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The plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli is a 104-kDa autotransporter protein
that exhibits proteolytic activity against the actin-binding protein �-fodrin. Intracellular cleavage of epithelial
fodrin by Pet disrupts the actin cytoskeleton, causing both cytotoxic and enterotoxic effects. Intoxication
requires the serine protease activity of Pet and toxin endocytosis from clathrin-coated pits. The additional
events in the intracellular trafficking of Pet are largely uncharacterized. Here, we determined by confocal
microscopy that internalized Pet is transferred from the early endosomes to the Golgi apparatus and then
travels to the endoplasmic reticulum (ER). Pet associates with the Sec61p translocon before it moves into the
cytosol as an intact, 104-kDa protein. This translocation process contrasts with the export of other ER-
translocating toxins, in which only the catalytic A subunit of the AB toxin enters the cytosol. However, like
intoxication with these AB toxins, Pet intoxication was inhibited in a subset of mutant CHO cell lines with
aberrant activity in the ER-associated degradation pathway of ER-to-cytosol translocation. This is the first
report which documents the cell surface-to-ER and ER-to-cytosol trafficking of a bacterial non-AB toxin.

Plasmid-encoded toxin (Pet), a 104-kDa protein secreted by
enteroaggregative Escherichia coli, damages the human intes-
tinal mucosa by inducing exfoliation of epithelial cells and
development of crypt abscesses (23). This toxin is classified as
a serine protease autotransporter protein of the Enterobacte-
riaceae (SPATE) (10). Autotransporters comprise a special
group of virulence-associated proteins that are secreted by
gram-negative bacteria and have diverse biological functions
(9, 11). Each SPATE contains three domains: (i) an amino-
terminal leader peptide (signal sequence); (ii) the secreted
“mature” protein (passenger domain); and (iii) a carboxy-ter-
minal domain (translocation unit) which forms a �-barrel pore
through which the passenger protein is secreted. All SPATEs
also possess a conserved serine protease motif with the con-
sensus sequence GDSGSP (11).

The eukaryotic target of Pet is fodrin, a cytosolic actin-
binding protein. Fodrin cleavage disrupts the organization of
the actin cytoskeleton and leads to contraction of the cytoskel-
eton (1), loss of actin stress fibers, and release of focal contacts
in HEp-2 and HT29/C1 cell monolayers. These cytotoxic ef-
fects eventually result in cell rounding and detachment from
the substratum (24). Enterotoxicity results from similar cellular
effects in the intestinal epithelium (23). As Pet intoxication is
blocked by the serine protease inhibitor phenylmethylsulfonyl
fluoride and by an S260I mutation in the active site of the Pet
serine protease motif, the cytotoxic and enterotoxic effects of
Pet depend upon its serine protease activity (24).

Pet intoxication also requires toxin endocytosis to reach the
intracellular target. We have recently found that Pet binds to
the epithelial cell surface and is internalized by clathrin-coated
vesicles (F. Navarro-Garcia, A. Canizalez-Roman, J. E. Vidal,
and M. I. Salazar, submitted for publication). Other studies
have shown that brefeldin A (BfA) inhibits the cytotoxic effects
of Pet by disrupting its intracellular trafficking (22). These data
suggest that Pet may exploit the vesicular trafficking pathways
of the target cell in order to reach its cytosolic target.

Many plant and bacterial toxins use the eukaryotic secretory
pathway to enter the host cell cytoplasm (19, 28). These toxins
have an AB structure that consists of a catalytic A moiety and
a receptor-binding B moiety. Some AB toxins enter cells by
receptor-mediated endocytosis and pass directly from acidified
endosomes to the cytosol. Diphtheria toxin (DT) and other
toxins in this category undergo an acid-dependent conforma-
tional change which generates a pore in the endosomal mem-
brane that facilitates A-chain access to the cytosol (26). Other
AB toxins, such as cholera toxin (CT), require further traffick-
ing and travel from the endosomes to the Golgi apparatus en
route to an endoplasmic reticulum (ER) exit site (17). The A
chains of these ER-translocating toxins masquerade as mis-
folded proteins in order to promote their export into the cy-
tosol through the quality control mechanism of ER-associated
degradation (ERAD). Export by this route also involves the
Sec61p translocon, a gated pore in the ER membrane (27). For
both endosomal and ER translocation sites, AB subunit disso-
ciation precedes or occurs concomitantly with A-chain passage
into the cytosol.

Pet is not an AB toxin, yet preliminary studies suggested that
it could follow an AB toxin trafficking pathway from the cell
surface to the ER and from the ER to the cytosol. To better
characterize the intracellular trafficking and translocation
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routes of Pet, we used confocal microscopy to document Pet
transport from the early endosomes to the Golgi apparatus and
from the Golgi apparatus to the ER. Pet associated with the
Sec61p translocon in the ER and then entered the cytosol as an
intact, 104-kDa protein. Functional assays confirmed an ER
exit site for Pet, since Pet intoxication was inhibited by aber-
rant ERAD activity but not by endosomal alkalization. This is
the first report to demonstrate cell surface-to-ER trafficking
and ER-to-cytosol translocation of a bacterial non-AB toxin.

MATERIALS AND METHODS

Materials, antibodies, and bacterial strains. Unless otherwise noted, all
chemicals and other reagents were purchased from Sigma-Aldrich, Inc. (St.
Louis, MO).

Mouse anti-Pet polyclonal antibodies were prepared for this study by immu-
nizing mice with the 104-kDa Pet protein excised from a sodium dodecyl sulfate
(SDS)-polyacrylamide gel electrophoresis (PAGE) gel. Rabbit anti-Pet antibod-
ies have been described previously (23); mouse anti-early endosome antigen 1
(EEA-1) monoclonal antibodies were obtained from Transduction Laboratories
(Lexington, KY); mouse anti-lysosome associated membrane protein 1 (LAMP-1)
monoclonal antibodies were obtained from Pharmigen (San Diego, CA); rabbit
anti-calnexin antibodies were obtained from Calbiochem (San Diego, CA); goat
anti-�-fodrin antibodies were obtained from Santa Cruz Biotech (Santa Cruz,
CA); rabbit anti-Sec61� antibodies were obtained from Affinity BioReagents,
Inc. (Golden, CO); rabbit anti-CT antibodies were obtained from Sigma-Aldrich,
Inc.; and rabbit anti-cadherin antibodies were obtained from Zymed Lab, Inc.
(San Francisco, CA). All conjugated secondary antibodies were purchased from
Zymed Lab, Inc.

The minimal Pet clone pCEFN1 was constructed by cloning the pet gene of
enteroaggregative E. coli strain 042 into the BamHI/KpnI site of pSPORT1 as
previously described (4). E. coli strain HB101 was transformed with pCEFN1 and
maintained on L-agar or in L-broth containing 100 �g/ml ampicillin (4). To
obtain the Pet protein, broth cultures of HB101(pCEFN1) were incubated over-
night at 37°C and then centrifuged at 7,000 � g for 15 min. The culture super-
natant was filtered through 0.22-�m cellulose acetate membrane filters (Corning,
Cambridge, MA), concentrated 100-fold with an ultrafree centrifugal filter de-
vice with a 100-kDa cutoff (Millipore, Bedford, MA), filter sterilized again, and
stored at �20°C for up to 3 months (24). Culture media from non-Pet-expressing
strain HB101(pSPORT1) was concentrated as described above and used as a
negative control for immunofluorescence and toxicity assays.

Cell culture. HEp-2 cells were propagated in a humidified 5% CO2–95% air
atmosphere at 37°C in Dulbecco’s modified Eagle’s medium supplemented with
5% fetal bovine serum (HyClone, Logan, UT), 1% nonessential amino acids, 5
mM L-glutamine, penicillin (100 U/ml), and streptomycin (100 �g/ml). Mutant
and wild-type CHO cells were propagated in a humidified 5% CO2–95% air
atmosphere at 37°C in Ham’s F-12 medium (GIBCO BRL, Grand Island, NY)
supplemented with 10% fetal bovine serum (GIBCO BRL) and penicillin/strep-
tomycin. The subcultures were serially propagated after they were harvested with
10 mM EDTA and 0.25% trypsin (GIBCO BRL) in phosphate-buffered saline
(PBS) (pH 7.4). For fluorescence and immunoprecipitation experiments, sub-
confluent HEp-2 cells were resuspended with EDTA-trypsin, plated into eight-
well LabTek slides (VWR, Bridgeport, NJ), and allowed to grow for �24 h to
70% confluence before use. For the cell rounding and cell detachment assays,
CHO cells were plated into 24-well plates and allowed to grow for �24 h to 40
to 80% confluence before use.

Fluorescence assays. Pet was diluted directly into tissue culture medium with-
out antibiotics or serum at a final concentration of 37 �g/ml. It was then added
to the target cells using 250 �l (final volume) per well in eight-well LabTek slides.
Following incubation in a humidified atmosphere containing 5% CO2 and 95%
air at 37°C for the times indicated below, the medium was aspirated, the cells
were washed twice with PBS, and 2% formalin in PBS was added for 20 min at
room temperature. The fixed cells were then permeabilized by adding 0.2%
Triton X-100 in PBS for 5 min at room temperature.

Actin filaments in the permeabilized cells were visualized by incubation with
0.05 �g/ml tetramethyl rhodamine isocyanate (TRITC)-phalloidin for 30 min at
room temperature. The Golgi apparatus in permeabilized cells was visualized by
incubation with 5 �M BODIPY FL C5-ceramide-bovine serum albumin com-
plexes in Hanks’ buffered salt solution–10 mM HEPES (pH 7.4) for 30 min at
4°C. Rhodamine-conjugated Pet was obtained by following the instructions of the
manufacturer (Sigma-Aldrich, Inc., St. Louis, MO). Proteins other than actin

were visualized by incubation with the appropriate primary antibodies for 1 h at
room temperature, followed by incubation for 1 h at room temperature with the
secondary antibodies. Slides were mounted on Gelvatol, covered with a glass
coverslip, and examined with a Leica TCS SP2 confocal microscope at a magni-
fication of �100.

The drug treatments for the experimental protocol described above consisted
of 30 min of preincubation with 10 �M or 10 nM wortmannin or with 40 mM
NH4Cl. Pet was then added to the cells for 3 h in the presence of the drug.

Immunoprecipitation assays. Cultured HEp-2 cells in cell culture dishes (60
by 15 mm) were incubated with 37 �g Pet/ml for different times at 37°C. Cells
were washed with cold PBS, resuspended in 1 ml of cold lysis buffer (50 mM
Tris-HCl–150 mM NaCl [pH 7.5] containing 1% Nonidet P-40, 0.5% sodium
deoxycholate, and Complete protease inhibitors), and detached by using a
policeman. Cells were placed in a 1.5-ml microtube and lysed by passing them
through a syringe with a 27-gauge needle. Lysed cells (500 �g) were centrifuged
at 12,000 � g for 10 min at 4°C, and the supernatant was placed in a new 1.5-ml
microtube. To perform the immunoprecipitation assay, the supernatant was
incubated with anti-Sec61� (2 �g), anti-Pet (2 �g), or anti-cadherin (5 �g)
antibody with slight agitation for 3 h at 4°C. Then 5 �l of a protein A-agarose
suspension (Roche Diagnostics, Mannheim, Germany) was added for 3 h at 4°C.
The complexes were collected by centrifugation at 12,000 � g for 20 s, and the
supernatant was removed. The pellet was washed five times with cold PBS
containing Complete protease inhibitors. The agarose pellet was resuspended in
2� gel loading buffer, the samples were boiled for 5 min, and the immunocom-
plexes were resolved by SDS-PAGE. The resulting protein bands were trans-
ferred to nitrocellulose membranes (35), which were probed with rabbit anti-Pet
antibodies at a dilution of 1:200 or anti-cadherin antibodies at a dilution of 1:50
in PBS. Antigen-antibody reactions were visualized using horseradish peroxi-
dase-labeled goat anti-rabbit immunoglobulin G (IgG) antibodies and were
developed using the “Luminol” chemiluminescence reagent from Santa Cruz
Biotech. The immunoprecipitation of Sec61� and the immunoprecipitation of
cadherin were confirmed in control Western blots.

Cell rounding and cell detachment assays. Pet (40 �g/ml) was added to Ham’s
F-12 medium supplemented with 10% fetal bovine serum and penicillin/strep-
tomycin. Either toxin-free medium or Pet-containing medium (250 �l) was then
added to cells seeded in a 24-well plate. After 10 h of incubation, pictures were
taken at magnification �10 with a digital camera mounted on a Zeiss (Gottingen,
Germany) Axiovert 25 microscope. In separate experiments the detached cells in
the media were collected after 20 h of incubation, and the remaining adherent
cells were collected by trypsin-EDTA treatment. Duplicate hemocytometer
counts were used to determine the numbers of detached and adherent cells. The
percentage of detached cells was calculated by dividing the number of detached
cells by the total number of detached and adherent cells. This value obtained
with control cells incubated without toxin was treated as a background value and
therefore was subtracted from the corresponding value obtained with toxin-
treated cells. The results are expressed below as the ratio of the experimental
value to the control value, where the experimental value is the percentage of
detached cells obtained with the mutant cell lines or N-acetyl-Leu-Leu-Norleu-Al
(ALLN)-treated cells and the control value is the percentage of detached cells
obtained with the wild-type CHO cells. A ratio greater than 1 indicates that the
level of toxin sensitivity is higher than the level of toxin sensitivity observed with
the control cells; a ratio of 1 indicates that the level of toxin sensitivity is the same
as the level of toxin sensitivity observed with the control cells; and a ratio less
than 1 indicates that the level of toxin resistance is higher than the level of toxin
resistance observed with the control cells.

Cell fractionation. HEp-2 cells grown in 60-mm petri dishes were treated with
the Pet protein for the times indicated below. Cells were delicately washed three
times with ice-cold PBS (pH 7.4) and scraped into a buffer consisting of Tris-HCl
(pH 7.5) (0.25 M), phenylmethylsulfonyl fluoride (50 �g/ml), aprotinin (0.5
�g/ml), and EDTA (0.5 �M). Then the cells were lysed by three freeze-thaw
cycles (5 min of incubation in a dry ice-ethanol bath and 3 min of incubation in
a thermoblock at 37°C). Cells were scraped into ice-cold PBS. The cell lysates
were ultracentrifuged at 100,000 � g for 1 h at 4°C, and the supernatant fraction
containing soluble cytoplasmic proteins was obtained. Equivalent volumes were
boiled for 7 min, analyzed by SDS-PAGE, and electrotransferred to nitrocellu-
lose membranes for Western blot analyses, essentially as described above. The
identity of cellular fractions was confirmed with a mouse monoclonal anti-actin
antibody (a gift from Manuel Hernández) for cytosolic proteins and with a rabbit
anti-pan-cadherin polyclonal antibody for the membrane insoluble fraction. Cad-
herin was not detected in the supernatant fraction containing soluble cytoplasmic
proteins.
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RESULTS

Pet endocytic trafficking in intoxicated epithelial cells. Pet
internalization is required for intoxication, and we have re-
cently found that Pet uptake occurs via clathrin-dependent
endocytosis (Navarro-Garcia et al., submitted). To follow the
endocytic trafficking of Pet, double-immunostaining experi-
ments were performed (Fig. 1). Cells incubated with Pet for
short periods of time (0 to 20 min) at 37°C were fixed, perme-
abilized, and incubated with antibodies against Pet and EEA-1.
Fluorescein isothiocyanate (FITC)-labeled secondary antibod-
ies were used to visualize Pet (Fig. 1A), while TRITC-labeled
secondary antibodies were used to visualize EEA-1 (Fig. 1B).
Punctate staining patterns were observed by confocal micros-
copy for both Pet and EEA-1. The merged image clearly dem-
onstrated that Pet was present in the early endosomes after 8
min of incubation (Fig. 1C). Thus, as observed for the AB
toxins (17, 19, 28, 29), Pet reaches the early endosomes after its
endocytosis. When cells were incubated at 4°C to block endo-
cytosis, no colocalization of Pet and EEA-1 was observed (not
shown).

A fraction of internalized AB toxins are transported to the
lysosomes and degraded in that compartment. However, the
functional pool of toxin either is directly translocated from
the endosomes to the cytosol (e.g., DT) (21) or is transported
to the Golgi apparatus (e.g., ricin) (36). To detect Pet traffick-
ing to the lysosomes, cells incubated with Pet for various times
at 37°C were fixed, permeabilized, and incubated with antibod-
ies against Pet and LAMP-1. FITC-labeled secondary antibod-
ies were used to visualize Pet (Fig. 1D), while TRITC-labeled
secondary antibodies were used to visualize LAMP-1 (Fig. 1E).

Confocal microscopy analysis revealed that some of the inter-
nalized Pet colocalized with LAMP-1 after 25 min of incuba-
tion (Fig. 1F). However, Pet was also located in perinuclear
structures that were distinct from the LAMP-1-positive vesi-
cles. This suggested that a pool of internalized Pet was deliv-
ered to intracellular organelles other than the lysosomes.

Phosphoinositide 3-kinase (PI 3-kinase) is active in endo-
cytic protein trafficking (18, 39), participates in the formation
of multivesicular bodies (5), and is involved in the fusion of
endosomes (13). These events are disrupted by wortmannin, a
PI 3-kinase inhibitor (5, 13, 18). Accordingly, we used wort-
mannin to examine the role of PI 3-kinase in Pet trafficking
(Fig. 2). HEp-2 cells preincubated in the absence or presence
of wortmannin for 30 min were subsequently treated with Pet
for 3 h in the absence or presence of wortmannin. Double-
fluorescence experiments and confocal microscopy then docu-
mented the effect of wortmannin on Pet-induced damage to
the actin cytoskeleton. Anti-Pet antibodies and FITC-labeled
secondary antibodies were used to visualize Pet, whereas the
actin cytoskeleton was stained with rhodamine-phalloidin. Ac-

FIG. 1. Pet trafficking to the early endosomes and lysosomes. (A to
C) HEp-2 cells exposed to 37 �g Pet/ml for 8 min at 37°C were fixed
and permeabilized. Pet was visualized with a combination of rabbit
anti-Pet antibodies and secondary fluorescein-labeled goat anti-rabbit
IgG antibodies (A), while the early endosomes were visualized with a
combination of mouse anti-EEA-1 antibodies and secondary rhoda-
mine-labeled goat anti-mouse IgG antibodies (B). A merged image is
shown in panel C. (D to F) HEp-2 cells exposed to 37 �g Pet/ml for 25
min at 37°C were fixed and permeabilized. Pet was visualized with a
combination of rabbit anti-Pet antibodies and secondary fluorescein-
labeled goat anti-rabbit IgG antibodies (D), while the lysosomes were
visualized with a combination of mouse anti-LAMP-1 antibodies and
secondary rhodamine-labeled goat anti-mouse IgG antibodies (E). A
merged image is shown in panel F. FIG. 2. Inhibition of PI 3-kinase blocks Pet trafficking and intoxi-

cation. (A and B) Untreated HEp-2 cells (A) and HEp-2 cells incu-
bated with 10 �M wortmannin for 3.5 h at 37°C (B) were fixed,
permeabilized, and stained with rhodamine-phalloidin. (C to F) HEp-2
cells preincubated for 30 min at 37°C in the absence (C and D) or in
the presence (E and F) of 10 �M wortmannin were subsequently
exposed to 37 �g Pet/ml for 3 h in the absence or presence of wort-
mannin. Similar results were obtained by using 10 nM wortmannin.
The cells were then fixed, permeabilized, and stained with rhodamine-
phalloidin. Pet was visualized with a combination of rabbit anti-Pet
antibodies and secondary fluorescein-labeled goat anti-rabbit IgG an-
tibodies. The images are merged images; vertical optical sections of
panels C and E are shown in panels D and F, respectively. The arrows
indicate Pet localization.

VOL. 75, 2007 Pet TRAFFICKING IN INTOXICATED CELLS 2103



tin stress fibers were clearly present in the untreated control
cells (Fig. 2A) and in cells exposed to only wortmannin (Fig.
2B). In contrast, actin stress fibers were absent from Pet-
treated cells incubated in the absence of wortmannin (Fig. 2C
and D). Loss of an organized actin cytoskeleton also resulted in
cell rounding. These toxic effects were not observed in Pet-
treated cells that had been pre- and coincubated with wort-
mannin (Fig. 2E and F). In addition, as detected in vertical cell
sections, Pet was found almost exclusively on the cortical actin
cytoskeleton near the cell surface of wortmannin-treated cells
(Fig. 2F). In the absence of wortmannin treatment, Pet was
instead found inside the cells in vesicular structures located
along the cells, which were observed as rounding cells (Fig.
2D). Collectively, these observations established that PI 3-
kinase has a functional role in Pet endocytic trafficking and
intoxication.

The A chains of some AB toxins move into the cytosol by
crossing the membrane of the acidified endosome. This pro-
cess can be inhibited by alkalizing the endosomal compart-
ments with weak bases, such as NH4Cl (19, 21, 26, 28). Ac-
cordingly, we used NH4Cl to examine the role of acidic
endosomes in Pet translocation (Fig. 3). HEp-2 cells preincu-
bated in the absence or presence of NH4Cl for 30 min were
subsequently treated with Pet for 3 h in the absence or pres-
ence of NH4Cl. Double-fluorescence experiments and confocal
microscopy were then used to document the effect of NH4Cl
on Pet-induced damage to the actin cytoskeleton. Anti-Pet
antibodies and FITC-labeled secondary antibodies were used
to visualize Pet, whereas the actin cytoskeleton was stained
with rhodamine-phalloidin. Actin stress fibers were absent
from Pet-treated cells incubated either in the absence (Fig. 3A
to C) or in the presence (Fig. 3D to F) of NH4Cl, whereas
treatment with NH4Cl alone had no effect on the distribution
of actin stress fibers (not shown). To confirm that NH4Cl
affected the function of the endosomes due to pH changes, CT
was used as a positive control. We found that NH4Cl changed
the diffuse, perinuclear pattern of CT fluorescence (Fig. 3G to
I) by concentrating the toxin into discrete punctate structures
(Fig. 3J to L). Our NH4Cl protocol also provided HEp-2 cells
with substantial resistance to DT (not shown). These results
indicated that Pet is not translocated to the cytosol from acid-
ified endosomes and suggested that Pet must travel to other
organelles before exiting the endomembrane system.

Retrograde transport of Pet from the Golgi apparatus to the
ER. BfA induces the assimilation of the Golgi apparatus into
the ER and prevents vesicular communication between the
mixed ER/Golgi compartment and other organelles of the se-
cretory pathway (3, 25, 40). Therefore, cells treated with BfA
are resistant to AB-type, ER-translocating toxins. In previous
work we determined that BfA also inhibits Pet intoxication
(22). This suggested that Pet trafficking and intoxication re-
quire an intact Golgi apparatus. However, BfA alters endoso-
mal morphology and endocytic trafficking as well. To deter-
mine whether Pet trafficking involves the Golgi apparatus,
double-fluorescence confocal microscopy experiments were
performed (Fig. 4). HEp-2 cells exposed to rhodmaine-conju-
gated Pet for 15, 30, or 60 min were subsequently fixed, per-
meabilized, and stained with BODIPY FL C5-ceramide to
visualize the Golgi apparatus. In control cells that were not
exposed to Pet, the Golgi apparatus appeared to be a tubu-

lovesicular structure in the perinuclear region of the cell (Fig.
4A). This staining pattern was not altered by Pet intoxication
(Fig. 4B to D). After 15 min of intoxication, Pet was found in
intracellular structures that partially coincided with the Golgi
apparatus (Fig. 4B). More extensive Pet colocalization with
BODIPY FL C5 was observed after 30 min of intoxication
(Fig. 4C), but after 60 min of incubation the toxin was no
longer detected in the Golgi apparatus (Fig. 4D). These ob-
servations suggested that internalized Pet transiently accumu-
lates in the Golgi apparatus before further trafficking, possibly
to the ER.

To detect Pet transport to the ER, double-immunostaining

FIG. 3. Pet is not translocated to the cytosol from acidic endo-
somes. (A to F) HEp-2 cells preincubated for 30 min at 37°C in the
absence (A to C) or in the presence (D to F) of 40 mM NH4Cl were
subsequently exposed to 37 �g Pet/ml for 3 h in the absence or pres-
ence of NH4Cl. The cells were then fixed, permeabilized, and stained
with rhodamine-phalloidin (A and D). Pet was visualized with a com-
bination of rabbit anti-Pet antibodies and secondary fluorescein-la-
beled goat anti-rabbit IgG antibodies (B and E). Merged images are
shown in panels C and F. (G to L) HEp-2 cells preincubated for 30 min
at 37°C in the absence (G to I) or in the presence (J to L) of 40 mM
NH4Cl were subsequently exposed to 1 �g CT/ml for 3 h in the absence
or presence of NH4Cl. The cells were then fixed, permeabilized, and
stained with rhodamine-phalloidin (G and J). CT was visualized with a
combination of rabbit anti-CT antibodies and secondary fluorescein-
labeled goat anti-rabbit IgG antibodies (H and K). Merged images are
shown in panels I and L.
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experiments were performed (Fig. 4). HEp-2 cells exposed to
Pet for 30, 45, or 60 min were fixed, permeabilized, and incu-
bated with antibodies against Pet and the resident ER protein
calnexin. FITC-labeled secondary antibodies were used to vi-
sualize Pet, while TRITC-labeled secondary antibodies were
used to visualize calnexin. In control cells that were not ex-
posed to Pet, the ER appeared to be a tubuloreticular halo
around the nucleus, as determined by confocal microscopy of
sections (Fig. 4E). This staining pattern was not altered by
toxin treatment (Fig. 4F to H). After 30 min of intoxication,

Pet was found in punctuate structures that did not correspond
to the ER (Fig. 4F). However, the toxin did colocalize with
calnexin after 45 min of incubation (Fig. 4G). Pet no longer
colocalized with calnexin after 60 min of intoxication (Fig. 4H).

The data in Fig. 1 to 4 provide a roadmap for Pet trafficking
from the cell surface to early endosomes, from early endo-
somes to the Golgi apparatus, and from the Golgi apparatus to
the ER. After reaching the ER, Pet must be translocated to the
cytosol in order to interact with its fodrin target (1).

Translocation of Pet into the cytosol. Many plant and bac-
terial toxins exploit the ERAD system in order to move from
the ER to the cytosol (19, 28). To examine the role of ERAD

FIG. 4. Pet trafficking to the Golgi apparatus and ER. (A to D)
Untreated HEp-2 cells (A) and HEp-2 cells incubated with rhoda-
mine-conjugated Pet (37 �g/ml) (red) for 15 min (B), 30 min (C), or 60
min (D) were fixed, permeabilized, and stained with BODIPY FL
C5-ceramide complexed to bovine serum albumin (green). Merged
images are shown. The arrowheads indicate the distribution of Golgi
apparatus-localized Pet. (E to H) Untreated HEp-2 cells (E) and
HEp-2 cells incubated with 37 �g Pet/ml for 30 min (F), 45 min (G),
or 60 min (H) were fixed and permeabilized. Pet was visualized with a
combination of rabbit anti-Pet antibodies and secondary fluorescein-
labeled goat anti-rabbit IgG antibodies (green), while the ER was
visualized with a combination of mouse anti-calnexin antibodies and
secondary rhodamine-labeled goat anti-mouse IgG antibodies (red).
Merged images are shown. The arrowheads indicate the distribution of
ER-localized Pet.

FIG. 5. ERAD dysfunction blocks Pet intoxication. (A) Wild-type
CHO cells and two mutant CHO cell lines with ERAD dysfunction
(clones 23 and 24) were incubated for 10 h in the absence or presence
of 40 �g Pet/ml. Images were taken at a magnification of �10.
(B) Wild-type CHO cells, mutant clone 23, mutant clone 24, and
wild-type CHO cells treated with 10 �M of the proteasome inhibitor
ALLN were exposed to 40 �g Pet/ml for 20 h. The percentage of
detached cells was then determined for each condition. The results are
expressed as the ratio of the experimental value to the control value,
where the experimental value is the percentage of detached cells from
the mutant cell line or ALLN-treated cells and the control value is the
percentage of detached cells from the wild-type CHO cells. The aver-
ages � standard deviations of three (mutant cell lines) or five (ALLN
treatment) independent experiments are shown.
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in Pet intoxication, Pet was added to the extracellular media of
wild-type CHO cells and mutant CHO cells with aberrant
ERAD activity. Compared to the wild-type parental CHO
cells, CHO mutant clones 23 and 24 have elevated levels of
ERAD activity that correspond to elevated levels of resistance
to three AB-type, ER-translocating toxins: CT, Pseudomonas
aeruginosa exotoxin A, and ricin (34). The toxin resistance in
the mutant cells is due to increased coupling efficiency between
translocation and degradation which prevents toxin accumula-
tion in the cytosol. Compared to the wild-type cells, mutant
clones 23 and 24 also exhibited substantial resistance to Pet
intoxication (Fig. 5). Whereas cell rounding was observed in
the wild-type CHO cells after 10 h of incubation with 40 �g
Pet/ml, there was only a minimal effect on the morphology of
clone 23 or 24 (Fig. 5A). This qualitative observation was
supported by the results of quantification of Pet-induced cell
detachment after exposure to the toxin for 20 h; many of the
wild-type cells but few of the mutant cells had detached from
the substratum after 20 h of intoxication (Fig. 5B). However,
cell rounding was observed in clones 23 and 24 after 20 h of
intoxication (not shown). Thus, ERAD dysfunction in clones
23 and 24 appeared to effectively delay the onset of Pet intox-
ication.

ER-translocating toxins evade the ubiquitin-proteasome sys-
tem, although proteasomal inhibition can result in mild sensi-
tization to some ER-translocating toxins, such as ricin (37). To
determine whether proteasomal inhibition could affect Pet in-
toxication, CHO cells were incubated with 40 �g Pet/ml for
20 h in the absence or presence of the proteasome inhibitor
ALLN. Cells exposed to 10 �M ALLN were more susceptible
to Pet intoxication than cells incubated in the absence of
ALLN were (Fig. 5B). This indicated that at least a percentage

of translocated Pet is susceptible to proteasome-mediated deg-
radation in the cytosol. Cells exposed to 10 �M ALLN alone
did not exhibit substantial cell detachment (not shown) and
were used to normalize the detachment results obtained with
CHO cells incubated with both Pet and ALLN.

AB toxins and other ERAD substrates can be exported to
the cytosol through the Sec61p translocon (17, 27, 28). To
investigate the role of Sec61p in Pet translocation, we per-
formed colocalization experiments with Pet and the largest
subunit of the heterotrimeric Sec61 complex, Sec61� (Fig. 6).
After 30 or 55 min of incubation with Pet, HEp-2 cells were
fixed, permeabilized, and incubated with antibodies against Pet
and Sec61�. FITC-labeled secondary antibodies were used to
visualize Pet, while TRITC-labeled secondary antibodies were
used to visualize Sec61�. Confocal microscopy showed that Pet
did not colocalize with Sec61� after 30 min of intoxication
(Fig. 6A to C). However, Pet colocalization with Sec61� was
readily apparent after 55 min of incubation (Fig. 6D to F).
These data indicated that Pet associates with the Sec61p trans-
locon before passage into the cytosol.

To confirm the interaction between Pet and Sec61�, coim-
munoprecipitation experiments were performed with Pet-
treated and untreated cells. Antibodies against Sec61� were
able to precipitate Pet in Pet-treated cells but not in untreated
cells (Fig. 7A). Similarly, as expected, antibodies against Pet
were able to precipitate Pet in Pet-treated cells but not in
untreated cells; a positive control showed that the purified Pet
protein was immunoprecipitated with the anti-Pet antibodies
(Fig. 7A). To determine at what time the two proteins interact
with each other, coimmunoprecipitation experiments were
performed after 30, 60, and 75 min of Pet intoxication (Fig.
7B), which were times used in the previous immunocytochem-

FIG. 6. Colocalization of Pet with the Sec61p translocon. HEp-2 cells incubated with 37 �g Pet/ml for 30 min (A to C) or 55 min (D to F) were
fixed and permeabilized. Pet was visualized with a combination of mouse anti-Pet antibodies and secondary fluorescein-labeled goat anti-mouse
IgG antibodies (A and D), while Sec61� was visualized with a combination of rabbit anti-Sec61� antibodies and secondary Cy5-labeled goat
anti-rabbit IgG antibodies (B and E). Merged images are shown in panels C and F. The arrows indicate sites of protein colocalization.
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ical experiments (Fig. 6). Antibodies against Sec61� were used
to precipitate the Pet-Sec61 complex. After 30 min of intoxi-
cation, Pet was not detected in the Sec61� immunoprecipitate.
This negative result demonstrated the specificity of the Pet-
Sec61� interaction that was detected by Sec61� immunopre-
cipitation after 60 and 75 min of intoxication. Pet was not
detected by immunoprecipitation with an irrelevant antibody
against the cell adhesion molecule cadherin (Fig. 7B). These
data confirmed the results of the colocalization studies shown
in Fig. 6 and demonstrated that after 1 h of trafficking from the
cell surface to the ER, full-length Pet was able to associate with
the Sec61p translocon. The interaction of full-length Pet with
Sec61� also suggested that the entire toxin could be translo-
cated into the cytosol.

All the established ER-translocating toxins undergo AB sub-
unit dissociation before A-chain passage into the cytosol. Since

Pet is not an AB toxin, the possible processing after translo-
cation was verified by detecting the molecular mass of the Pet
protein. HEp-2 cells were treated with Pet for 60, 90, and 120
min, and cellular fractions were obtained from these cells.
Anti-Pet antibodies showed that the cytoplasmic fractions from
Pet-treated cells contained Pet protein as a 104-kDa protein
from 60 min of incubation, and it remained present during
the long times tested (90 and 120 min) (Fig. 7C). Differences
in migration and protein loading were controlled by detect-
ing actin in the same nitrocellulose membrane obtained
from the 8% SDS–PAGE gel probed with anti-actin anti-
bodies (Fig. 7C).

Thus, these results and the results obtained by coimmuno-
precipitating Pet and Sec61 suggest that Pet is the largest
bacterial toxin reported to date that translocates from the ER
by a retrograde pathway and that even if there is some pro-
cessing, there is not a great deal of processing.

DISCUSSION

Many AB toxins move from the cell surface to the ER before
accessing the host cell cytosol (19, 28). There are a variety of
retrograde trafficking pathways to the ER, and the route(s)
followed by a particular toxin appears to be dictated by the
association of the toxin B subunit with its specific host recep-
tor(s). However, all these ER-translocating toxins undergo AB
subunit dissociation before A-chain passage into the cytosol.
Most, if not all, of the ER-translocating toxins also utilize
ERAD and the Sec61p translocon to move from the lumen of
the endomembrane system to the cytosol (27). By following the
intracellular trafficking and translocation of Pet, a non-AB
toxin, we have shown that an AB structural organization is not
required for toxin trafficking to the ER and toxin translocation
to the cytosol.

The aim of this work was to identify the mechanism of Pet
trafficking in intoxicated cells. We have recently documented
Pet binding to the epithelial cell surface, clathrin-dependent
Pet endocytosis, and productive Pet intoxication in the absence
of functional lipid rafts (Navarro-Garcia et al. submitted).
Lipid rafts are involved in the intracellular trafficking of many
ER-translocating toxins, but this association varies from toxin
to toxin and does not appear to be essential for Pet activity
against epithelial cells. Pet intoxication was also not affected by
treatment with NH4Cl. This indicated that Pet does not use the
acidified endosomes as a translocation site for entry into the
cytosol. However, wortmannin-treated cells were very resistant
to Pet. The disruption of PI 3-kinase activity by wortmannin
has a number of negative effects on vesicle transport, including
alterations in (i) passage of the transferrin receptor through
the endocytic pathway (33), (ii) incorporation of the calcium-
independent mannose-6-phosphate receptor into trans-Golgi
network-derived clathrin-coated vesicles (6), (iii) trafficking of
the bradykinin B2 receptor (12), and (iv) movement of ricin
from the early endosomes to the Golgi apparatus (16, 20).
Thus, the inhibitory effect of wortmannin on Pet intoxication
suggests that PI 3-kinase has a functional role in the endocytic
vesicular transport of Pet.

Pet endocytosis was rapid in HEp-2 cells, and Pet was found
in the early endosomes after 8 min of exposure to the toxin;
this colocalization was inhibited at 4°C (data not shown). Ef-

FIG. 7. Pet and Sec61p interaction and full-length Pet transloca-
tion. (A and B) Coimmunoprecipitation of Pet and the Sec61p trans-
locon. (A) Coimmunoprecipitation of Pet by using antibodies against
Sec61� or Pet in cells treated with Pet for 1 h or in untreated cells. IP,
immunoprecipitation. (B) Coimmunoprecipitation at various times.
HEp-2 cells incubated with 37 �g Pet/ml for 30, 60, or 75 min were
lysed, and the resulting supernatants were immunoprecipitated with
either anti-Sec61�, anti-Pet, or anti-cadherin antibodies. A Western
blot analysis of the immunoprecipitated proteins was conducted with
anti-Pet antibodies, followed by a secondary peroxidase-labeled anti-
body. The position of a molecular weight marker is indicated on the
left. (C) Pet detection in cytoplasmic fractions from Pet-treated cells.
HEp-2 cells incubated with 37 �g Pet/ml for 60, 90, or 120 min were
lysed and ultracentrifuged, and soluble cytoplasmic fractions were ob-
tained. Equivalent volumes of the samples were subjected to SDS-
PAGE, transferred to nitrocellulose membranes, and probed with a
rabbit anti-Pet polyclonal antibody (top). Protein loading was moni-
tored by stripping and reprobing with a mouse monoclonal anti-actin
antibody (bottom).
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ficient endocytosis and rapid toxin delivery to the early endo-
somes by either clathrin-dependent or clathrin-independent
mechanisms have been documented for numerous AB-type
toxins as well (31). A fraction of internalized Pet was delivered
to the lysosomes, which has also been observed for AB-type
toxins (29). However, the functional pool of Pet was directed to
other organelles.

Our studies indicate that Pet has the same general trafficking
itinerary that many established AB-type, ER-translocating tox-
ins have. In previous work, we found that BfA inhibited Pet-
induced disruption of the actin cytoskeleton (22). Inhibition of
cell intoxication by BfA has been observed for ER-translocat-
ing toxins such as CT, Shiga toxin, and ricin (3, 25, 40). This
suggested that Pet is also an ER-translocating toxin, but the
additional effects of BfA on endocytic traffic prevented a de-
finitive conclusion to be made concerning the intracellular
trafficking route of Pet. In this work, we verified Pet trafficking
to the Golgi apparatus and ER. Confocal microscopy docu-
mented the sequential movement of Pet to the Golgi apparatus
after 30 min of toxin exposure and to the ER after 45 min of
toxin exposure. This rate of transport is similar to the rates that
have been observed for the Golgi apparatus/ER trafficking of
other ER-translocating toxins (25, 36). Pet lacks a C-terminal
KDEL or RDEL ER retrieval motif, so its retrograde transport
to the ER may occur by a COP-1-independent mechanism like
that observed for Shiga toxin and ricin (2, 7). The orderly
movement of Pet from the endosomes to the Golgi apparatus
and from the Golgi apparatus to the ER strongly suggested
that the ER is the translocation site for Pet.

The ER is an attractive compartment for toxin translocation,
as it contains numerous factors that can facilitate protein pas-
sage into the cytosol. One of these factors is the Sec61p trans-
locon, a gated pore in the ER membrane that is involved in the
ERAD-mediated export of misfolded proteins from the ER
lumen to the cytosol (38). Here we documented that there is a
physical association between full-length Pet and Sec61�, a ma-
jor component of the Sec61p translocon complex. Likewise,
the A chains of CT (30), ETA (15), and ricin (37) have been
shown to interact physically or functionally with the translocon.
Colocalization of Pet and Sec61� in discrete regions of the ER
was further demonstrated by confocal microscopy. These dis-
crete regions may represent the putative ER exit sites de-
scribed for Shiga-like toxin 1 (32) and two other ERAD sub-
strates, the precursor of human asialoglycoprotein receptor
H2a and the free heavy chain of the class I major histocom-
patibility complex (14). Interestingly, the ER distribution of
H2a did not completely coincide with the distribution of the
ER resident protein BiP (14). Segregation of ERAD substrates
into ER subdomain exit sites may explain the different distri-
butions of Pet and calnexin after 60 min of intoxication, a time
at which Pet was still associated with the ER and the Sec61p
translocon. Finally, a functional role for the ERAD system in
Pet intoxication was established by using two mutant CHO cell
lines that exhibit elevated levels of ERAD activity and elevated
levels of resistance to CT, ETA, and ricin (34). Pet and the
ER-translocating AB toxins thus appear to have similar ER-to-
cytosol export mechanisms that involve both ERAD and the
Sec61p translocon.

Although Pet and the ER-translocating AB toxins follow
similar intracellular trafficking and translocation pathways, our

work revealed a unique aspect of Pet intoxication: the entire
104-kDa Pet protein was translocated into the cytosol. Full-
length Pet was detected in the cytoplasmic fraction of Pet-
treated cells, which was separated by 8% SDS–PAGE. This is
in marked contrast to AB toxin translocation, as AB subunit
dissociation precedes or occurs concurrent with A chain pas-
sage into the cytosol. AB toxin processing in the pathogen or
target cell generates a structural state which facilitates holo-
toxin disassembly in the environmental conditions of the ER
lumen. The dissociated A chain then masquerades as a mis-
folded protein in order to promote its ERAD-mediated trans-
location into the cytosol. The fate of the ER-localized B sub-
unit remains unknown, but it is thought that a main function of
the cell-binding B subunit is simply to deliver the A subunit to
its translocation site (17). Pet does not fit into this standard
model of AB toxin trafficking since it does not dissociate into
component parts in the ER and instead can be found in the
cytosol as an intact, 104-kDa protein. The presence of full-
length Pet in the cytosol suggests that multiple domains of the
toxin are required for its cytopathic activity. The large size of
translocated Pet (in contrast to the �20- to 40-kDa translo-
cated toxin A chains) and its export as an intact toxin also
suggest that the ERAD-mediated translocation of Pet may be
mechanistically distinct from the ERAD-mediated transloca-
tion of toxin A chains.

Another difference between Pet and the ER-translocating
AB toxins is the abundance of lysine residues in Pet (4). The A
chains of ER-translocating toxins exhibit a strong codon bias
for arginine over lysine. This is thought to protect the translo-
cated A chain from ubiquitin-dependent proteasomal degra-
dation, as ubiquitin is appended to lysine residues but not to
arginine residues (8). The arginine-over-lysine codon bias is
not found in the toxin B subunits and is not found in Pet. This
suggests that translocated Pet could be readily degraded by the
ubiquitin-proteasome system. This possibility is supported by
the Pet-resistant phenotype of the mutant cell lines with ele-
vated levels of ERAD activity. The observed sensitization to
Pet upon proteasomal inhibition is also consistent with the
hypothesis that the proteasome has a functional role in Pet
degradation. Sensitization was achieved with a suboptimal con-
centration of ALLN (higher inhibitor concentrations were
toxic during prolonged incubations), and the level of sensiti-
zation was similar to the �3-fold level of ricin sensitization
observed in cells treated with a proteasome inhibitor (37).
Efficient toxin degradation in the cytosol could explain, in part,
why such high concentrations of Pet are required to elicit toxic
effects.

Pet is the first SPATE and the first non-AB bacterial toxin
with demonstrated trafficking to the ER and demonstrated
translocation from the ER to the cytosol. Collectively, our
work has shown that the interaction of Pet with the target cell
involves a discrete series of events, including (i) binding to the
cell surface; (ii) uptake into the cell by a clathrin-dependent
endocytic mechanism that does not require lipid rafts; (iii)
entry into early endosomes; (iv) transfer from endosomes to
the Golgi apparatus; (v) retrograde vesicular transport from
the Golgi complex to the ER; (vi) translocation of the entire
toxin to the cytosol, possibly by the ER-associated degradation
pathway; and (vii) cleavage of fodrin to induce cytoskeletal
damage (1, 24). The pet gene thus contains all the necessary
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information to mediate toxin autosecretion from E. coli, toxin
internalization and trafficking in the host cell, toxin transloca-
tion into the host cell cytosol, and toxin damage to the host cell
cytoskeleton via fodrin cleavage.
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