0.012), with
adjustment for the effects of age and bednet use (Table 1).
Several models were used to adjust for age. All of them pro-
duced similar results and P values, indicating that the models
were robust (data not shown). Using the Cox regression model
considering the occurrence of a malaria episode through time,
the PF11_0008 CIDR2� IgG levels were found to predict the
incidence of malaria. An increase in the PF11_0008 CIDR2�
IgG level of 1 arbitrary unit significantly decreased the risk of
getting malaria by 53% (95% confidence interval, 32 to 88%;
P � 0.014), after we controlled for age and bednet use. In
order to detect whether the associations between PF11_0008
CIDR2� antibodies and malaria risk were similar in all age
groups, we compared the plasma PF11_0008 CIDR2� IgG
levels of individuals who got malaria and individuals who did
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not get malaria in the different age groups (Fig. 4). Interest-
ingly, the PF11_0008 CIDR2� IgG levels were higher for pro-
tected individuals who were between 3 and 9 years old, and the
differences were statistically significant for the 4-year-old chil-
dren (P � 0.04) and for children between 5 and 9 years old
(P � 0.006). For two age groups (0 to 2 and 10 to 19 years), the
mean PF11_0008 CIDR2� IgG levels were slightly higher in
individuals who had a clinical attack than in individuals who
did not, but the differences were not statistically significant
(Fig. 4). The levels of plasma IgG to other recombinant domains
(PF11_0008 DBL1� or PF11_0008 DBL2�) were not associated
with a subsequent risk of having a malaria attack after adjustment
for the effects of age and bednet use (Table 1).

Models used to test for associations between PF11_0008 IgG
levels and hemoglobin levels by linear regression or between
PF11_0008 IgG levels and anemia by logistic regression did not
reveal any statistically significant associations when we con-
trolled for the confounding effects of age, bednet use, and
sex (data not shown). The linear regression model revealed
that after age correction, every 1-arbitrary unit increase in
PF11_0008 CIDR2� IgG levels was predicted to decrease par-
asitemia at the time of enrollment by 2,400 parasites/�l blood

(95% confidence interval, 589 to 5,325 parasites/�l blood), but
this effect was not statistically significant (P � 0.1).

These results indicate that high IgG levels against the
CIDR2� domain of PF11_0008 protect children who are 4 to 9
years old against malaria.

DISCUSSION

Individuals living in areas where malaria is endemic develop
immunity against severe malaria early in life (18), and parasites
causing severe malaria tend to express a restricted, semicon-
served subset of VSA (VSASM) that is recognized by antibod-
ies from exposed individuals better than the VSA expressed by
parasites causing uncomplicated malaria (7, 9, 32, 33). In a
previous study, we analyzed var gene expression in malaria-
naı̈ve human volunteers who were experimentally infected with
P. falciparum NF54 (an isogenic line of 3D7) sporozoites (19,
27). The largest var transcription changes and highest growth
rates were observed in isolates from two of five volunteers. The
levels of transcription of PF11_0008, a group A var gene, in-
creased the most (
50-fold) when isolates from earlier and
later days during infection were compared in one of the vol-

FIG. 1. Point prevalence (circles and error bars showing 95% confidence intervals) and plasma levels (bars and error bars showing geometric
means and 95% confidence intervals) of IgG antibodies to PF11_0008 DBL1�, DBL2�, and CIDR2� domains. Plasma was collected from
individuals who were 2 to 19 years old living in Mgome (high malaria transmission) (A), Ubiri (moderate malaria transmission) (B), or Magamba
(low malaria transmission) (C).
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unteers. In the present study, we investigated the antibody
response to PF11_0008 in areas where malaria is endemic.

We found that the levels of IgG against recombinant
PF11_0008 domains increased with transmission intensity and
age. In the two high-transmission villages a very high per-
centage of individuals carried antibodies against the three
PF11_0008 domains. The presence of these antibodies might
have been the result of widespread serological cross-reactivity
between PfEMP1 domains. The PF11_0008 gene exhibits some
similarity with another well-studied var gene, var4 (PFD1235w)
(21). Both of these var genes belong to group A (28), both
genes are transcribed at high levels in P. falciparum isolates
from nonimmune human hosts (27), antibodies against recom-
binant domains encoded by both genes start to appear early in
life in children living in areas where P. falciparum is endemic,
and antibodies against the CIDR1� domain of VAR4 are
associated with a reduced risk of malaria and anemia (30).
However, antibodies against the PF11_0008 domains did not
show significant cross-reactivity with VAR4 in competition
ELISA experiments (22a) indicating that the PF11_0008 anti-

bodies were not induced by parasites expressing VAR4. In
general, cross-reactivity between recombinant 3D7 domains
seems to be limited (22a), and we favor the explanation that
the PF11_0008 antibodies were induced by parasites expressing
PfEMP1 molecules having domains homologous to the
PF11_0008 domains. Four var gene subfamilies have been
identified: var1 (28, 38), var2csa (40), var3 (25), and var4 (21).
These genes are carried by most parasites and exhibit similarity in
large parts of the genome. So far, PF11_0008 has been identified
only in laboratory clone 3D7 and the isogenic isolate NF54. The
PF11_0008 gene could belong to a var subgene family, but per-
haps more likely, sequences encoding domains homologous to
PF11_0008 domains could be present as individual “building
blocks” in different parasite genomes, probably due to recombi-
nation of var genes. We are currently producing affinity-purified
human antibodies specific for PF11_0008 domains to be tested
against field isolates to investigate this possibility.

There have been several studies which have indicated the
importance of VSA-specific IgG in mediating acquired protec-
tive immunity to P. falciparum malaria (1, 8, 10, 13, 17, 23, 31,
35). In our study, we found that higher plasma levels of
PF11_0008 CIDR2� antibodies were associated with a lower
risk of developing malaria. Such an immune response seems to
be relevant since in another study using the same plasma set,
levels of antibodies to merozoite surface protein 1 constructs
and a control CIDR1� domain were found not to be associated
with morbidity protection (30). The control CIDR1� domain is
encoded by PF08_107, which encodes a group C PfEMP1 with
a four-domain structure predicted not to be involved in the
pathogenesis of severe malaria (28). The probable mechanism
by which PfEMP1 antibodies protect against malarial disease is
by reducing tissue-specific sequestration and inflammation and
by reducing the parasite burden as the nonbinders are de-
stroyed in the spleen (13). The evidence which supports this
conclusion includes the ability of PfEMP1 antibodies to block
adhesion to certain host receptors (2, 3, 41). Our data indicate
that the antibodies may have played a biological role in the 4-
to 9-year-old children. The expression of PfEMP1 is probably
not random but depends on the relative growth rates of para-
sites expressing different PfEMP1 types and the ability of an-
tibodies to dampen this growth. In a host with limited or no

FIG. 2. Point prevalence (circles and error bars showing 95% con-
fidence intervals) and plasma levels (bars and error bars showing
geometric means and 95% confidence intervals) of IgG antibodies
reacting to DBL1� (A), DBL2� (B), and CIDR2� (C) of PF11_0008.
Plasma was collected from individuals who were 0 to 19 years old living
in Mkokola, a village where the level of malaria transmission is high.

FIG. 3. P. falciparum geometric mean density (bars and error bars
showing 95% confidence intervals) and percentage of children and
adults with a malaria episode in a high-malaria-transmission village
(Mkokola) as defined by fever and the presence of parasites (circles
and error bars showing 95% confidence intervals).
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immunity, the parasite preferentially expresses var genes cod-
ing for VSASM types that give the parasite a selective advan-
tage through high growth rates as a result of increased survival
due to effective cytoadhesion (20, 21, 27, 28). Following the
production of antibodies that curb the growth rates of parasites
expressing these early and virulent variant types, infections are
dominated by parasites expressing PfEMP1 types that result in
slightly lower growth rates than the most virulent types. Para-
sites expressing these types are probably still quite pathogenic,
causing malaria in slightly older children, and PF11_0008
CIDR2� antibodies could play a role in protection against such
parasites.

In conclusion, we found that homologues of PF11_0008, a
group A PfEMP1 expressed early during experimental in-
fection of a naı̈ve individual, elicit antibodies that are ac-
quired early in life. The fact that the presence of PF11_0008
IgG is associated with protection of children who are 4 to 9
years old indicates that parasites expressing homologues of
PF11_0008-like PfEMP1s or domains are responsible for
malaria in individuals who have survived the first malaria
attacks and made antibodies against the most virulent PfEMP1
types.
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