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We have developed a new tool to visualize expression data on metabolic pathways and to evaluate which
metabolic pathways are most affected by transcriptional changes in whole-genome expression experiments. Using
the Fisher Exact Test, the method scores biochemical pathways according to the probability that as many or
more genes in a pathway would be significantly altered in a given experiment by chance alone. This method has
been validated on diauxic shift experiments and reproduces well known effects of carbon source on yeast
metabolism. The analysis is implemented with Pathway Analyzer, one of the tools of Pathway
Processor, a new statistical package for the analysis of whole-genome expression data. Results from multiple
experiments can be compared, reducing the analysis from the full set of individual genes to a limited number of
pathways of interest. The pathways are visualized with OpenDX, an open-source visualization software package,
and the relationship between genes in the pathways can be examined in detail using Expression Mapper,
the second program of the package. This program features a graphical output displaying differences in
expression on metabolic charts of the biochemical pathways to which the open reading frames are assigned.

[Supplementary materials are available at http://www.cgr.harvard.edu/cavalieri/pp.html and http://www.genome.org.]

New technologies in biology such as DNA microarrays, oligo-
nucleotide arrays, and serial analysis of gene expression
(SAGE) are generating massive data sets, describing biological
function in terms of whole-genome expression profiles. The
challenge now is how to extract a comprehensive overview
from this huge amount of information. To do this it is nec-
essary to develop new bioinformatic tools to automatically
connect expression data with the increasing biological infor-
mation on the function of single open reading frames (ORFs)
and their interaction in metabolic networks.

Yeast is currently the ideal model for developing new
tools for genome analysis and for understanding networks of
gene interactions, because of the detailed information about
its genetics and molecular and cellular biology available in
databases such as the Saccharomyces genome database (SGD)
[http://genome-www.stanford.edu/Saccharomyces/)], the
yeast proteome database (YPD) [http://www.proteome.com/
databases/YPD/YPDsearch-quick.html], and the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [http://www.
genome.ad.jp/kegg/].

Efforts have also been made to integrate functional ge-
nomic information into the Saccharomyces databases (Ermo-
laeva 1998; Kaneisha and Goto 2000; Nakao et al. 1999; Ball et
al. 2000, 2001; Costanzo et al. 2000), and databases of expres-
sion profiles are available for large-scale yeast deletion and
mutational analyses (Winzeler and Davis 1997; Winzeler et al.
1999; Hughes et al. 2000; Sherlock et al. 2001).

A number of software packages for the analysis of micro-
array data are available. Most of the currently available pro-

grams use cluster algorithms (Eisen et al. 1998), self-
organizing maps (SOM), or principal-component analysis
(PCA; Tamayo et al. 1999). These approaches cluster together
genes irrespective of their function and without reference to
the valuable amount of biological information available in
public databases. An extensive list of such software, reviewed
by Gardiner-Garden and Littlejohn (2001), can be found at:
http://www.ncgr.org/genex/other_tools.html.

Many investigators have manually mapped transcrip-
tional changes to metabolic charts (De Risi et al. 1997; Cava-
lieri et al. 2000), and others have tried to develop automatic
methods to assign genes showing expression variation to
functional categories, focusing on single pathways (Zien et al.
2000), or to link array target sequences with NCBI’s Entrez
retrieval system, and KEGG pathway views (Ermolaeva et al.
1998; Nakao et al. 1999). An innovative approach describing
interactions in a cellular pathway has also been discussed by
Ideker et al. (2001), integrating DNA microarrays, quantita-
tive proteomics, and databases of known physical interac-
tions. Nevertheless, none of the methods currently available
include a statistical test to determine in an automatic way the
probability that the genes of any of a large number of path-
ways are significantly altered in a given experiment, nor do
they provide a user-friendly interface to automatically associ-
ate expression changes with genes organized into metabolic
maps. Here we report an automatic statistical method to de-
termine which pathways are most affected by transcriptional
changes and to map expression data from multiple experi-
ments on metabolic pathways.

RESULTS AND DISCUSSION
Pathway Processor is a new statistical package for the
analysis of whole-genome expression data which allows the
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visualization of expression data on metabolic pathways and
the evaluation of which metabolic pathways are most affected
by transcriptional changes in whole-genome expression ex-
periments. Pathway Processor consists of two programs,
Pathway Analyzer and Expression Mapper.

Pathway Analyzer implements a method that uses the
Fisher Exact Test to score biochemical pathways according to
the probability that as many or more genes in a pathway
would be significantly altered in a given experiment by
chance alone. Expression Mapper, the second program of
the package, features a graphical output displaying differ-
ences in expression on metabolic charts of the biochemical
pathways to which the ORFs are assigned, enabling a de-
tailed analysis of the relationship between genes in the path-
ways.

We used the first version of Pathway Processor to
interpret results from whole-genome expression analysis in
the budding yeast S. cerevisiae, using the fold-change values
obtained from hybridization experiments. The results can be
obtained from competitive hybridizations on DNA microar-
rays or from comparison of results from individual hybridiza-
tion experiments carried out with the Affymetrix Genechip®

system. Studies of S. cerevisiae have provided the foundation
for much of our current understanding of the fundamental
mechanisms of cell biology. This organism has also provided
the test bed for the development of DNA microarrays and for
their applications to the understanding of intracellular signal-
ing networks.

We tested the utility of Pathway Processor with the
data from the diauxic shift experiments (De Risi et al. 1997),
which have become the “gold standard” for the application of
expression arrays to the study of metabolism. The experi-
ment investigates the temporal program of gene expression ac-
companying the metabolic shift from fermentation to respira-
tion that occurs when fermenting yeast cells, inoculated into a
rich medium containing glucose (20 g/L), turn to aerobic utili-
zation of the ethanol produced during the fermentation
after the fermentable sugar is exhausted. De Risi et al. (1997)
made whole-genome hybridization experiments comparing
gene expression at seven timepoints (T1–T7) to characterize the
changes in gene expression that take place during the diauxic
shift.

We used Pathway Analyzer to rank the statistical sig-
nificance of the changes observed in the genes organized ac-
cording to the logic of the 92 KEGG metabolic pathways dur-
ing the diauxic shift. The results of the comparison of the
seven timepoints are visualized as tables using Microsoft Ex-
cel. Pathway Analyzer employs the Fisher Exact Test to
measure the probability that a pathway is significantly al-
tered, for any specified threshold. The signed Fisher Exact Test
value can be used to compare results from different experi-
ments. The comparison of results of the Signed Fisher Exact
Test for the seven timepoints of the diauxic shift experiments
(Table 1) shows little alteration of the cellular metabolic path-
ways from timepoint 1 to 4, which is in agreement with Figure
4 of the De Risi paper (De Risi et al. 1997) and with the ob-
servation that during exponential growth in glucose-rich me-
dium, the global pattern of gene expression is remarkably
stable (De Risi et al. 1997). Interestingly, the P- value for the
most significantly affected pathways increases from time-
points 5 to 7, indicating that an increasing number of genes
are altered significantly in expression.

The comparison between the Fisher Exact Test values of
the seven experiments has been visualized with OpenDX

[http://www.opendx.org], an open-source visualization soft-
ware package.

The graphic representation of the results from Pathway
Analyzer (Fig. 1A) indicates that the main positively affected
pathways during the diauxic shift, from timepoint 5 to time-
point 7 are oxidative phosphorylation, the citrate cycle, the
electron transport system complexes II and IV, and pyruvate
metabolism. The negative values of the genes for ribosomal
proteins and RNA polymerase (Fig. 1B) are also in agreement
with the progressive reduction in cellular metabolism, DNA
and RNA synthesis, and entry into stationary phase, which are
expected with the exhaustion of the sugars and alternative
carbon sources.

The Expression Mapper analysis confirms the agree-
ment of our results with previous interpretations, and also
yields additional insights beyond those that are apparent
from the expression levels of individual ORFs. The results
shown for the TCA cycle (Map20, supplementary material
available online at http://www.cgr.harvard.edu/cavalieri/
pp.html and http://www.genome.org. ) report, in the con-
text of a wider network of interactions, the differences in ex-
pression between T0 and T7, which in previous analyses
were mapped manually on the metabolic charts to which the
ORFs are assigned (De Risi et al. 1997). Furthermore, amino-
acid metabolic pathways such as the valine, leucine, isoleu-
cine, and methionine biosynthetic pathways are re-
pressed. Interestingly, one gene in the leucine pathway
(Fig. 2), LEU4 (Yor104c), is upregulated in T7 (+2.2) with re-
spect to T0, although all the other genes of the pathways
are generally repressed. This apparent contradiction is in fact
in agreement with the observation that LEU4 is highly ex-
pressed under leucine deprivation. The caloric restriction is
also consistent with the repression of the biosynthesis of me-
thionine, an amino acid whose synthesis is very costly from a
metabolic point of view (Map271, supplementary material
available online), and repression of the biosynthesis of valine,
leucine, and isoleucine, the most abundant amino acids in
the cell. This and the repression of the genes for the amino-
acyl-tRNA biosynthetic enzymes (Map 970 supplementary
material available online) suggest that residual pyruvate and
acetyl-Coa are channeled into the citrate cycle (up-regulated)
rather than in the amino acid-producing pathways. The re-
sults in Map 190 (supplementary material available online)
exploit the graphics available showing both the meta-
bolic network and the cellular localization of the differen-
tially expressed genes. The results show the coregulation
of all the genes in the electron transport and oxidative phos-
phorylation complex 2,3,4, which is consistent with the
switch to aerobic metabolism in conditions of caloric restric-
tion.

We also implemented a version of the program to ana-
lyze whole-genome B.subtilis expression data, and applied the
program to the genome-wide analysis of the general stress
response in B. subtilis described by Price et al. (2001) (supple-
mentary information available online at http://www.cgr.
harvard.edu/cavalieri/pp.html and http://www.genome.org.).
The program can be adapted to analyze expression data from
any set or subset of interacting genes of any other organism
for which the relationships between the names of ORFs and
the enzymes in metabolic pathways are provided, the limit
being proper and unique ORF annotation.

We have demonstrated the utility, efficiency and versa-
tility of this approach on the diauxic shift experiments (De
Risi et al. 1997) and have further shown its potential to help
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interpret the results from one or more experiments, by exam-
ining differential expression.

Pathway Processor provides a powerful and user-
friendly tool for the integration of expression profiling with
the functional roles of gene products that are increasingly
becoming available in public databases. The program effi-
ciently organizes the data according to the logic of metabolic
networks and enables the user to examine the expression pat-
terns of all genes for metabolic enzymes simultaneously, thus
facilitating a genomic approach to the understanding of fun-
damental biological processes. Patterns of differential expres-
sion can also be detected in discrete classes of genes, such as
those involved in intermediary metabolism, the cytoskeleton,
cell-division control, apoptosis, membrane transport, sexual
reproduction, and so forth.

The use of KEGG as reference pathway is motivated not
only by its exhaustive organization, but also for the possibility
of simple graphical representation.

The 92 KEGG pathways are interconnected, sharing com-
mon intermediates. A consequence of this interconnection is
that, although the nominal P values from the Fisher Exact
Test cannot be taken literally (because there are multiple si-
multaneous statistical tests), there is no known way to correct
the nominal P values because the multiple tests are not sta-
tistically independent.

METHODS

Pathway Processor
Pathway Processor is an ordering and visualization device
that organizes profiles of gene expression according to the
metabolic pathways that are affected, and it features a unique
graphical output. The package consists of two programs,
Pathway Analyzer and Expression Mapper.

Pathway Analyzer
Pathway Analyzer implements the statistical method in
Java, automatically identifying which metabolic pathways are
most affected by differences in gene expression observed in an
experiment. The method associates an ORF with a given bio-
chemical step according to the information contained in 92
pathway files from KEGG [http://www.genome.ad.jp/kegg/].
Pathway Analyzer scores KEGG biochemical pathways,
measuring the probability that the genes of a pathway are
significantly altered in a given experiment. The factors taken
into account are (1) the number of ORFs whose expression is
altered in each pathway, (2) the total number of ORFs con-
tained in the pathway, and (3) the proportion of the ORFs in
the genome contained in a given pathway.

In the first step of the analysis, the user specifies the
magnitude of the difference in ORF expression that is to be
regarded as above background. The relative change in gene

Table 1. Comparison of the Results of Selected Signed Fisher Exact Test Analyses from Experiment 1

Pathway T1 T2 T3 T4 T5 T6 T7

Oxidative phosphorylation map190 1.00 1.00 0.10 0.06 0.00 0.00 0.00
Citrate cycle (TCA cycle) map20 1.00 1.00 1.00 0.05 0.03 0.00 0.00
Electron Transport System, Complex II map3150 1.00 1.00 1.00 0.02 0.00 0.00 0.00
Electron Transport System, Complex IV map3130 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Pyruvate metabolism map620 1.00 1.00 0.00 0.01 0.04 0.03 0.00
Pentose phosphate cycle map30 1.00 1.00 0.07 1.00 0.03 0.00 0.00
Reductive carboxylate cycle (CO2 fixation) map720 1.00 1.00 1.00 0.06 0.12 0.00 0.00
Carbon fixation map710 1.00 1.00 0.04 0.13 0.07 0.12 0.00
Glyoxylate and dicarboxylate metabolism map630 1.00 1.00 1.00 0.11 0.05 0.07 0.00
ATP Synthase map3110 1.00 1.00 0.01 1.00 0.38 0.05 0.00
Electron Transport System, Complex III map3140 1.00 1.00 1.00 0.03 1.00 0.00 0.01
Glycolysis/Gluconeogenesis map10 1.00 1.00 0.01 0.16 0.06 0.49 0.01
Alanine and aspartate metabolism map252 1.00 1.00 0.00 0.26 0.19 �0.22 0.02
beta-Alanine metabolism map410 1.00 1.00 1.00 0.00 0.01 0.15 0.07
Glutamate metabolism map251 1.00 1.00 0.08 0.01 �0.05 �0.16 0.07
Butanoate metabolism map650 1.00 1.00 0.10 0.02 0.07 0.07 0.07
Taurine and hypotaurine metabolism map430 1.00 1.00 1.00 1.00 0.00 0.06 0.07
Prostaglandin and leukotriene metabolism map590 1.00 1.00 1.00 1.00 1.00 0.06 0.07
Fructose and mannose metabolism map51 1.00 1.00 1.00 0.03 0.59 0.53 0.09
Fatty acid metabolism map71 1.00 1.00 1.00 0.13 0.07 �0.26 �0.09
Glutathione metabolism map480 1.00 1.00 1.00 1.00 1.00 0.10 0.11
Cysteine metabolism map272 1.00 1.00 1.00 1.00 �0.01 �0.46 �0.11
Glycine, serine and threonine metabolism map260 1.00 1.00 0.17 0.43 0.07 �0.10 �0.08
Synthesis and degradation of ketone bodies map72 1.00 1.00 1.00 1.00 1.00 1.00 �0.07
Pantothenate and CoA biosynthesis map770 1.00 1.00 1.00 �0.04 �0.08 �0.15 �0.07
Valine, leucine and isoleucine biosynthesis map290 1.00 1.00 0.04 �0.11 �0.21 �0.07 �0.04
Selenoamino acid metabolism map450 1.00 1.00 1.00 1.00 0.00 �0.02 �0.01
Methionine metabolism map271 1.00 1.00 1.00 1.00 �0.01 �0.03 0.00
Aminoacryl-tRNA biosynthesis map970 1.00 1.00 1.00 1.00 1.00 0.00 0.00
RNA polymerase map3020 1.00 1.00 1.00 1.00 1.00 �0.12 0.00
Pyrimidine metabolism map240 1.00 1.00 1.00 1.00 �0.53 �0.17 0.00
Purine metabolism map230 1.00 1.00 0.01 �0.82 0.09 �0.03 0.00
Ribosome map3010 1.00 1.00 1.00 1.00 �0.99 0.00 0.00

(T0 vs T1) to 7 (T0 T7) (T1 = 9 hours, T2 = 11 hours, T3 = 13 hours, T4 = 15 hours, T5 = 17 hours, T6 = 19 hours, T7 = 21 hours) The results have
been sorted according to their ranking in the T7 column. The table shows only pathways with an absolute P-value of the Fisher exact test greater
than or equal to 0.1; the complete results are reported in Supplementary material, Table 2.xls.
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Figure 1 Pathway Analyzer results showing the 15 most activated pathways (A) and the 15 most repressed pathways (B) for the seven
timepoints of the diauxic shift experiments. The columns from T1 to T7 report the P-values of the Signed Fisher Exact Test, obtained from the
comparison of relative expression at T0 to that at the different timepoints of the diauxic shift experiments, with T1 = 9 h, T2 = 11 h, T3 = 13 h,
T4 = 15 h, T5 = 17 h, T6 = 19 h, and T7 = 21 h. The data have been sorted according to their ranking in the last experiment, T7 versus T0. The
pathways are visualized using OpenDX. The color of the cube indicates the sign of the variation, with red being up-regulated, green down-
regulated, and yellow no change. The opacity represents the statistical significance of the variation: the greater the opacity, the smaller the P-value.
The color of the cube depends on the P-value in the following way: from 1 to 0.15 the color remains yellow, from 0.15 to 0 with overexpression
(+) it goes from yellow to red, and from 0.15 to 0 with underexpression (�) it goes from yellow to green.
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expression is the multiplier by which the level of expression
of a particular ORF is increased or decreased in an experiment.
For each ORF considered separately and without regard to
other information, a cutoff of 2 for the relative change in gene
expression is appropriate given current technology, but prob-
ably a little conservative, in particular when assessing differ-
ential expression of genes that function in the samemetabolic
pathway, and when the experiment has been repeated. Thus
Pathway Analyzer affords the researcher the opportunity to
examine differences that are somewhat smaller than twofold
(for example 1.8), but consistent in that they affect a statisti-
cally significant number of ORFs in a particular metabolic
pathway. Consistent differential expression of a number of
ORFs in the same pathway can have important biological im-
plications—for example, it may signify the existence of a set
of coordinately regulated ORFs. The program then uses the
Fisher Exact Test to calculate the probability that differences
in ORF expression in each of the 92 pathways could be due to
chance alone. A statistically significant probability means

that a particular pathway contains more affected ORFs than
would be expected by chance. The program allows the user to
choose different cutoffs for the Fisher Exact Test.

The analysis performed using the Fisher Exact Test pro-
vides a quick and user-friendly way of determining which
pathways are the most strongly affected. The one-sided Fisher
Exact Test calculates a P-value, based on the number of genes
that exceeds the cutoff in a given pathway. This P-value is the
probability that the pathway would contain as many or more
affected genes as actually observed, on the null hypothesis
being that the relative changes in gene expressions of the
genes in the pathway are a random subset of those observed
in the experiment as a whole. The resulting set of P-values for
all pathways is then used to rank the pathways according to
the magnitude and direction of the effects, in order to select
those pathways to examine more closely with Expression
Mapper.

Two tab-delimited text files are generated from the com-
parison files. One of them contains all the genes that pass the
cutoff, organized by pathway. The other file contains the
summary of the statistics for each pathway, which can be
imported into Microsoft Excel to enable the user to sort the
results according to various columns.

The “Signed Fisher Exact Test” column allows sorting of
up-regulated or down-regulated pathways. The value in this
column is composed of two distinct parts. The first part con-
sists of the sign + or �, indicating whether the particular
pathway contains genes that tend to be up-regulated or down-
regulated. The second part of each entry is a positive real
number in [0,1] that corresponds to the P-value of the Fisher
Exact Test for the pathway. The sign is determined by sub-
tracting the mean relative expression of all genes that pass the
cutoff and are in the pathway from the mean relative expres-
sion of the genes that pass the cutoff and are not within the
pathway (up-regulation/down-regulation column). If there
are no genes above the cutoff in a pathway, the sign is arbi-
trarily set to +. This is for convenience only, as the P-values for
such pathways will always be nonsignificant. Sorting for the
Signed Fisher Exact Test is done so that the most significant
values are at the top for the up-regulated pathways and at the
bottom for the down-regulated pathways. In the middle are
the least significant pathways. The values of the Fisher Exact
Test vector can be used to compare different experiments us-
ing Microsoft Excel (Table1), and the comparison among the
different experiments can be represented graphically.

Graphic Representation Using OpenDX
Data from the Excel worksheet can be visualized with the
open-source visualization software OpenDX [http://
www.opendx.org]. This visualization program allows a de-
tailed examination of the expression levels observed in the
experiment according to pathways.

The input of the program consists of three files: one with
the pathway names, another with the Signed Fisher Exact
Test, and a third with the header row. The program represents
each value graphically as a cube. The color of the cube indi-
cates the extent of the variation, based on the magnitude of
the P-values and the sign, with red being up-regulated, green
down-regulated, and yellow no change. The color of the cube
depends on the P-value in the following way: from 1 to 0.15
the color remains yellow; from 0.15 to 0 with overexpression
(+) it goes from yellow to red; from 0.15 to 0 with underex-
pression (�) it goes from yellow to green. To allow the eye to
focus on the most significant results, we also changed the
opacity so that the greater the significance of the variation,
the greater the opacity (Fig. 1A,B).

A detailed description of the program is reported in the
Manual. The pathways identified as of greatest interest with
Pathway Analyzer can be visualized using Expression
Mapper.

Figure 2 Part of the Expression Mapper output for valine, leu-
cine, and isoleucine metabolism, adapted from KEGG map 290. The
text is colored red if the relative change in gene expression is �1, and
green if it is <1. The intensity of the color is proportional to the
magnitude of the differential expression. The presence of a gray box
indicates that the corresponding step in the biochemical pathway
requires multiple gene products.
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Expression Mapper
Expression Mapper is a Java program that creates a visual
representation of the data, displaying the differences in ex-
pression on metabolic charts of the biochemical pathways to
which the ORFs are assigned (Fig. 2). The program has been
implemented using the KEGG nomenclature. When the map
number of the pathway of interest is typed in the Expres-
sion Mapper dialog box, the program parses an HTML file
corresponding to the KEGG map number and plots differen-
tial gene expression onto the map. The text is colored red if
the relative change in gene expression is �1, or green if it is
<1. The intensity of the color is proportional to the magni-
tude of the differential expression. The presence of a gray box
indicates that the corresponding step in the biochemical
pathway requires multiple gene products, the individual com-
ponents of which can be accessed by click-and-drag from the
gray box. The pathway diagrams can be saved as JPEG files.

The metabolic maps can easily be adapted to the user’s
preferences, integrating expression-profiling results with visu-
alization of the interactions among different but functionally
related genes.

Downloading Files
Academic implementations of Pathway Processor with a
detailed Instruction Manual are freely available for download-
ing from the Duccio Cavalieri CGR website via URL http://
www.cgr.harvard.edu/cavalieri/pp.html or by contacting
Duccio Cavalieri. (dcavalieri@cgr.harvard.edu) or Paul Grosu
(paul_grosu@harvard.edu). For the analysis of the diauxic
shift experiment, we downloaded the publicly available re-
sults from the Web via URL [http://cmgm.stanford.edu/
pbrown/explore/array.txt].
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