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Alternative splicing has been recognized as a major mechanism for creating proteomic diversity from a limited
number of genes. However, not all determinants regulating this process have been characterized. Using subviral
human immunodeficiency virus (HIV) env constructs we observed an enhanced splicing of the RNA when expression
was under control of the cytomegalovirus (CMV) promoter instead of the HIV long terminal repeat (LTR). We
extended these observations to LTR- or CMV-driven murine leukemia proviruses, suggesting that retroviral LTRs
are adapted to inefficient alternative splicing at most sites in order to maintain balanced gene expression.

The human proteome exceeds 100,000 isoforms, whereas the
number of genes is significantly lower (30,000; reviewed in
reference 18). Alternative splicing has been recognized as play-
ing a major role in proteomic diversity related to the ability to
generate several different mRNAs from one primary transcript
(13). The same applies to retroviruses. Due to their genomic
organization only one polycistronic transcript is made, and this
encodes up to nine open reading frames (ORFs) in the case of
human immunodeficiency virus (HIV) (6). Alternative splicing
ensures regulated expression of several of these gene products
(20), and mutations that disturb the balance of alternatively
spliced transcripts result in severe attenuation (3, 16). For all
retroviruses alternative splicing is regulated via the interplay of
cis-acting sequences on the RNA and cellular splicing factors
(7, 17, 25). This regulation involves the presence of both exonic
and intronic splicing silencers as well as enhancers. Whereas
HIV modulates mostly its 3� splice sites (ss) (10), murine leu-
kemia virus (MLV) uses sequences upstream of the 5� ss to
regulate alternative splicing (14). Transcription and 3�-end
processing are closely connected to splicing (12), thus adding
one more level to the complex regulation of gene expression.
In this report we show that replacing the retroviral long ter-
minal repeat (LTR) with the cytomegalovirus (CMV) pro-
moter shifts the balance of alternatively spliced transcripts,
resulting in higher levels of spliced RNA.

In order to study the effects of promoters on alternative
splicing in retroviruses we used the previously described NLenv
system (Fig. 1A) (2). This system is based on the HIV-1 proviral
clone NL4-3 and generates an mRNA which is identical in
sequence to the wild-type env mRNA by removing the se-
quence between the major 5� ss and the env 3� ss and restoring
the natural exon junction. This RNA can undergo one splicing
event, resulting in the nef mRNA (Fig. 1A, left panel). We
exchanged the HIV U3 region with the CMV immediate-early
promoter, leaving the transcriptional start site unchanged (Fig.
1A, right panel). Transfection of these constructs into HelaP4

cells and Western blot analysis showed Rev-dependent Env
expression and Rev-independent Nef expression, as expected
(Fig. 1B, lanes 1 and 2 and lanes 3 and 4). Northern blot
analysis of total RNA probed with a 3� LTR probe detected the
unspliced transcript coding for env and the spliced RNA cod-
ing for nef (Fig. 1C, lane 3). The addition of Rev shifted the
ratio towards unspliced RNA due to its nuclear export and
translation, leading to stabilization of the RNA as an indirect
consequence (Fig. 1C, lane 4) (2). Replacing the U3 region
with the CMV promoter led to enhanced splicing of the pri-
mary transcript (Fig. 1C, lanes 1 and 3), although the se-
quences of the two RNAs are identical and differ only in the
nontranscribed promoter region. Interestingly, the CMV pro-
moter seems to function Tat independently in contrast to that
of the viral LTR (Fig. 1C, lanes 1 and 2 and lanes 3 and 4), as
reported previously (4, 22).

Since the transactivation by Tat is the major difference be-
tween the two promoters we looked at CMV transfections in
the presence or absence of Tat. Figure 2A reveals that cotrans-
fection of Tat led to the wild-type splicing pattern (lanes 2 and
4). To obtain transcript levels that were more comparable, the
amount of NLCenv plasmid was reduced from 10 to 2 �g per
10-cm dish. Still, the CMV promoter was upregulated between
two- and fourfold by Tat (Fig. 2A, lanes 3 and 4, and 2D, lanes
1 and 2) in agreement with previous findings (4, 22). Since the
efficiency of splicing correlates with the amount of nef mRNA
and Nef protein, we did Western blot analysis and detected
elevated levels of Nef protein in the case of NLCenv compared
to that for the wild-type construct and reduced levels upon Tat
cotransfection (Fig. 2B). Quantification of the Northern blot
data (Fig. 2A) by phosphorimager analysis again illustrated a
role for Tat in alternative splicing, namely, that Tat shifts the
ratio of spliced versus unspliced RNA back towards wild-type
levels (Fig. 2C).

We extended these observations to a complete proviral HIV
clone (NL4-3) driven by the CMV promoter. Here, reduced
infectivity (2.4-fold) is measurable (data not shown), but this
clone can still produce Tat. Chang and Zhang looked at RNA
levels of Tat minus proviral clones driven by hybrid promoters
and found only slight difference in RNA levels (5), but the
promoter construct differed from the ones reported here. Ef-
fects of Tat on alternative splicing were described in a recent
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report by Berro and colleagues, who established an interaction
of acetylated Tat and the splicing inhibitor p32 leading to more
unspliced RNA (1). Alternatively, it has also been shown that
p32 can bind Rev (15) and that this interaction leads to rescue
of excessive splicing in murine cells (26). We tried to test the
Tat hypothesis in our system by using Tat mutants that have
little effect on transactivation and should still exert an effect on
splicing (1, 19). The mutants are based on subtype C Tat,
whereas we used subtype B Tat (Fig. 2D). Transfection of
NLCenv and different Tat mutants revealed that all of them
lead to more unspliced RNA in comparison to the CMV pro-
moter results in the absence of Tat (Fig. 2D and E). In par-
ticular, the K50A mutant showed no defect in transactivation
compared to the parental construct (Fig. 2D, lanes 3 and 4)
and only a very minor effect on splicing. As a control the K50R
mutant behaved exactly like wild-type Tat (Fig. 2D, lanes 3
and 5).

In order to extend our observations to other retroviruses, we
cloned a CMV-driven murine leukemia virus (Fig. 3A). The
construct is based on the MLV clone MOVGFP, which con-
tains eGFP in the proline-rich region of the Env ORF (11). We
exchanged the promoter-leader region to the CMV promoter
and sequences from a retroviral vector (SCS11) (24). As a
result both plasmids produced RNAs with identical sequences.

Transfection into 293T cells revealed enhanced splicing when
transcription was directed via the CMV (Fig. 3B, lanes 1 and
2). Whereas the parental MLV clone showed an equal ratio of
unspliced and spliced RNAs, the CMV-driven construct
showed an almost twofold enhancement of splicing (Fig. 3C).
To evaluate this effect on the protein level, we probed cell
lysates with anticapsid or anti-green fluorescent protein (GFP)
antibodies (Fig. 2D), since GFP is encoded within the Env
ORF (Fig. 3A). CMOV11GFP displayed less Gag expression
and enhanced Env expression in comparison to the wild-type
MLV (Fig. 3D) in agreement with the Northern blot data (Fig.
3B). This effect can also be measured via flow cytometry de-
tecting the GFP. Here, a fourfold increase in the mean fluo-
rescence intensity in the case of CMOV11GFP also indicates
enhanced splicing, leading to more of the GFP Env fusion
protein (Fig. 3E). To determine whether this change in gene
expression has any impact on viral titer and therefore more
biological relevance, we took supernatants of transient trans-
fections and determined their titers on murine fibroblasts by
use of the GFP as a reporter. The enhanced Env expression
and reduced Gag expression led to a significant drop in titer,
showing that a proper balance of Gag and Env indeed deter-
mines infectivity (Fig. 3F). It will be interesting to look for
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FIG. 1. The CMV promoter enhanced splicing of a subviral HIV env RNA. (A) Schematic drawing of the NLenv system. The sequence between the
major 5� ss and the env 3� ss was removed from the proviral clone NL4-3 by cloning, thereby mimicking the natural exon ligation. The plasmid contains
both LTRs, the Env and the Nef ORF, and the Rev-responsive element (RRE). The remaining 5� ss #4 can splice to 3� ss #7 to generate the nef RNA.
The right panel illustrates the promoter exchange from the viral LTR to the CMV promoter in the NLenv context. The probe used for detection in
Northern blot analysis is indicated on the left panel. (B) Western blot analysis of HeLa P4 cell lysates corresponding to 20 �g of protein from transfections
performed using the indicated constructs and a combination of anti-Env and anti-Nef antibodies. Cells were transfected with 10 �g of plasmid plus 5 �g
of Tat- or Rev-encoding plasmid as indicated and collected 48 h after transfection. The Env products (gp160 and gp120) and the Nef protein are marked
with arrows. (C) Northern blot using total RNA from the same transfection as described for panel B. RNA was separated on a denaturing agarose gel,
transferred to nylon membrane, and probed with a labeled cDNA fragment as indicated in panel A. The left side shows molecular size markers, and the
RNAs are marked on the right. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used as a loading control.
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revertants in an MLV construct that carries the CMV in both
LTRs.

Effects of the promoter type on alternative splicing events
have been reported for the cellular fibronectin gene (8). Here,
the CMV promoter also allowed enhanced inclusion of an
alternative exon as found in our NLenv system, where the
sequence from the weak nef 3� ss to the poly(A) signal can be
viewed as the terminal exon (Fig. 1A). Over the last several
years it has become clear that promoters exert their effect on
splicing via the processivity or elongation rate of the initiating
polymerase (9). It seems that transcription through regulatory

elements surrounding alternatively spliced exons and their pre-
sentation to the spliceosome determine the outcome of the
splicing reaction. These observations have been extended to
other genes like alpha tropomyosin (21) and the fibroblast
growth factor receptor, where elements that slow down tran-
scription influence splicing ratios (23). Our findings mark the
first report on retroviral promoters and their influence on
alternative splicing of the viral transcripts. In both HIV and
MLV the CMV promoter leads to excessive splicing, indicating
that the viral LTRs are adapted to produce a certain amount of
unspliced RNA. For HIV this has been assigned to the Tat

FIG. 2. Cotransfection of Tat led to reversal of enhanced splicing. (A) LTR- or CMV-containing NLenv plasmids were transfected into HeLa
P4 cells in the presence or absence of an HIV-Tat-encoding plasmid. Northern blot analysis was performed as described for Fig. 1C. GAPDH
serves as a loading control. Molecular size markers are shown on the left, and the RNAs are named on the right. (B) Western blot analysis of cell
lysates from the transfection performed as described for panel A. An anti-Nef antibody was used, and the blot was reprobed with an anti-
extracellular signal-regulated kinase 2 (Erk2) antibody for a loading control. (C) Quantification of the Northern blot data using a PhosphorImager
(Amersham). Mean values represent the results of four independent experiments. (D) The NLCenv construct was transfected together with
different Tat plasmids as indicated or left untransfected (�). � B and � C specify the HIV Tat subtypes and K50A and K50R point mutations
based on subtype C Tat. GAPDH served as a loading control. Molecular markers and RNA species are indicated as described for panel A.
(E) Quantification of the Northern blot data as described for panel C.
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protein (1), although an alternative explanation is possible:
namely, that the elongation rate is accelerated in the presence
of Tat and that weak splice sites are simply over read by the
polymerase. This model is strengthened by the results obtained
using Tat mutants and MLV, where no Tat protein was
present. Here, we could also observe a reduction in titer and
viral fitness, showing the importance of the retroviral promoter
for balanced viral gene expression and a previously undiscov-
ered way to regulate alternative splicing in retroviruses.
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