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Mutation is the basis of adaptation. Yet, most mutations are detrimental, and elevating mutation rates will
impair a population’s fitness in the short term. The latter realization has led to the concept of lethal
mutagenesis for curing viral infections, and work with drugs such as ribavirin has supported this perspective.
As yet, there is no formal theory of lethal mutagenesis, although reference is commonly made to Eigen’s error
catastrophe theory. Here, we propose a theory of lethal mutagenesis. With an obvious parallel to the epide-
miological threshold for eradication of a disease, a sufficient condition for lethal mutagenesis is that each viral
genotype produces, on average, less than one progeny virus that goes on to infect a new cell. The extinction
threshold involves an evolutionary component based on the mutation rate, but it also includes an ecological
component, so the threshold cannot be calculated from the mutation rate alone. The genetic evolution of a large
population undergoing mutagenesis is independent of whether the population is declining or stable, so there
is no runaway accumulation of mutations or genetic signature for lethal mutagenesis that distinguishes it from
a level of mutagenesis under which the population is maintained. To detect lethal mutagenesis, accurate
measurements of the genome-wide mutation rate and the number of progeny per infected cell that go on to
infect new cells are needed. We discuss three methods for estimating the former. Estimating the latter is more
challenging, but broad limits to this estimate may be feasible.

Some viral infections for which vaccines are unavailable or
ineffective can be treated with antiviral drugs. One of the more
interesting mechanisms suspected for some antiviral drugs is
lethal mutagenesis, pushing a within-host population of viruses
to extinction by overwhelming it with an elevated mutation
rate. Lethal mutagenesis has emerged as a concept and prac-
tice without much theoretical underpinning. Consequently, it is
not even clear how to make the measurements to ascertain
whether lethal mutagenesis is operating. Much of the viral
literature equates lethal mutagenesis with the error catastro-
phe originally proposed by Eigen in the context of quasispecies
(1, 13, 27). Indeed, the very idea of lethal mutagenesis seems to
have been inspired by theories of the error catastrophe. Iron-
ically, the two concepts are not the same: an error catastrophe
is an evolutionary shift in genotype space, whereas extinction is
a demographic process, a drop in the absolute abundance of
individuals in the population. An error catastrophe can delay
or even prevent extinction by shifting the population to geno-
types that are robust to mutation (see below), while lethal
mutagenesis is by definition a process that pushes the popula-
tion to extinction.

Despite the confusion over error catastrophes and their re-
lation to extinction, empirical evidence broadly supports the
principle of lethal mutagenesis. Chemical mutagens have been
used to artificially increase error rates in a variety of RNA

viruses, including vesicular stomatitis virus (VSV) (33, 39),
human immunodeficiency virus type 1 (HIV-1) (40), poliovirus
type 1 (12, 33), foot-and-mouth disease virus (55), lymphocytic
choriomeningitis virus (30), Hantaan virus (54), and hepatitis
C virus (66). The drugs severely reduced viral titers and in
some cases achieved extinction. Thus, lethal mutagenesis ap-
pears to have merit in principle and also to be biochemically
feasible with various drugs.

Whereas the theory of error catastrophe has been developed
and expounded for decades, the theory of lethal mutagenesis
remains to be developed, which is our purpose here. More
specifically, our intent is to synthesize existing empirical and
theoretical work to explain the quantities relevant to lethal
mutagenesis. None of the theory offered here is specifically
original; rather, it is the application of simple models and the
interpretation of those results in the context of empirical meth-
ods that makes this paper original.

Understanding the genetic and demographic bases of pop-
ulation extinction has been the goal of many papers in the
evolutionary and the ecological literature. The ecological lit-
erature has addressed population size and inability to adapt as
key features of extinction (21, 37, 38). In the evolutionary
literature, a major focus has been to discover the reason why
parthogenetic plants and animals do not persist (4, 45). Pro-
cesses such as mutational meltdown via Muller’s ratchet and
fixation of deleterious genes in small populations have been
entertained as mechanisms of extinction (31, 42, 47). Muller’s
ratchet is the progressive accumulation of deleterious muta-
tions in finite, asexual populations. If back mutations cannot
occur, then any finite asexual population will eventually reach
the point at which each genome carries at least one deleterious
mutation. The mutation-free wild-type genome is forever lost
from the population at this point. By the same mechanism,
eventually each genome in the population will carry at least
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two mutations and then at least three, and so on, and all
genomes with fewer mutations are forever lost and cannot be
reconstructed without recombination.

Lethal mutagenesis is distinct from those processes because
the latter require small populations. Lethal mutagenesis is a
deterministic process that will overwhelm the largest of popu-
lations. Furthermore, the time scale over which lethal mu-
tagenesis operates is potentially much shorter than the time
scale usually attributed to processes such as Muller’s ratchet,
one of the few other extinction mechanisms that can operate in
relatively large populations (50). Viral extinction may occur at
two levels: (i) a clearance of the infection within one host or
(ii) extinction of the virus across the entire population of hosts.
There are mathematical similarities between the two cases but
profound biological differences. Historically, the domain of
lethal mutagenesis has been extinction within a host, which is
what we consider here. To eradicate a virus by lethal mutagen-
esis across the entire population of hosts would require treat-
ment of virtually every infected host throughout the time of its
infection, which is not practical. Below, therefore, the use of
the word “population” in reference to viruses refers to the
viruses within one host.

THEORY

Approach and models. Lethal mutagenesis is a form of ex-
tinction. Most basically, it requires that deleterious mutations
are happening often enough that the population cannot main-
tain itself, but it is otherwise no different from any other ex-
tinction process in which fitness is not great enough for one
generation of individuals to fully replace themselves in the
next. (We consider viral fitness to be the average number of
progeny capable of infecting new cells produced by a specific
viral genome. Thus, the more viable progeny a virus produces,
the higher its fitness.) Although lethal mutagenesis is a genetic
(evolutionary) phenomenon because it is driven by mutations,
it is not an exclusively genetic one because it also depends on
absolute reproductive rates. Consequently, there will be no
universal mutation rate that signals extinction for all viruses or
even for the same virus under different conditions. Consider
the following example. For a virus to establish an infection in
the body, it must produce an excess number of progeny,
whereby one infected cell gives rise, on average, to more than
one new infected cell; otherwise, the infection will not spread.
Lethal mutagenesis is a mechanism by which that excess is
curtailed and rendered negative. If the excess is 49, whereby
one infected cell creates 50 new infected cells, mutagenesis will
need to be high enough to harm 98% of the progeny; if the
excess is only one, mutagenesis will need to be high enough to
harm only 50% of the progeny. Thus, the ecology or natural
history of the infection will determine how much mutagenesis
is required for extinction, and that dependence on ecology
means that there is no universal genetic law for lethal mu-
tagenesis.

The dependence of lethal mutagenesis on fitness means that
it indeed contains an evolutionary component in addition to
the ecological one. This evolutionary component requires a
detailed understanding of the relationship between mutation
rate and fitness, and that relationship is affected by how fitness
changes with increasing numbers of mutations in the genome.

These evolutionary properties defy intuition, so we resort to
mathematical models. The models will proceed in three steps.
First, we specify how fitness declines with increasing numbers
of mutations in the genome. Here, we consider three simple
models. Second, we consider the relationship between muta-
tion rate and average fitness when the population has reached
genetic equilibrium. As has already been established in the
population genetics literature, this relationship is a simple one
that applies across broad classes of models. It is also an im-
portant part of the lethal mutagenesis threshold. Third, we add
the ecological component to the lethal mutagenesis model to
achieve the threshold.

General assumptions. Our models make several simplifying
assumptions about the viral mutation process and mutational
effects on viral fitness. Our approach best suits an infection
that, except for treatment, is maintained indefinitely. Fore-
most, the viral population size is very large and the target cell
population is even larger. We assume discrete generations in
an ongoing infection process in which virus in each infected
cell is subjected to a genomic-mutation rate of U mutations per
genome per replication. Viral progeny are released and go on
to infect new cells, where they are again subjected to a muta-
tion rate of U per genome.

For all models, mutations occur at random and are equally
likely to affect any site in the genome. Under this assumption,
the number of mutations in a genome follows a Poisson dis-
tribution. The Poisson distribution assigns a probability of oc-
currence to each possible number of mutations that may arise
in a genome (i.e., 0, 1, 2, . . . , �) and is characterized by a single
parameter, U, which gives the mean number of mutations per
genome. In what follows below, we neglect finite population
effects on mutation frequencies and assume that recombina-
tion is absent and that all mutations are unique and either
deleterious or neutral; the possibilities of beneficial mutations,
compensatory evolution, parallel evolution, and reversion are
consequently absent. Since we assume that all mutations are
either neutral or deleterious, we can subdivide the mutation
rate U into component Un, comprising purely neutral muta-
tions, and component Ud, comprising mutations with a (dele-
terious) fitness effect, and write U � Un � Ud.

All models assume that the fitness of individuals with j
deleterious mutations is independent of the identity of those
mutations. For convenience and without loss of generality,
the relative fitness of mutation-free genotypes is set at unity
(w0 � 1); models that require absolute fitnesses are indi-
cated where needed and parameterized accordingly.

Three models. We consider three simple models (Fig. 1).
None of these models is considered biologically realistic, but
they collectively span the spectrum of possibilities usually ad-
dressed. (i) In the multiplicative fitness landscape, each addi-
tional deleterious mutation reduces viral fitness by a fraction s,
independently of the number of mutations already present,
and the fitness of a genotype carrying j nonneutral mutations is
wj � (1 � s)j. (ii) In the Eigen two-class fitness landscape, the
wild-type genotype has one fitness (arbitrarily set to 1) and all
genotypes with one or more nonneutral mutations have the
same (lower) fitness (18, 19). We denote the fitness of the
non-wild-type sequences by wj � 0 � 1 � s. Note that mutations
in the Eigen model are conditionally neutral: each mutation
individually has a fitness effect of 1 � s, but multiple nonneu-
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tral mutations have the same fitness effect as a single nonneu-
tral mutation. (iii) In the truncation landscape, a small number
of mutations can be tolerated without effect, but any genotype
carrying too many mutations is inviable. More specifically, ge-
notypes carrying 0 to k nonneutral mutations have fitness levels
of 1, and genotypes with k � 1 or more mutations are dead
(wj � 1 for j � k and wj � 0 for j � k). Note that mutations in
the truncation landscape are conditionally deleterious: each
mutation individually has no fitness effect, but k � 1 or more
mutations are lethal.

The multiplicative model assumes that mutations have inde-
pendent effects; hence, there is no genetic interaction (epista-
sis). The Eigen model represents an extreme case of antago-
nistic epistasis (in which mutations have reduced impact levels
as they accumulate), and the truncation model represents an
extreme case of synergistic epistasis (in which mutations have
increased impact levels as they accumulate). The Eigen model
is well known because it exhibits an error threshold, as dis-
cussed below.

RESULTS

Mean fitness level at equilibrium declines exponentially
with the deleterious-mutation rate. When a population is first
subjected to a sustained, increased level of mutation, fitness
will typically decline over several generations, until it eventu-
ally levels off and reaches a new equilibrium. The reason for
this gradual approach to the new equilibrium is that mutations
accumulate with each succeeding generation. The ultimate
drop in fitness is due to the total burden of mutations from
many preceding generations. At equilibrium, further accumu-
lation of deleterious mutations is fully counteracted by selec-
tion against those mutations already present. Whether mu-
tagenesis is lethal (ultimately causes population extinction) will
depend in part on this equilibrium fitness.

For each of the three models considered here, with an ex-
ception noted below, the mean fitness at equilibrium (w� ) is
simply the Poisson fraction of mutation-free genotypes (not
counting neutral mutations), w� � e�Ud (35). It is remarkable
that this equilibrium is independent of the selective effects of
those mutations and independent of epistasis (in the absence
of recombination). It is important to use the deleterious-mu-
tation rate Ud rather than the overall genome-wide mutation
rate U in this expression (61). Recall that beneficial mutations
are not allowed in our models.

This relationship between mutation rate and mean fitness
level does not hold at high mutation rates in the Eigen error
catastrophe model: an error catastrophe actually maintains
fitness above e�Ud (Fig. 2). An error catastrophe is an evolu-
tionary phenomenon in which high-fitness genotypes are lost
from the population because they are sensitive to mutations,
and the population evolves to genotypes that are low in fitness
but robust to the effects of mutations. Thus, mean fitness in the
Eigen model behaves as a hybrid of two processes. At low
mutation rates, fitness declines exponentially with increasing
mutation rate, as in the other models. This relationship applies
up to the error threshold. At mutation rates above the error
threshold, fitness stops declining: there is no change in mean
fitness level because all genotypes are insensitive to mutation.
Therefore, contrary to common perceptions, in the Eigen two-
class fitness landscape an error catastrophe actually retards the
extinction of the population.

In conclusion, except at the error catastrophe, mean fitness
level depends entirely on the deleterious-mutation rate, not on
the fitness effects of mutations or on the way mutations inter-
act. The higher the mutation rate, the lower the population’s
fitness. This result holds for infinite, asexual populations; for
sexual populations, it holds only if there is no epistasis (35).
This result also relies on the assumption of no back mutation.
When this assumption is relaxed, mean fitness is determined by
fitness effects (53, 61, 63), and low population sizes amplify this
effect (36). Nevertheless, w� � e�Ud is a good first-order ap-
proximation even in these cases (8). Note also that none of the
results that we present in the following sections are strictly
dependent on the assumption of no back mutations. We em-
ploy this assumption mainly for mathematical simplicity and
clarity of presentation.

FIG. 1. Fitness models considered in this work. The multiplicative
model [wj � (1 � s)j, shown for s � 0.5], the Eigen model (w0 � 1,
wj � 0 � 1 � s, shown for s � 0.5), and the truncation model (wj � 1
for j � k, wj � 0 for j � k, shown for k � 2) are shown. The mutation
number j counts nonneutral mutations only.

FIG. 2. Equilibrium mean fitness level as a function of deleterious-
mutation rate Ud. The solid curve is e�Ud, which is the equilibrium for
all models in which an error catastrophe is absent or has not occurred.
The dashed line is the mean fitness level for the simple Eigen model
beyond the error catastrophe, in which the best genotype has a fitness
level of 1.0 and all mutants have fitness levels of 0.1 (no back mutations
are allowed). In models without error thresholds, the mean fitness
levels decay to arbitrarily small values for high mutation rates, whereas
an error catastrophe slows down this decay and, in the simple Eigen
model, sets a lower bound on the mean fitness level of the population.
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An extinction criterion. The results described above provide
the mean fitness level on a relative scale, in which the best
(wild-type) genotype has a fitness level of 1. Unfortunately,
models of relative fitness (which include all of Eigen’s error
threshold models) do not enable direct calculation of extinc-
tion rates, because actual numbers of offspring cancel out in
those types of models (see the supplemental material). The
difference between extinction and survival depends on actual
birth rates or numbers of offspring and thus depends on abso-
lute fitness (6, 60, 62). Extinction is a demographic phenome-
non. Although the relationship between mutation rate and
population mean fitness level is central to the calculation of
extinction conditions, knowledge of only mean relative fitness
level is insufficient to determine extinction, as we show now.

Deterministically, a decline in the population size will occur
when the average number of offspring per parent is less than 1
for all genotypes:

number of successful offspring per parent � 1 (1)

If the inability of parents to replace themselves continues in-
definitely, population extinction will ultimately result (neglect-
ing limiting cases of infinitesimal declines). To extend this
result to lethal mutagenesis, it is necessary to separate the
evolutionary (mutational) and demographic components. If we
define R as the number of successful viral offspring released
per cell in the absence of mutation, the general condition for a
decline in the population size is then

w� R � 1 (2)

(see the supplemental material). This formula multiplies rela-
tive fitness level (w� ) by the maximum number of offspring per
parent to create a measure of absolute fitness, i.e., number of
progeny. The w� term represents the evolutionary component,
and the R term represents the demographic or ecological com-
ponent; our use of R is in fact borrowed from the demography
literature.

Formally, R applies to the wild-type, mutation-free genotype
and is the number of progeny released from one infected cell
that go on to establish infections in other cells. The reason for
basing R on the best or mutation-free genotype is so that all
effects of mutation may be subsumed into w� . This dependence
on the best genotype poses some empirical challenges when
these quantities are being measured. These difficulties will be
addressed below, although one of those dependencies will be
overcome by a modification introduced next.

If both terms in equation 2 are constant over time, then
condition 2 ensures population extinction. However, R may not
be constant. As is recognized in the literature on demography
(2), the value of R will often be density dependent, largest
when the population is at its lowest density. If, by the same
argument, R increases as the viral population nears extinction,
inequality 2 may be satisfied initially but later reverse and lead
to a stable population reduced in size. A more stringent con-
dition is thus the replacement of R with Rmax, representing the
maximum reproductive rate of the mutation-free genotype
across all viral population densities. Using the results for the
equilibrium mean fitness level at mutation rate Ud, equation 2
is easily modified to provide a sufficient condition for lethal
mutagenesis in the absence of an error catastrophe:

e�Ud Rmax � 1 (3)

This extinction criterion can be justified from two perspectives.
As suggested above, this condition merely states that the av-
erage number of successful offspring per infected cell is less
than 1 once the mutation-selection equilibrium has been at-
tained (successful offspring are those that go on to infect new
cells). The population size must then decline. A different jus-
tification for this result comes from the theory of branching
processes (32). e�Ud is both the mean fitness level and also the
fraction of offspring with no nonneutral mutations. If this num-
ber is so low that the best genotype produces (on average) less
than 1 viable offspring that successfully initiates a new infec-
tion, then the population will go extinct eventually.

Recall that e�Ud is the mean fitness level in all models lacking
an error threshold and in the Eigen model before the error
catastrophe. It may be impossible to satisfy condition 3 in the
Eigen model if the error threshold occurs before the mean
fitness level drops to the requisite value e�Ud. Extinction is
impossible in this specific case because all mutant genotypes
have absolute fitness levels high enough to replace themselves,
and fitness cannot drop lower. Of course, this extreme case is
unrealistic, but it serves to illustrate the possibility that some
realistic models may not obey criterion 3.

Dynamics of extinction: population decline may not happen
immediately. It is instructive to consider some numerical ex-
amples to develop a sense of the overall process of lethal
mutagenesis. Figure 3 shows the decline in fitness over the first
10 generations of exposure to mutation rate Ud � 2 for each of
our three models. The equilibrium mean fitness level is 0.135
for this mutation rate in all three models. There are five curves
in each graph because two of the models are illustrated with
two values each for the selection coefficient s. The calculations
assumed a starting genotype lacking mutations, and the curves
represent the initial changes in fitness as the viral population
evolves toward equilibrium. The data shown in Fig. 3A are the
same as those in Fig. 3B, except that the mean absolute fitness
level on the vertical scale in Fig. 3B is exactly twice what it is
in Fig. 3A: the mutation-free genotype was assumed to have
four offspring in Fig. 3A and eight offspring in Fig. 3B. Gene
frequency evolution is thus the same for the corresponding
curves between Fig. 3A and B, but the two graphs differ in
whether the outcome is ultimately extinction or survival. In
both graphs, the extinction threshold is an absolute fitness level
of 1, indicated with the horizontal black line. Extinction (lethal
mutagenesis) would never occur for any of the curves in Fig.
3B but will eventually occur for all the curves in Fig. 3A. The
reason for the difference in extinction is evident from our
criterion, e�UdRmax � 1. Thus, 0.135 � 4 � 0.54 � 1 implies
extinction in Fig. 3A but 0.135 � 8 � 1.08 � 1 implies survival
in Fig. 3B. All but one of the curves in Fig. 3A have crossed the
extinction threshold by generation 10; hence, their populations
would be declining in generation 10; one curve in Fig. 3A has
not crossed the threshold by generation 10 but would by gen-
eration 12. Even after crossing the extinction threshold, the
population may persist for hundreds or thousands of genera-
tions, depending on its initial size and how close to 1.0 the
absolute fitness level remains at the mutation-selection equi-
librium.

These graphs emphasize two points. First, the same gene
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frequency dynamics operate regardless of whether the out-
come is extinction or survival (while population size remains
large). Thus, there is no genetic signature of lethal mutagenesis
to distinguish it from the same mutagenesis and relative fitness
effects observed when the population survives. In particular,
lethal mutagenesis operating in large populations is not a run-
away mutation accumulation in which mutations increase in-
definitely (although stochastic effects will augment mutation
accumulation once the population becomes small). The ecol-
ogy of the infection determines whether the outcome is extinc-
tion or survival via its effect on offspring number, Rmax, but the
genetics behaves the same. Second, lethal mutagenesis is usu-
ally a progressive decline. Unless mutation rates are elevated
to extreme levels, absolute fitness may stay above the extinc-
tion threshold for several generations, until mutations have
accumulated. Even after the threshold is breached, reproduc-
tion continues, just not enough to maintain population size.
This prediction is compatible with results from mutagenesis
experiments indicating that viral extinction is not sudden. For
example, the presence of the base analog 5-hydroxydeoxycyti-
dine resulted in the loss of HIV-1 infectivity after 9 to 24 serial
passages in human cells (40). Similarly, 5-fluorouracil or 5-aza-
cytidine caused occasional extinction of foot-and-mouth dis-
ease virus populations after 11 to 21 serial passages (55).

Estimating parameters of lethal mutagenesis. The extinc-
tion threshold for lethal mutagenesis involves two components.
One is evolutionary and depends only on the deleterious-mu-
tation rate. The other is demographic, an absolute fecundity
specific to the infection, and applies to the best genotype. Both
present difficulties in estimation, especially in vivo. However,
the deleterious-mutation rate is potentially the most important
and most empirically tractable of the two.

Measuring the deleterious-mutation rate, Ud. The meaning
of Ud is straightforward: it is the genomic rate of deleterious
mutations per generation. Using the tools of molecular biol-
ogy, this value is perhaps most easily sought as the product of

two numbers, the genome-wide mutation rate U times the
fraction of mutations that are deleterious, � � Ud/U. The
proportion of mutations that are deleterious, �, has been es-
timated as 70% in VSV for randomly generated point muta-
tions (40% lethal, 30% viable but deleterious [51]). Direct
estimates of � for other viruses are not available. Interestingly,
however, our models can provide an indirect estimation of a
component of �, the fraction of mutations that are nonviable
mutations. We obtain this estimate by reanalyzing data from a
study that addressed the impact of the mutagen ribavirin on
poliovirus type 1 infectivity (12). Mutations were counted by
sequencing of biological clones obtained from isolated PFU,
and infectivity was measured as the number of PFU per stan-
dard amount of genomic RNA. These two variables are plotted
in Fig. 4b of reference 12. To carry out our analysis, we have to
assume that the observed numbers of mutations equal the
mutation rates (U). Exact equality exists only in the first gen-
eration after mutation (Table 1), but equating numbers with
rates seems a reasonable approximation in this case because
viruses were sequenced only a few replication rounds after
mutagenesis. Since the infectivity assay distinguishes only via-
ble and nonviable mutants, we must take into account only
neutral (s � 0) and lethal (s � 1) mutations. Equation S8 in the
supplemental material takes the following form here: infectiv-
ity � e�	m, where 	 is the fraction of lethal mutations and m
is the mutation count. (Note that � measures the fraction of
deleterious mutations, which is a superset of the lethal muta-
tions. We always have 	 � �.) A least-squares regression yields
an estimate of 	 � 0.33 
 0.13, which means that approxi-
mately one-third of the mutations produce noninfectious viri-
ons. This result is similar to that obtained for VSV in the
absence of drugs. Hence, even though the effects of individual
mutations depend on the environment, the overall fraction of
lethal mutations might be roughly constant for different RNA
viruses in different environments. It would obviously be most

FIG. 3. Decay in average fitness level over the initial 10 generations of mutagenesis with mutation rate Ud � 2. All models illustrated have the
same equilibrium mean relative fitness level of e�2 � 0.135. Multiplicative models are indicated with circles (filled, s � 0.1; open, s � 0.5),
truncation models by squares (open, k � 1; filled, k � 3), and the Eigen model by filled diamonds (s � 0.9). Graphs A and B represent the same
changes in relative fitness level but different absolute fitness levels (relative fitness levels have been multiplied by R � 4.0 in A and by R � 8.0 in
B for conversion to absolute fitness levels). The extinction threshold is shown as a thick black line at the absolute fitness level of 1. All populations
in panel A will eventually go extinct, although one of the multiplicative models does not cross the extinction threshold until generation 12. None
of the populations in panel B will go extinct, because their intrinsic fecundities (R) are high enough to offset the deleterious effects of a mutation
rate of Ud � 2. Once a curve drops below the extinction threshold, the population size begins declining, but the time until complete loss of the
population depends on initial population size and may take many generations. Gene frequency dynamics are the same in both graphs despite the
different outcomes in extinction.
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useful to lethal mutagenesis applications if the value of � were
relatively constant.

Whereas �, the fraction of all mutations that are deleterious,
might be independent of context and thus be estimable from
experiments done outside the context of specific drugs, muta-
tion rate estimations must be carried out in the presence of the
mutagenic drug. Three approaches to mutation rate estimation
have been commonly used. Each has its own strengths, but
none is free of difficulties, as summarized in Table 2.

The classic method for estimating mutation rates is the
Luria-Delbrück fluctuation test (41; see reference 65 for a
review): an easily selected phenotype is scored in replicate
cultures inoculated with phenotype-negative genotypes. For
example, a small inoculum of an antibody-sensitive virus would
be used to infect a number of identical cultures without anti-
body, grown for a period of time and then plated in the pres-
ence of the antibody to test for the appearance of resistant
mutants. In its simplest version, the proportion of phenotype-

negative cultures is used to estimate the mutation rate from the
formula P0 � e���N; P0 is the proportion of mutant-free cul-
tures, �N is the change in population size during the growth of
the cultures, and � is the rate per replication event at which the
phenotype converts into the selectable state. Under some ad-
ditional assumptions, it is possible to estimate � from the
entire observed distribution of the number of phenotype-pos-
itive individuals per culture (24, 56). To extrapolate phenotypic
mutation rates to genome-wide mutation rates (U), it is further
necessary to know the number of different mutations that give
rise to the selectable phenotype. This method has been used to
estimate mutation rates for influenza A virus (57), measles
virus (52), bacteriophage 
6 (11), and VSV (24). Extrapola-
tion to genomic error rates was done for the last three viruses,
yielding U � 1.4, U � 0.03, and U � 0.07, respectively. Note
that this extrapolation may be subject to a potentially large and
difficult-to-quantify error. If there are few ways of mutating to
the phenotype, then the estimates obtained from the Luria-
Delbrück assay may deviate considerably from the genomic
average because site-to-site variation can be large. One should
also consider that biases with Luria-Delbrück estimates may
exist when a substantial fraction of mutations are lethal, but we
have not explored this possibility.

A second approach to estimating the mutation rate is to
measure the number of mutations in sequences (mutation
count), as has been done in several mutagenesis experiments
(12, 29, 30, 33, 40, 54, 55, 66). The difficulty is that there is no
feasible method for converting numbers of mutations into a
mutation rate. In particular, when mutation-free templates are
used initially, the observed numbers of mutations increase with
each succeeding generation, counteracted by selection against
the mutations. The net accumulation thus depends on the
fitness effects of the mutations, mutation rate, and time; the
observed accumulation will not generally allow a unique de-
termination of mutation rate without independent knowledge
of fitness effects and number of generations. If all mutations
are neutral, the number of mutations increases by the neutral
mutation rate each generation, whereas if all mutations are
lethal, then mutations do not accumulate, because mutated
genomes die. In between these two extremes, any observed
rate of mutation accumulation could stem from a high rate of
highly deleterious mutations or a low rate of weakly deleteri-

TABLE 1. Number of mutations per genome equals the mutation
rate only in the first generation before selection

Generation

Avg no. of mutations/genome in modela:

Multiplicative Threshold
(k � 2) Eigen

1 (before selection) U U U

1 (after selection) U � sUd U �
Ud

2

1 � Ud
U �

Udse�Ud

1 � s � se�Ud

2 (before selection) 2U � sUd 2U �
Ud

2

1 � Ud
2U �

Udse�Ud

1 � s � se�Ud

Equilibriumb (before
selection)

Ud/s 2 � Ud
Ud

1 � (1 � s)eUd

a Table cells give the average numbers of mutations per genome as functions
of overall mutation rate U, deleterious mutation rate Ud, generation number, and
model. The models assume that mutations occur as the genome is replicated and
packaged, with selection ensuing later, when that genome infects a new cell.
Thus, lethal mutations would be observed in the genomes of individual virus
particles (hence before selection) but not in a consensus sequence obtained from
a plaque (after selection). The process of mutation alone increases average
mutation number with each generation, whereas selection reduces it.

b Equilibrium number of deleterious mutations only. The number given for the
Eigen model assumes that an error catastrophe has not occurred; after the error
catastrophe, the equilibrium number of mutations is infinite if unlimited muta-
tions are allowed. The equilibrium for the multiplicative model was given in
reference 31 and that for the Eigen model in reference 59.

TABLE 2. Summary of methods for estimating mutation rates and their respective advantages and drawbacks

Method What is measured Advantage(s) Drawbacks

Luria-Delbrück Rate of mutation to a
(selectable) phenotype

Easily assayed for appropriate
phenotypes

Mutation rate must be converted
to entire genome; does not
estimate fraction of mutations
that are deleterious; few
phenotypes can be assayed;
not feasible in vivo

Mutations in genomic
sequences

Accumulated no. of mutations Mutations can be observed even
in the absence of detectable
phenotypes; counts can be
genome-wide

Accumulated total is reduced by
selection and increased by no.
of generations; deleterious
fraction is unknown

Mutation accumulation Declines in rate and variance
of fitness with population
bottlenecks

Provides a mutation rate for
deleterious effects, omitting
neutral mutations; genome-
wide; easily assayed

Mutations with large deleterious
effects are omitted; protocol is
prone to recovery of beneficial
mutations that bias the
estimates; not feasible in vivo

VOL. 81, 2007 THEORY OF LETHAL MUTAGENESIS 2935



ous mutations. Table 1 shows that the number of mutations per
genome equals U only in the first generation. After this point,
the number of mutations per genome depends on the delete-
rious-mutation rate, the generation number, and the selective
effect of mutations. We are unaware of any empirical study in
which these considerations have been applied when estimating
mutation rates from mutation frequencies.

Although there are many complications in estimating muta-
tion rates from counts, we see from Table 1 that one simple
method may be feasible: expose viral genomes to a single
generation of mutagenesis and measure the counts before se-
lection. For example, cells could be infected at a multiplicity
near 1 in the presence of a drug. The drug may prolong the
infectious cycle, but as long as nearly all cells are infected
initially, there will be few cells to be infected in second cycles.
Either the virus should kill the cell or the infected cell should
resist superinfection for this method to give meaningful results.
Individual virions from the resulting culture are then se-
quenced directly, in the absence of any subsequent infection or
other biological amplification process that would cause a bias
against deleterious mutations.

Yet, even this simple protocol, which is technically feasible
with many viruses, gives a direct estimate of mutation rate only
if viral replication within a cell does not select against muta-
tions that arise within that cell (as when the infecting genome
is the template for all copies). If the nature of replication is
unknown or differs from the single-template mechanism, one
solution may be to measure mutation rates in parts of the
genome that would not be subject to selection within the cell.
Another limitation of this method is that mutations may have
accumulated prior to the beginning of the experiment or may
be introduced by reverse transcription during the synthesis of
the cDNA. Sophisticated technology has been developed for
measuring mutation rates during a single infection cycle and in
the absence of selection in retroviruses (see reference 44 for a
review). This technology, based on the use of genetic construc-
tions that carry nonviral genes, offers a valuable tool for lethal
mutagenesis experiments. These genes are partially released
from selection and hence can be used to estimate mutation
rates more accurately. A similar approach was undertaken
using a cognate mutational target in a study with tobacco
mosaic virus in which the viral gene that encodes the move-
ment protein was complemented by a plant transgene (43).

The two methods described above provide estimates of mu-
tation rates but require independent estimates of the fraction
of deleterious mutations. A third method, mutation accumu-
lation, partly overcomes this problem. Mutation accumulation
experiments offer a method for directly estimating deleterious-
mutation rates, but only for viable mutations. For VSV (20)
and bacteriophage �6 (7), this method has yielded estimates of
Ud � 1.2 and Ud � 0.07, respectively. (Note that these values
are not directly comparable to the Luria-Delbrück estimates of
U for the same viruses because of differences in the method-
ologies.) Starting from a single clone, several lineages are
founded and propagated at the lowest possible population size,
which is typically done as plaque-to-plaque transfers. Small
population size facilitates the accumulation of all nonlethal
mutations, even deleterious ones, through genetic drift. To-
gether, the average rate of fitness decline and the variance
between lines enable estimates of the deleterious-mutation

rate and the average deleterious effect; the Bateman-Mukai (3,
46), maximum-likelihood (34), and minimum-distance (25)
methods are different statistical approaches to these estimates.
A benefit of estimating mutation rates by this method is that
neutral mutations do not affect the estimates, and of course,
neutral mutations are also not relevant to lethal mutagenesis.
On the other hand, unlike for experiments with higher organ-
isms, it is impossible to maintain population size to a single
individual, so some degree of selection is inevitable (e.g., dur-
ing plaque outgrowth), introducing a bias against strongly del-
eterious mutations. As a consequence, lethal mutations will be
completely missed. Another limitation of this design for viruses
is that plaques may become undetectable at very low fitness
levels, a situation that is particularly likely in mutagenized
populations.

Measuring maximum fecundity, Rmax. The second parame-
ter in the extinction threshold is a type of fecundity, Rmax. R is
the average number of offspring per cell infected by the mu-
tation-free genotype that would go on to establish new infected
cells. This parameter specifically applies in vivo, so its mea-
surement is not trivial. Some histological observations on
plants inoculated with tobacco mosaic virus suggest that R may
be as low as 3 to 6 particles per cell (43).

It is easiest to contemplate the fecundity value R as the
product of two parameters, S and b (R � Sb). The parameter
S is the success rate, corresponding to the survival of mutation-
free progeny in establishing infections in new cells, and b is the
burst size, i.e., the number of viable viral offspring released
from a cell infected by the mutation-free genome. In general,
b is a number much larger than 1, but S is always strictly
smaller than 1, being reduced by senescent decay, immune
clearance, and other properties specific to the infection in vivo.
Thus, R may be much less than the number of offspring (burst
size) per infected cell, because the success rate, or survival of
progeny virus, may be low. Additionally, the values of S (and
possibly b) may be density dependent, larger when the viral
load is low and smaller when the viral load is high. Indeed, for
a viral infection to reach an equilibrium density, one or both of
these quantities must decline as the infection grows. Therefore,
as mentioned previously, the R value sufficient to satisfy our
extinction criterion must be the maximum across all stages of
the infection, Rmax. Otherwise, mutagenesis might reduce viral
load down to the point that inequality 3 is reversed.

The mutagenic drug may impair b or S directly, contributing
to achievement of the lethal threshold by nonmutagenic pro-
cesses. For example, ribavirin negatively impacts viral fitness by
possibly four molecular mechanisms besides mutagenesis (28).
Those effects facilitate satisfaction of the extinction criterion of
equation 3 by reducing Rmax. Indeed, if a mutagenic drug is so
harmful to viral reproduction that Rmax is �1, extinction will
occur regardless of the mutagenic effect. (In general, Fig. 4 can
be used to calculate the combination of effects on Ud and Rmax

that will cause extinction together.)
There are several difficulties in estimating Rmax and thus b

and S. First, the model assigns these values to the wild-type,
mutation-free genotype. It may not be possible to confine as-
says to mutation-free genotypes or even to know which ge-
nomes are mutation free. This difficulty could lead to under-
estimation of both parameters, as genomes with accumulated
mutations will likely have lower values of b and S than those
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that are mutation free. Another complication is that mutagen-
esis may confound the estimates of b and S. For example, the
estimate of b, the number of viral progeny produced per in-
fected cell, might seem to be obtained easily, but mutations
arising in progeny that kill or otherwise harm them may inter-
fere with progeny counts (which are typically done by plaque
assays) and thus lead to underestimation of b. Finally, the
estimate of b will likely depend on whether b was measured at
a low or high multiplicity of infection.

The difficulties in obtaining direct estimates of Rmax may
require working with crude upper limits and indirect estimates.
Fortunately, great accuracy in the estimate of Rmax is not
essential, because the mutation rate satisfying equation 3 ap-
pears as an exponent, so small changes in Ud can overwhelm
large differences in Rmax (Fig. 4). A gross upper limit to Rmax

might be obtained by setting S to 1 and measuring b in cell
cultures. For example, for bacteriophage 
6, the burst size was
estimated as b � 76 PFU per cell (11), whereas in an animal
virus, such as VSV, a single infected cell can often produce
several thousand particles (22, 23). These estimates for b are
not fully independent of the mutation rate, as mentioned
above, but they give an idea of the order of magnitude of b for
cellular cultures in the absence of mutagens. If we replace Rmax

by b in equation 3, we have

e�Udb � 1 (4)

This is a crude but, most probably, conservative condition for
lethal mutagenesis. For example, for b � 100, a deleterious-
mutation rate of Ud � 4.6 would suffice to fulfill this condition,
whereas Ud � 6.9 would be necessary for b � 1,000. If basal
mutation rates in RNA viruses were around 1 (14, 15), given
that the majority of mutations are deleterious (17, 51), an
approximately five- to sevenfold increase in mutation rates
would be sufficient to achieve lethal mutagenesis. Since some
mutagens are known to reduce the replicative capacities of
viruses by mechanisms independent of mutagenesis (28) and b
is a crude upper limit to Rmax, more-modest increases in Ud will

probably suffice to induce lethal mutagenesis. A series of ex-
periments with RNA viruses or retroviruses replicating in the
presence of base analogs have shown that reductions of several
orders of magnitude in viral titers and even extinction can be
achieved with modest increases in mutation counts, ranging
from less than twofold to sixfold relative to those for the
untreated controls (12, 30, 33, 40, 55).

DISCUSSION

Lethal mutagenesis is an elevation of mutation rate to the
point that a population is so overwhelmed by deleterious mu-
tations that it cannot maintain itself. This method has been
suggested as the basis of successful treatments of viral infec-
tions by use of drugs known to elevate mutation rates. This
paper has developed a simple theoretical condition for the
operation of lethal mutagenesis in the viral infection of a
culture or host: e�UdRmax � 1, where Ud is the genomic rate of
deleterious mutation and Rmax is the maximum average num-
ber of viral progeny per cell infected with wild-type virus that
go on to establish new infected cells. Although the Eigen error
catastrophe theory is often invoked as the theoretical basis of
lethal mutagenesis, that process is different from lethal mu-
tagenesis and may actually retard lethal mutagenesis.

The goal of treatment could be to reduce viremia during an
acute infection or to end a persistent infection. With an acute
infection, it is likely that any decrease in mean fitness due to
mutagenesis will slow the ascent of the viremia and thereby
augment recovery by the immune system. For this case, mu-
tagenesis need not surpass the extinction threshold to have a
beneficial effect: any reduction in viral fitness will reduce the
rate at which the within-host viral population expands, poten-
tially enabling the immune system to clear the infection earlier.
Our theory applies also to cases of persistent infection, which
is associated with the usual application of lethal mutagenesis.

Extinction threshold equation 3 is sufficient to cause viral
decline but is possibly conservative and may specify a higher
mutation rate than necessary. For example, the within-host
growth rate of the viral population could be important to the
outcome of the infection, and a slowing of viral growth rate will
be achieved even if e�UdRmax � 1 is not satisfied. The exact
mutation-extinction threshold lies in the ecology of each type
of infection, and a specific model of these dynamics, as well as
of the impact of mutation on the different infection parame-
ters, is required. What generalities will be found by studying
specific models remains to be seen, however.

As a second example of how our extinction criterion is pos-
sibly conservative, stochastic effects may contribute to the fix-
ation of deleterious mutations in finite populations through
processes such as mutational meltdown mediated by Muller’s
ratchet (42). For a population of size N with deleterious-mu-
tation rate Ud, the expected number of individuals without any
nonneutral mutations at equilibrium is N0 � Ne�Ud/s. For N0 �
1, there is a high probability that these mutation-free individ-
uals are lost by chance or never exist, and the loss will be
irreversible without back mutation (9, 26, 31). This stochastic
mutation accumulation process, or Muller’s ratchet, can ulti-
mately lead to the extinction of the population (42). Small
populations are prone to fixing deleterious mutations, as has
been amply demonstrated in several experiments (10, 16, 64).

FIG. 4. Lethal mutagenesis threshold according to mutation rate
Ud and maximum fecundity Rmax, from inequality 3. The relationship is
log linear, so that changes in mutation rate have a much larger effect
on extinction than changes in fecundity. In turn, modest increases in
mutation rate, especially for RNA viruses, may be especially amenable
to achievement of extinction.
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The emphasis in those studies has been small population size,
but as the important quantity in the above formula is N0,
increasing the mutation rate through the use of chemical mu-
tagens is an alternative to reducing the total population size.
For the multiplicative model, beyond a mutation rate of Ud �
s ln N, the population risks extinction even without determin-
istic lethal mutagenesis. Not surprisingly, the combination of
population bottlenecking and chemical mutagenesis has
proven to be the most efficient way to achieve viral extinction
(55).

An interesting outcome of the theory presented here is that
there is no genetic signature of lethal mutagenesis that distin-
guishes it from nonlethal mutagenesis. Mutagenesis itself ob-
viously has a genetic signature, but whether extinction will
result does not. The same elevated mutation rate may or may
not cause population extinction, and at least while the popu-
lation is still large, the genetic evolution of deleterious muta-
tions is the same whether the population is stable or declining.
There is no mutational runaway accumulation of mutations
accompanying lethal mutagenesis. The reason for this genetic
independence of population survival versus extinction is that
genetic evolution depends on relative fitness, whereas popula-
tion survival depends on absolute fitness, i.e., total numbers of
offspring.

There are demonstrations, both in vivo and in vitro, that the
addition of mutagens can lead to the extinction of the viral
population (29, 30, 40, 55). Whether these results constitute a
clear demonstration of lethal mutagenesis depends on the
other potential effects of the mutagen. The most thorough
empirical study of this problem measured mutation counts (as
approximations of rates) in poliovirus subjected to ribavirin
treatment in vitro (12). Even if those estimates of mutation
counts are accepted as rates, it is further necessary to estimate
the number of viruses produced by one cell that go on to infect
other cells. At the highest dose in that study, mutation counts
were indeed quite high per genome (15.5, a high rate even if
due to an accumulation over a few generations), and it seems
likely a priori that mutagenesis would have been high enough
to ensure extinction (Fig. 4). However, it is also possible that
other effects of the drug would have been high enough to
eradicate the virus without mutagenesis.

Every viral infection that could potentially be treated with a
mutagen falls into one of three categories: (i) Rmax � eU0,
where U0 is the deleterious-mutation rate in the absence of mu-
tagenesis, in which the virus cannot successfully establish an in-
fection, and mutagenesis is not necessary for extinction but might
shorten the total duration of infection; (ii) eU0 � Rmax � eUd,
in which mutagenesis is necessary for extinction; and (iii)
Rmax � eUd, in which extinction does not occur despite mutagen-
esis. The last case is potentially a worry because the elevated
mutation rate might facilitate evolution to a part of the fitness
landscape that was otherwise not likely to be accessed. In
general, if mutagenesis increases the mutation rate closer to
the mutation rate optimum for the virus, then mutagenesis will
presumably be counterproductive for treatment. This possibil-
ity seems unlikely for RNA viruses, as their intrinsic mutation
rates are so high. However, the relevant parameters are not
adequately known to exclude this possibility, so the caution
seems warranted.

The assumption of a constant mutation rate across all in-

fected cells is possibly valid for in vitro systems but may be
violated in vivo. In a multicellular host, refugia might exist with
low drug concentrations, as has been observed for HIV-1 pa-
tients under antiretroviral therapy. Mutagenesis levels may rise
and fall with drug concentrations and cause genetic differen-
tiation of viruses replicating in different compartments (5).
Any decrease in mutation rate, whether spatially or temporally,
will obviously work against lethal mutagenesis.

Our assumption that all mutations are deleterious or neutral
is unrealistic. Beneficial mutations invariably exist. Further-
more, the spectrum of beneficial effects may vary during the
course of mutagenesis, such that more beneficial mutations
become available as mean fitness level declines (49, 58). A low
rate of beneficial mutations should not preclude lethal mu-
tagenesis per se, although it will raise the threshold for extinc-
tion, so that a higher dose of mutagen will be required to
achieve the same effect. There are two mechanisms by which
beneficial mutations can work. First, some genuine beneficial
mutations may increase the intrinsic replicatory ability of the
virus, increasing b and thus R. Second, mutations can confer
partial or complete resistance to the mutagen (48). While par-
tial resistance might be possible to overcome with an increased
mutagen dosage, complete resistance will prevent lethal mu-
tagenesis. A treatment strategy for preventing the evolution of
significant or complete resistance could be combination ther-
apy with several mutagens or with a mutagen in combination
with other antiviral drugs.
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29. Grande-Pérez, A., A. Lázaro, P. Lowenstein, E. Domingo, and S. Manrubia.
2005. Suppression of viral infectivity through lethal defection. Proc. Natl.
Acad. Sci. USA 102:4448–4452.
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