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Abstract
We study stochastic evolutionary game dynamics in populations of finite size. Moreover, each
individual has a randomly distributed number of interactions with other individuals. Therefore, the
payoff of two individuals using the same strategy can be different. The resulting “payoff
stochasticity” reduces the intensity of selection and therefore increases the temperature of selection.
A simple mean-field approximation is derived that captures the average effect of the payoff
stochasticity. Correction terms to the mean-field theory are computed and discussed.
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1 Introduction
Traditional evolutionary game theory has been formulated for infinitely large populations,
where stochastic effects can be neglected. The relative abundances of different strategies in a
population change according to deterministic differential equations (Taylor and Jonker,
1978; Hofbauer et al., 1979; Maynard Smith, 1982; Weibull, 1995; Samuelson, 1997; Hofbauer
and Sigmund, 1998; Fudenberg and Tirole, 1998; Gintis, 2000; Cressman, 2003; Hofbauer and
Sigmund, 2003; Nowak and Sigmund, 2004). Due to their nonlinearity, such equations can
show very complex dynamics.

Game dynamics in finite populations require a stochastic approach (Schaffer, 1988; Ficci and
Pollack, 2000; Fogel et al., 1998; Nowak et al., 2004; Taylor et al., 2004; Antal and Scheuring,
2005; Imhof et al., 2005; Traulsen et al., 2005; Nowak, 2006; Fudenberg et al., 2006). In finite
populations, the traditional concept of an evolutionarily stable strategy (ESS) is no longer
decisive and instead one has to calculate fixation probabilities in order to determine if a given
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resident strategy is protected by natural selection (Nowak et al., 2004; Traulsen et al.,
2006b).

In most approaches, there is still the simplifying assumption that each individual interacts with
each other individual in the population and therefore the payoff is determined by a deterministic
process. Here, we relax this assumption and introduce a new system in which different
individuals have a different numbers of interactions. Hence, two individuals of the same type
can obtain different payoffs, leading to a heterogeneity in the system. Instead of sharp payoff
values, there is a distribution of payoffs for the same type of individuals. While the analytical
solution of this system is no longer possible, we can derive approximations that agree well
with (numerically exact) individual based simulations of the process.

This approach is related to formulations of the evolutionary dynamics on networks, in which
every individual interacts only with a small subset of the population (Nowak and May, 1992;
Ellison, 1993; Blume, 1993; Herz, 1994; Brauchli et al., 1999; Abramson and Kuperman,
2001; Szabó and Hauert, 2002; Ebel and Bornholdt, 2002; Hauert and Doebeli, 2004; Santos
and Pacheco, 2005; Lieberman et al., 2005; Santos et al., 2006; Ohtsuki et al., 2006; Ohtsuki
and Nowak, 2006). However, in these studies the interaction network is usually fixed during
the evolutionary game. Our approach corresponds to a random interaction network that changes
after each update step (Bala and Goyal, 2001; Skyrms and Pemantle, 2000; Pacheco et al.,
2006).

2 Evolutionary dynamics in finite populations
In evolutionary game dynamics, individuals obtain a fitness associated with the payoff from a
game. Let us consider the following evolutionary process: two individuals 1 and 2 with payoffs
π1 and π2, respectively, are chosen at random. Their payoff difference π12 = π1 − π2 is computed.
The first individual changes to the strategy of the second individual with probability

p = 1
1 + exp − βπ12

. (1)

We chose the Fermi function from statistical physics for p as proposed by Blume (1993), Szabó
and Tõke (1998) and Traulsen et al. (2006a). With probability 1 − p, individual 2 changes to
the strategy of individual 1. The parameter β measures the intensity of selection. For β ≪ 1,
selection is weak and the payoffs are only a small perturbation of random drift. For β ≫ 1,
selection is strong and the individual with the lower payoff will change its strategy. In statistical
physics, β is the inverse temperature: for β → 0, the dynamics of the system is dominated by
stochasticity (the temperature of selection is high), whereas in the limit β → ∞ stochastic effects
can be neglected (the temperature of selection is zero).

In a finite population of size N with two types A and B, A individuals can interact either with
other A individuals and obtain a payoff a or with B individuals, which leads to a payoff b.
Similarly, the interaction of B individuals with A individuals leads to a payoff c, whereas they
get d from interacting with B individuals. This is captured by the payoff matrix

A B
A
B(a b

c d). (2)

If every individual interacts with every other individual, each A individual obtains the same
average payoff
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πA = a(i − 1) + b(N − i)
N − 1 . (3)

Here i is the number of A individuals and N − i is the number of B individuals. Self interactions
have been excluded. Similarly, the payoff of each B individual is

πB = ci + d(N − i − 1)
N − 1 . (4)

From these payoffs, the transition probabilities to change the number of i individuals to i ± 1
can be calculated as

T ±(i) = i
N

N − i
N

1

1 + e
∓β(πA−πB) . (5)

Based on these probabilities, a closed equation for the probability that a group of i mutants of
type A reaches fixation in a population of N individuals can be derived (Traulsen et al.,
2006a,c).

However, the idea that every individual of a certain type has the same fitness is a simplification.
Individuals may have different numbers of interactions. The simplest means to model such
effects is to introduce a probability q that an interaction occurs between any two individuals.
For q = 1, we recover the standard theory outlined above. For q < 1, heterogeneity is introduced
in the system as individuals of the same type can now have different payoffs. When q = 0 every
individual has payoff zero and the system becomes homogeneous again. This, in turn, is
equivalent to the limit β = 0 (neutral selection). Consequently, we expect q < 1 to lead to an
average weakening of the intensity of selection in the population, and, therefore, to an increase
in the temperature of selection.

3 Analytical results for stochastic payoff evaluation
3.1 Stochastic Transition probabilities

The exact fixation probabilities of the system with 0 < q < 1 cannot be calculated in a simple
way, as the transition probabilities of Eq. (5) are now random numbers. However, we can
calculate the average probability that the number of A individuals increases or decreases by
one. The number of interactions that an A individual has with other A individuals is a binomial
distributed random number. We use jAA for the number of interactions of an A individual with
other A individuals and jAB for its interactions with B individuals. Similarly, a B individual has
jBA interactions with A individuals and jBB interactions with others of type B. If the population
consists of i A individuals, the probability that a focal A individual interacts with exactly jAA
of them is

P( jAA) = (i − 1
jAA)q jAA(1 − q)

i−1− jAA. (6)

The minimum number of these interactions is 0 and the maximum number is i − 1. Similarly,
the number of A interactions with B individuals is a number between 0 and N − i. For B
individuals, similar equations hold. The average payoff of an A individual is now
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πA = ∑
jAA=0

i−1
∑

jAB=0

N−i (i − 1
jAA)q jAA(1 − q)

i−1− jAA(N − i
jAB )q jAB(1 − q)

N−i− jAB

× (a jAA
N − 1 + b

jAB
N − 1 )

= q(a i − 1
N − 1 + b N − i

N − 1 ).

(7)

Similarly, for B individuals we obtain

πB = q(c i
N − 1 + d N − i − 1

N − 1 ). (8)

The payoffs values enter in the transition probabilities in a nonlinear way and the reasoning
for the transition probabilities is more intricate. The average transition probabilities can be
calculated as

T ±(i) = i
N

N − i
N ∑

jAA
∑
jAB

∑
jBA

∑
jBB

P( jAA)P( jAB)P( jBA)P( jBB) 1

1 + e
∓β(πA−πB)

Since jAA, jAB, jBA, and jBB are random numbers with a Binomial distribution, we obtain

T ±(i) = i
N

N − i
N ∑

jAA=0

i−1
∑

jAB=0

N−i
∑

jBA=0

i
∑

jBB=0

N−i−1 (i − 1
jAA)q jAA(1 − q)

i−1− jAA

× (N − i
jAB )q jAB(1 − q)

N−i− jAB( i
jBA)q jBA(1 − q)

i− jBA

× (N − i − 1
jBB )q jBB(1 − q)

N−i−1− jBB 1

1 + e
∓β(a jAA+b jAB−c jBA−d jBB)/(N−1) .

(9)

Note that for q = 0 and q = 1, these expressions vastly simplify. For q = 0 we have
T ±(i) = 1

2
i
N

N − i
N  and for q = 1 we recover the conventional Eq. (5).

Eq. (9) makes the simplifying assumption that the interactions of player A and B are
independent. However, if A and B interact with each other, then jAB and jBA are no longer
independent. This particular interaction occurs for each player with probability q. Therefore,
the probability that one of them interacts with the other one, but not vice versa, is 2q(1 − q),
having a maximum at q = 0.5. The contribution of every interaction to the overall payoff of an
individual is of the order of 1/N. Hence, asymmetric interactions lead to an error of the order
of 2q(1 − q)/N, vanishing rapidly with N. Exact computer simulations for the process, with and
without such asymmetric interactions lead to fixation probabilities which are indistinguishable,
for population sizes as small as N = 20, and therefore still agree perfectly with our analytical
approximation. A formulation of Eq. (9) which accurately describes the symmetry in the
interactions is discussed in Appendix A.

From the average transition probabilities, the probability that k individuals reach fixation can
be approximated as

φk =
∑i=0

k−1∏ j=1
i T −( j) / T +( j)

∑i=0
N−1∏ j=1

i T −( j) / T +( j)
. (10)
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The fixation probabilities calculated in this way are in excellent agreement with simulations,
as shown in Figs. 1, 2 and 3.

Unfortunately, the four sums in the transition probability make it inconvenient to work with
Eq. (10): The computation of a single transition probability for a population of size N = 20
requires the summation of more than 105 terms. Therefore, it is useful to derive an
approximation for these probabilities.

3.2 Mean-field approximation
Following a long tradition in physics, we calculate the payoffs in the mean-field approximation.
This means that, instead of averaging the transition probabilities, as in Eq. (9), we average the
payoff for individuals of a given type. In other words, we neglect fluctuations in the payoffs.
Their average values read πÃ = q πA and πB̃ = q πB. Eq. (5) changes to

T̃ ±(i) = i
N

N − i
N

1

1 + e
−βq(πA−πB) . (11)

The only thing that changes from the original system with transition probabilities given by Eq.
(5) is the intensity of selection, which is reduced to βeff = q β. In statistical physics, this
corresponds to an increase of the temperature, Teff = 1/βeff = T/q > T. Hence, the heterogeneity
introduced in the system simply increases the temperature of selection. In Traulsen et al.
(2006a,c) we have shown that the fixation probability of such systems, i.e. the probability that
a group of k individuals of type A reaches fixation can be well approximated by

φk =
erf ξk − erf ξ0
erf ξN − erf ξ0

. (12)

Here ξk =
βeff(N − 1)

u (ku + v),  2u = a − b − c + d ≠ 0, 2v = − a + bN − dN + d and erf(x) is
the error function. For u = 0, the fixation probabilities reduce to

φk = e
−2βeff(N−1)vk

− 1

e
−2βeff(N−1)vN

− 1

. (13)

These expressions allow the calculation of the fixation probabilities using the mean-field
approximation. For weak selection, β ≪ 1, the mean-field approximation agrees well with
simulations, see Fig. 1. However, for very high values of β, fluctuations in the payoff values
can no longer be neglected and the fixation probabilities have to be calculated in a more
sophisticated way via Eqs. (9) and (10) where the averaging is considered at the level of
transition probabilities instead of being done already at the level of payoffs. Note that in the
whole parameter range of the frequency dependent Moran process (Nowak et al., 2004), the
mean-field approximation agrees well with computer simulations. As a further approximation,
corrections to the mean-field theory can be calculated by developing the transition probabilities
around the mean-field theory, as shown in Appendix B.

4 Individual based simulations
To confirm our analytical results and to explore the range in which the mean-field
approximation works well, we performed individual based simulations of the process in a
population of two different types A and B. We select two individuals 1 and 2 at random. Both
interact with each of the remaining N − 1 individuals in an evolutionary game, where the
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probability for each interaction is q, leading to payoffs π1 and π2. Since only these two
individuals are involved in the strategy update, the remaining payoffs do not have to be
computed. For the particular interaction between 1 and 2, the symmetry of interactions has to
be taken into account. This interaction takes place if either one of them wants to interact. Hence,
the payoff values of the two individuals are not independent of each other. After computing
the payoffs, individual 1 switches its strategy to the strategy of individual 2 with probability
p given by Eq. (1). Similarly, 2 switches to 1 with probability 1 − p. Hence, the number of A
individuals can change by at most one in each time step. In this process, we compute the
probability that A individuals reach fixation and wipe out B individuals.

In Fig. 1, we show simulations of a Prisoner’s Dilemma starting with k = 15 cooperators. Since
cooperation is dominated by defection, stronger selection decreases the fixation probability of
cooperators. For β = 0.1 and β = 1, the mean-field approximation agrees very well with
individual based simulations. When selection is very strong, fluctuations in the payoffs that
increase the odds for cooperators can no longer be neglected and the mean-field approximation
is no longer valid. Using instead the fixation probabilities of Eq. (10) derived from the averaged
transition probabilities of Eq. (9) leads to perfect agreement again.

As a second example, we show the fixation probabilities in a coordination game starting from
k = 5 individuals of type A in Fig 2 and k = 15 in Fig. 3. Again, the simulations agree perfectly
with the fixation probabilities from the mean-field approximation given Eq. (12) for β = 0.1
and β = 1. For higher intensity of selection, the mean-field approximation deviates from the
fixation probabilities derived from the averaged transition probabilities Eq. (9), which are in
good agreement with individual based simulations. Here, we have restricted ourselves to a
coordination game in which all payoffs are positive, i.e. interacting is always better than not
interacting. The situation can become more complex if not playing can be advantageous as in
(Hauert et al., 2002b,a;Szabó and Hauert, 2002).

5 Fixation times
So far, we have only considered the fixation probabilities that the system will reach a given
absorbing state. Often, the duration of this process is also of interest, i.e. the average time it
takes until fixation. As for the fixation probabilities, we can make an approximation for the
fixation times by replacing the payoffs by the average payoffs in the case of q < 1. This
approximation corresponds to a rescaling of the temperature by a factor q in the equation for
the fixation times. Antal and Scheuring (2005) and Traulsen et al. (2006c) have shown that the
conditional average time τi

N  to reach state N with A individuals only is for q = 1 given by

τi
N = 1

φi
(R0 − Ri) − R0, (14)

The quantity Ri is defined as

Ri = N 2 ∑
n=i+1

N−1
χn

1−n ∑
k=n

N−1
φk

1 + χ2k
−1

k(N − k) χk+1
k (15)

where Xj = exp [qβ(ju + 2v)/(N − 1)]. Fig. 4 shows a comparison of the fixation times obtained
from Eq. (14) and numerical simulations, which agree very well for small β. The remarkable
agreement with the mean-field approximation shows again that the stochastic payoff evaluation
can be mapped to a higher temperature of selection. In other words, the heterogeneity
introduced by q < 1 simply weakens selection.
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Here, we restricted ourselves to the conditional average time it takes to reach the absorbing
state where only A individuals are present. Similar results based on the theory for 1 = 1 can be
derived for the unconditional fixation times or fixation in i = 0 (Traulsen et al., 2006c).

6 Comparison with previous models
Sánchez and Cuesta (2005) have recently introduced a model in which altruism may arise solely
from individual selection, see also (Sánchez et al., 2005; Roca et al., 2006). In their model,
agents reproduce after interactions among randomly chosen individuals. A parameter s is
introduced which specifies the number of interactions taking place in a population of size N
between two successive strategy updates, which in the limit s/N ≫ 1 leads to the usual
assumption that all individuals interact with all others. Similar to our interaction probability
q, a small number of interactions leads to strong fluctuations in the system that may dominate
the dynamics.

However, Sánchez and Cuesta (2005) choose a different update mechanism for the
evolutionary dynamics: they choose deterministically the worst player and replace it by a copy
of the best player, keeping the payoff of the best player. Hence, new agents are immediately
equipped with the same survival opportunities as their ancestors, which makes it difficult to
compare their results with our model. Employing a fixed number of interactions s between
successive updates leads to results comparable to our model if a background fitness is
introduced (Roca et al., 2006): For s ≪ N, stochastic effects dominate and selection is weak.
For s ≫ N, selection is strong and more successful strategies will spread.

7 Discussion
We have added an additional source of stochasticity to evolutionary game dynamics of finite
populations. The payoff of each individual is no longer deterministically given, but evaluated
in a stochastic process. For each pair of individuals there is a probability p that an interaction
will occur. Hence, individuals using the same strategy can differ in their payoff values when
selection operates. We have used a pairwise comparison update rule where the parameter β
acts like an inverse selection temperature (Traulsen et al., 2006a).

The resulting system is complicated and can be studied with individual based computer
simulations. We have presented a simple mean-field approximation that gives a good
description of fixation probabilities and times for a wide range of parameter values (as long as
the intensity of selection is not too strong). We have shown that the heterogeneity arising from
the stochastic payoff evaluation increases the temperature of selection.
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Appendix A: Average transition probabilities for symmetric interactions
In Eq. (9), we have assumed that jAB and jBA are independent random numbers. For the
particular interaction between individuals A and B, this is not the case, as A interacting with
B leads to B interacting with A. We have to distinguish two cases: With probability q2 + 2q(1
− q) = q(2 − q), the link between A and B is active. With probability (1 − q)2, it is not active.
Hence, Eq. (9) modifies to

T ±(i) = q(2 − q) i
N

N − i
N ∑

jAA=0

i−1
∑

jAB=0

N−i−1
∑

jBA=0

i−1
∑

jBB=0

N−i−1 (i − 1
jAA)q jAA(1 − q)

i−1− jAA

× (N − i − 1
jAB )q jAB(1 − q)

N−i−1− jAB(i − 1
jBA)q jBA(1 − q)

i−1− jBA

× (N − i − 1
jBB )q jBB(1 − q)

N−i−1− jBB 1

1 + e
∓β(a jAA+b( jAB+1)−c( jBA+1)−d jBB)/(N−1)

+ (1 − q)2 i
N

N − i
N ∑

jAA=0

i−1
∑

jAB=0

N−i−1
∑

jBA=0

i−1
∑

jBB=0

N−i−1 (i − 1
jAA)q jAA(1 − q)

i−1− jAA

× (N − i − 1
jAB )q jAB(1 − q)

N−i−1− jAB(i − 1
jBA)q jBA(1 − q)

i−1− jBA

× (N − i − 1
jBB )q jBB(1 − q)

N−i−1− jBB 1

1 + e
∓β(a jAA+b jAB−c jBA−d jBB)/(N−1) .

(16)

The first summand describes the situation in which interaction between the focal individuals
A and B takes place and the remaining A − B interactions are chosen at random. There are N −
i − 1 remaining B interactions for A and i − 1 remaining A interactions for B. The A − B
interaction that is present is taken into account in the argument of the exponential function.
The second summand describes the situation in which the focal individuals do not interact.
Again, the remaining links are chosen at random.
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Appendix B: Corrections to the mean-field theory
Here, we derive a closed formula as an approximation for the transition probabilities Eq. (9).
We consider corrections to the mean-field approximation. Defining

f = exp − βq(a(i − 1) + b(N − i) − ci − d(N − i − 1)) , (17)

we can write the mean-field transition probability as

T̃ ±(i) = i
N

N − i
N

1

1 + f ±1 (18)

We can now rewrite

F (z) = 1
1 + exp − β(a jAA + b jAB − c jBA − d jBB

= 1

1 + f e−z , (19)

where

z = − β(a jAA − q(i − 1)

N − 1 + b
jAB − q(N − i)

N − 1 − c
jBA − qi

N − 1 − d
jBB − q(N − i − 1)

N − 1 ) (20)

measures deviations from the mean-field theory. For q = 0 and q = 1, we have z = 0. Also for
β ≪ 1, the term z becomes small. The development of F (z) for z ≪ 1 yields

F (z) = F̃ + F̃ G̃z + (F̃ G̃2 − 1
2 F̃ G̃)z 2 + (F̃ G̃3 − F̃ G̃2 + 1

6 F̃ G̃)z 3

= F̃ + F̃ (1 − F̃ )z + F̃ (1 − F̃ )( 12 − F̃ )z 2 + F̃ ( 16 − 7
6 F̃ + 2F̃ 2 − F̃ 3)z 3,

(21)

where F̃ = 1/(1 + f) and G ̃ = f/(1 − f) = 1 − F̃.

Let us now consider the effect of the sums in Eq. (9) on the terms in Eq. (21). We use the
abbreviation Ck for the term of order zk in Eq. (21).The term independent of z gives the mean-
field result described above, C0 = F̃.

The linear order term vanishes C1 when the sums are performed, due to the symmetry of the
Binomial distribution.

In the quadratic term C2, all cross terms are linear and consequently vanish. Only the terms in
a2(jAA − q(i − 1))2 are nonzero (similarly for b, c, and d) and give basically the variance of the
distributions. Hence, the quadratic term is given by

C2 = F̃ ∑
jAA=0

i−1
∑

jAB=0

n−i
∑

jBA=0

i
∑

jBB=0

n−i−1 (i − 1
jAA)q jAA(1 − q)

i−1− jAA(N − i
jAB )q jAB(1 − q)

N−i− jAB

× ( i
jBA)q jBA(1 − q)

i− jBA(N − i − 1
jBB )q jBB(1 − q)

N−i−1− jBBz 2

= F̃β 2 a2(i − 1) + b2(n − i) + c 2i + d 2(n − i − 1) q(1 − q)

(22)

This first correction term vanishes for q = 0 and q = 1, as it should.

The cubic term in z simplifies in a similar way to
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C3 = F̃β 3 a3(i − 1) + b3(n − i) + c 3i + d 3(n − i − 1) q(1 − 3q + 2q 2) (23)

For terms of higher order in z, the skewness of the Binomial distribution enters and leads to a
more complicated structure.

The transition probabilities finally yield

T +(i) ≈ T̃ +(i) 1 + (1 − F̃ )( 12 − F̃ )
C2
F̃ + ( 16 − 7

6 F̃ + 2F̃ 2 − F̃ 3) C3
F̃ (24)

The second transition probability T−(i) can be obtained by changing the sign of β in Eq. (24).
Inserting these terms in Eq. (10) yields the fixation probabilities, which do not longer reduce
to a simple equation if higher order corrections are taken into account. However, for high
temperature, β ≪ 1, the mean-field term is sufficient, as C2 is quadratic in β. For q = 0 and q
= 1, all correction terms vanish, as the mean-field theory becomes exact in these limits.
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Figure 1.
Fixation probability of k = 15 cooperators in a Prisoner’s Dilemma for different interaction
probability q and different intensities of selection β. Symbols are computer simulations of the
process. Full lines represent the mean-field approximation Eq. (13), whereas dashed lines are
the fixation probabilities computed with the approximated transition probabilities given by Eq.
(9). For small β, the mean-field approximation agrees well with simulation results. Only for
very high β, the fixation probabilities of the mean-field approximation do not longer agree with
simulations and the more sophisticated theory based on Eq. (9) has to be applied (Parameters:
N = 20, payoff matrix a = 0.9, b = − 0.1, c = 1.0, d = 0.0, averages over 106 realizations of the
process).
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Figure 2.
Fixation probability of k = 5 A individuals in a Coordination game for different interaction
probability q and different intensities of selection β. Computer simulations (symbols) agree
perfectly with the fixation probabilities computed from the transition probabilities of Eq. (9)
shown as dashed lines. Full lines show the mean-field approximation of Eq. (12) that is in
perfect agreement with simulations for β = 0.1 and β = 1.0. (Parameters: N = 20, payoff matrix
a = 1, b = 0.2, c = 0.8, d = 0.3, averages over 106 realizations of the process).
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Figure 3.
Fixation probability of k = 15 A individuals in a Coordination game for different interaction
probability q and different intensities of selection β. Computer simulations (symbols) agree
perfectly with the fixation probabilities computed from the transition probabilities Eq. (9)
shown as dashed lines. Full lines show the mean-field approximation Eq. (12) that is in perfect
agreement with simulations for β = 0.1 and β = 1.0. (Parameters: N = 20, payoff matrix as in
Fig. 2, a = 1, b = 0.2, c = 0.8, d = 0.3, averages over 106 realizations of the process).
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Figure 4.
Conditional average time to end up in the state with 100% cooperators in a Prisoners Dilemma,
starting from k = 15 cooperators, for different interaction probability q. For q = 0, we recover
the result from neutral selection for any value of β.. For small β, numerical simulations
(symbols) agree perfectly with the mean-field theory for all values of q, Eq. (14) depicted by
full lines. Deviations become larger when selection is stronger (Payoff matrix as in Fig 1, a =
0.9, b = − 0.1, c = 1.0, d = 0).
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