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By applying graph representations to biochemical pathways, a new computational pipeline is proposed to find
potential operons in microbial genomes. The algorithm relies on the fact that enzyme genes in operons tend to
catalyze successive reactions in metabolic pathways. We applied this algorithm to 42 microbial genomes to
identify putative operon structures. The predicted operons from Escherichia coli were compared with a selected
metabolism-related operon dataset from the RegulonDB database, yielding a prediction sensitivity (89%) and
specificity (87%) relative to this dataset. Several examples of detected operons are given and analyzed. Modular
gene cluster transfer and operon fusion are observed. A further use of predicted operon data to assign function
to putative genes was suggested and, as an example, a previous putative gene (MJ1604) from Methanococcus
jannaschii is now annotated as a phosphofructokinase, which was regarded previously as a missing enzyme in this
organism. GC content changes in the operon region and nonoperon region were examined. The results reveal a
clear GC content transition at the boundaries of putative operons. We looked further into the conservation of
operons across genomes. A trp operon alignment is analyzed in depth to show gene loss and rearrangement in
different organisms during operon evolution.

The increasing availability of sequenced microbial genomes
enables us to perform high-throughput computational analy-
sis with increasing predictive accuracy. It has been observed
both experimentally and computationally that genes in mi-
crobial genomes tend to form modular functional units that
are conserved during evolution (Tamames et al. 1997; Over-
beek et al. 1999; Ettema et al. 2001). Operon structures are
known to be an important family among these conserved
functionally related genomic units. Moreover, these units of-
ten appear in multiple genomes and perform highly compart-
mentalized activity in biochemical pathways. In this work, we
will describe a method to automatically detect neighboring
enzyme clusters in the genome that catalyze successive
chemical reactions in the metabolic pathways. These neigh-
boring enzyme clusters have been shown to be candidate op-
erons (Ogata et al. 2000). Because the proximity of function-
ally related genes gains efficiency by coordinating activities
and regulation, it is encouraged by selection. By group regu-
lation of certain highly expressed metabolic genes needed un-
der specific growth conditions, microorganisms can minimize
their energy expenditure. In most bacterial genomes, func-
tionally coupled gene clusters are often regulated under the
same upstream promoter, forming a polycistronic transcribed
operon unit with associated regulatory sites. Loss or disrup-
tion of such proximity may decrease metabolic flux and have
deleterious consequences in individual survival. Experimental
detection or confirmation of operons is time-consuming
(Walters et al. 2001) and relatively difficult to implement in
the laboratory as a high-throughput process.

Computational methods to reconstruct metabolic mecha-
nisms of newly sequenced microbial organisms have gained
increased attention in recent years (Selkov et al. 1997a; Bono
et al. 1998). Computational identification of operons using
the currently available sequence data and computerized
knowledge representation of biochemical rules is thus helpful
in extracting important compartmentalized features of meta-
bolic pathways in different organisms.

Several computational algorithms for operon modeling
and prediction have been suggested recently, mostly based on
the model organism Escherichia coli (Yada et al. 1999; Salgado
et al. 2000; Ermolaeva et al. 2001), in which many promoters
and terminators are well known. Many of them rely on mod-
eling of sequence motifs in promoter and terminator sites.
These methods are less effective when promoter or terminator
sequences are not well conserved. It has been pointed out that
these sequences are not necessarily fully conserved during
evolution among microbial genomes (Itoh et al. 1999). Other
methods combine the observation that operons have much
shorter intergenic distances than genes at the borders of tran-
scription units with the functional category assignments
(Selkov et al. 1997a). Another natural approach for this prob-
lem is through the mechanism of validating functional clus-
ters by the frequency of their appearance in multiple genomes
(Ermolaeva et al. 2001).

Alternatively, genes in operons interact with each other
either by physical assembly of their products or through par-
ticipating networked reactions in cells, so that they are likely
to be involved in closely related biological processes. The
knowledge of metabolic biochemical pathways offers us an
appealing universal methodology for inferring such func-
tional coupling. Computationally, the problem is reduced to
developing an effective algorithm for detecting a correspon-
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dence between a possibly large metabolic pathway and a gene
cluster. More precisely, we need to detect a subgraph in a
pathway map in which the genes encoding the major players
appear in a gene cluster on the genome. Fortunately, several
groups have generated easily accessible pathway network
data, which enables us to compute functional clusters by us-
ing pathway databases and graph algorithms (Karp et al 1996;
Selkov et al. 1997b; Kanehisa and Goto 2000). In a seminal
effort led by M. Kanehisa, a heuristic graph comparison
method has been proposed by Ogata et al. (2000) for identi-
fying functional clusters by detecting correspondences in the
genome graph and the pathway graph.

In this work, we report a conceptually simple computa-
tional method that could be used to detect metabolism-
related operons with high accuracy. We provide a summary of
our results with predicted operons for many of the currently
annotated organisms. The complete list of putative operons
for microorganisms that we analyzed is available over the In-
ternet (http://genomics4.bu.edu/operons). In addition, we

also documented the applicability of this method for func-
tional annotation of sandwich or gap genes that occur in the
middle of putative operons (see our website http://
genomics4.bu.edu/operons/gappedgene).

For theoretical completeness, we report on the compu-
tational complexity of detecting functionally related gene
clusters. In particular, we provide a formal proof that several
versions of the problem of detecting functionally related clus-
ters are NP-complete. Finally, we discuss the applicability of
these and more general methods for functional annotation of
genes and gene clusters.

RESULTS

Analysis of Operon Data in E. coli
E. coli is a well-studied organism, which we can use to evaluate
the performance of our method. The RegulonDB database by
Huerta et al. (1998) integrates knowledge of transcription
regulatory signals of E. coli. It has been reported that the total

Figure 1 (a) Phenylpropionate catabolic pathway, mhpABCDE catalyzes successive reactions. (b) (Subsets of genes in the mhp operon involved
in different pathways left) and the actual reaction chains in the pathways catalyzed by these genes (right). This figure gives an example where
computing transitive closure of smaller operons on the chromosome gives a larger operon. All genes run in the same direction.
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number of currently known operons in E. coli is 237 (Salgado
et al. 2000), from which we compiled a set of 128 (54%) me-
tabolism-related operons as our test set (91 of them are ex-
perimentally verified). Our method predicted 124 operons,
which includes 114 of the 128 real operons (sensitivity =
89%). Of the 124 predicted operons, 108 (specificity = 87%)
share at least two enzymes with operons in the test set. The
number of exact correspondences is 55, ∼44% of all predictions.

Compared with the FREC (functionally related enzyme
clusters) results by Ogata et al.(2000), our method detects
more possible operons, including the example shown in Fig-
ure 1. Another example that we found, the Men operon in E.
coli, is shown in Figure 2. Five contiguous genes catalyze suc-
cessive reactions in the ubiquinone biosynthetic pathway.
The graph comparison method (Ogata et al. 2000) only de-
tects two genes (b2264c and b2265c) from the whole operon.

The size distribution of predicted E. coli operons is shown
in Figure 3. According to a previous study (Overbeek et al.
1999), the number of predicted operons diminishes with the
length of the operons roughly according to a Poisson distri-
bution. Prediction accuracy, however, increases with the
length of the operons (data not shown). The larger a predicted
gene cluster is, the more likely it is a real operon. Most pre-
dicted operons from randomly shuffled genomes are of size 2.

Operons in 42 Microbial Organisms
The results from 42 microbial organisms are shown in Table 1.
The entire predicted operon list for each organism can be

accessed on http://genomics4.
bu.edu/operons. The average num-
ber of operons obtained from ran-
dom shuffling experiments for each
genome is also shown in Table 1.
The number of operons and their
composition partly reflects the cur-
rent status of genomic annotation.
In E. coli and Bacillus subtilis, the
two best-studied bacteria, the num-
ber of predicted operons is natu-
rally high. The quality of our detec-
tion procedure depends on our cur-
rent knowledge of metabolic
pathways, and our results are nec-
essarily biased toward the organ-
isms with well-documented path-
ways.

We analyzed the GC content
changes between genes both inside
the operons and at the boundaries
of the operons. The results for B.
subtilis and E. coli are shown below
in Figure 4. There are extended tails
(marked in the ellipses in the fig-
ure) in the histogram of boundary
GC content changes for both or-
ganisms, which reveal jumps of GC
content at the boundaries of the op-
erons. At the same time, GC con-
tent between genes inside operons
does not change much (mostly
<0.05). There are several possible
explanations for the higher GC
content changes at the boundaries

of operons, for example, possible horizontal transfer of oper-
ons from other organisms (Lawrence 1997), or the larger in-
tergenic regions between operons other than inside operons.

Interestingly, a small number of predicted operons are
reported with gene gaps inside, which we named sandwich
genes or gap genes. Analysis of these gap genes suggests that
they might fall into a similar broad functional category with
their gene neighbors. In cases in which a gap gene could not
be annotated by a conventional sequence comparison
method, identification of an operon around it may help us
unravel its functional role. An example of this methodology is
the functional interpretation of MJ1604 in the Methanococcus
jannaschi genome. The current annotation status for MJ1604
is hypothetical protein. From our results, we found that it is
located inside of the detected operon (MJ1603, MJ1605).
These two genes encode two key enzymes in the pentose
phosphate pathway, ribose 5-phosphate isomerase (MJ1603)
and glucose-6-phosphate isomerase (MJ1605). We suspected
thatMJ1604might also be involved in the pentose phosphate
pathway. In addition, we also knew that another key enzyme
in the pentose phosphate pathway, phosphofructokinase, was
reported missing in the M. jannaschi genome by Bult et al.
(1996). With these observations in mind, we performed a
BLASTP search (Altschul et al. 1997). The top three hits with
bitscore >400 and E-value <1E-100 are ADP-dependent phos-
phofructokinase in Thermococcus zilligii (Genbank AAF97356),
ADP-dependent phosphofructokinase in Thermococcous litora-
lis (Genbank BAB69952), and phosphofructokinase in Pyro-
coccus furiosus (Genbank AAD48400). This immediately indi-

Figure 2 Men operon in E. coli. Part of the ubiquinone biosynthetic pathway is shown on the left. The
genomic region containing this operon is shown on the right. Inside the enzyme nodes (rectangle) of
the pathway, the names of the matched genes are shown in brackets, e.g., b2264 encodes a bifunc-
tional protein with two enzymatic activities (Palaniappan et al. 1992). The gene filled with gray (b2263)
encodes a product that is currently annotated as a hypothetical protein.
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cates that MJ1604 is likely to be the M. jannaschii phospho-
fructokinase. Thus, the gene cluster MJ1603, MJ1604, and
MJ1605 almost certainly encodes three key enzymes and cata-
lyzes successive reactions in the pentose phosphate pathway.
The homologous sequences reported by BLAST are new se-
quences that were not available at the time of the original
annotation. The annotation based on gene location in oper-
ons agrees with the annotation obtained by sequence com-
parison.

There are also completely unknown genes that appear
inside operons. This provides clues leading to the possible
annotations of these unknown genes. One such example is an
operon reported in Archaeoglobus fulgidus encoding H+-
transporting ATP synthetase (AF1159, AF1160, AF1161,
AF1162, AF1163, AF1164, AF1165, AF1166, AF1167, AF1168,
AF1169). Except for the unknown gene AF1161 (pid,
2649430), every other gene encodes a subunit of this H+-
transporting ATP synthetase complex. AF1161 does not have

any homologous sequences based on a BLAST search in the
current nonredundant database, whereas the location of this
gene suggests the possibility that it encodes another subunit
of this complex if it is not the result of a sequencing error or
gene-finding error. Further analysis shows that although this
long gene cluster is highly conserved in other microorgan-
isms, gene AF1161 is not conserved with the other genes,
which, in turn, suggests that AF1161 might encode a subunit
that is only present in A. fulgidus.

We observed that the average length of operons (= num-
ber of enzymes that participate in operons/number of oper-
ons) remains a constant around 3 in most of the genomes.
The average length of operons can be taken as a measure of
the degree of modularity of biochemical pathways in the ge-
nomes. For the randomly shuffled genome of E. coli, the av-
erage length is close to 2.0, because it is the shortest the al-
gorithm could identify. For bacteria with high average length,
for example, E. coli, B. subtilis, and Buchnera, it suggests that

Table 1. Summary of Results for 42 Organisms

Species

No. of
predicted
operons

Genome
size (Mb)

No. of enzymes
in operons/No. of
total enzymes*

Ratio of
enzymes

of operons

Average
length

of operons

Number of
operons in a

shuffled genome P-value

E. coli 124 4.7 374/562 0.66 3.0 22 0.001
H. influenzae 52 1.8 160/293 0.54 3.1 11 0.006
X. fastidiosa 42 2.7 148/365 0.39 3.5 5 0.005
V. cholerae 80 4.0 237/562 0.42 3.0 11 0.001
P. aeruginosa 101 6.4 290/715 0.41 2.9 14 0.002
Buchnera sp APS 30 0.7 122/224 0.54 4.1 8 0.02
P. multocida 57 2.3 169/418 0.40 3.0 12 0.004
N. meningitidis B 38 2.3 134/404 0.33 3.5 8 0.007
H. pylori 25 1.7 81/280 0.29 3.2 6 0.02
C. jejuni 33 1.7 112/335 0.33 3.4 8 0.009
R. prowazekii 25 1.1 71/182 0.39 2.8 6 0.007
M. lot̂i 88 7.1 260/729 0.36 3.0 8 0.003
C. crescentus 48 4.1 135/372 0.36 2.8 5 0.004
B. subtilis 105 4.3 323/510 0.63 3.1 13 0.001
B. halodurans 98 4.3 308/563 0.55 3.1 13 0.001
M. genitalium 13 0.6 40/86 0.47 3.1 5 0.10
M. pneumoniae 17 0.8 50/117 0.43 2.9 6 0.03
M. pulmonis 19 1.0 60/116 0.52 3.2 4 0.01
U. urealyticum 11 0.8 33/101 0.33 3.0 3 0.04
L. lactis 62 2.4 203/367 0.55 3.3 9 0.002
S. pyogenes 46 1.9 152/283 0.54 3.3 10 0.001
S. aureus Mu50 6 2.9 21/43 0.49 3.5 0 0.005
M. tuberculosis 89 4.5 266/591 0.45 3.0 16 0.003
M. leprae 47 3.3 134/326 0.41 2.9 4 0.002
C. trachomatis 27 1.0 81/187 0.43 3.0 5 0.007
C. pneumoniae 24 1.2 75/190 0.39 3.1 4 0.007
B. burgdorferi 20 1.5 50/138 0.36 2.5 2 0.001
T. pallidum 15 1.2 44/152 0.29 2.9 5 0.03
Synechocystis 24 3.6 59/453 0.13 2.5 8 0.02
D. radiodurans 46 2.7 136/434 0.31 3.0 7 0.002
A. aeolicus 31 1.6 90/387 0.23 2.9 10 0.01
T. maritima 42 1.9 172/368 0.47 4.1 7 0.005
M. jannaschii 28 1.7 96/274 0.35 3.4 9 0.01
M. thermoautotrophicum 46 1.8 164/349 0.47 3.6 10 0.006
A. fulgidus 59 2.2 178/406 0.44 3.0 13 0.003
T. acidophilum 34 1.6 107/271 0.39 3.2 8 0.03
T. volcanium 35 1.6 116/277 0.42 3.3 7 0.006
P. horikoshii 23 1.8 80/231 0.35 3.5 4 0.01
P. abyssi 30 1.8 125/280 0.45 4.2 6 0.009
A. pernix 33 1.7 95/274 0.37 2.9 4 0.004
S. solfataricus 59 3.0 190/458 0.41 3.2 11 0.007
S. cerevisiae 33 13 74/692 0.11 2.2 16 0.047

*The total number of enzymes that are involved in the metabolic pathways.
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their genomes are highly organized into operons compared
with other bacteria. However, other bacteria, for example, B.
burgdorferi and Synechocystis have smaller average operon
lengths, suggesting that their genomes have undergone more
frequent gene translocations or that they contain many en-
zymes in operons that are currently unannotated.

Conservation of Operons Across Organisms
We then studied the conservation of operons across genomes.
Operon alignment provides us with an informative tool to
identify orthologous relationships between genes. Addition-
ally, operon alignment may help us understand the evolution
of operon structure and evolutionary transformations be-
tween microorganisms. To show the utility of this approach,
we constructed a trp operon alignment using the operon da-
tabase we built. The trp operon controls the biosynthesis of
tryptophan in the cell from the initial precursor chorismic
acid. TrpE and trpD produce anthranilate synthetase, an en-
zyme catalyzing the first two reactions in the trypotophan
pathway. TrpC produces indole glycerolphosphate synthe-
tase, which is responsible for catalyzing the next two steps in
the pathway. TrpA and trpB produce tryptophan synthetase,
which catalyzes the final step in the pathway.

We examined 42 microorganisms and succeeded in iden-
tifying the trp operon in 26 of them. In these 26 organisms
that contain the trp operon enzymes, the degree of conserva-
tion varies. Figure 5 shows an alignment of operons in several
organisms. There are several interesting phenomena in this
operon alignment. In E. coli, B. subtilis, and A. fulgidus, all of
the trpABCDE genes lie in a single operon. Gene fusions were
observed as follows: Anthranilate isomerase (EC:5.3.1.24) and
indole-3-glycerol phosphate synthase (EC:4.1.1.48) are fused

into one gene in Helicobacter pylori,
Haemophilus influenzae, and Buch-
nera, but are separated in other or-
ganisms; anthranilate phosphori-
bosyltransferase (EC:2.4.2.18) are
fused with anthranilate synthase
(EC:4.1.3.27) in E. coli and indole-
3-glycerol phosphate synthase (EC:
4.1.1.48) in A. fulgidus. Alhough fu-
sions are inferred from Enzyme
Commission (EC) number compari-
son, subsequent sequence analysis
using BLAST (Altschul et al. 1997)
gave supportive evidence (data not
shown) that they are real. Genes in-
side the trp operons often have
overlapping open reading frames
(ORFs), which provide a genetic ba-
sis for protein fusions. In E. coli, an
attenuation sequence (trpL) is pres-
ent, encoding a leader peptide.
However, we did not find a similar
sequence in any of the other organ-
isms, suggesting the absence of the
attenuation mechanism in trypoto-
phan synthesis (Shigenobu et al.
2000). Aeropyrum pernix has a spe-
cial trp gene cluster in which genes
encoding trp-related enzymes are
found on both strands. However, it
is noteworthy that these genes all
appear together on the genome. In

H. influenzae, the entire trp operon is broken into two parts,
which appear as two separate operons in the genome. This
provides an example of proposed operon fusion, in which
small operons can fuse into a larger operon. Unlike most gene
fusions between protein domains, operon fusions are between
gene clusters.

DISCUSSION
Automatic representation and computation of biochemical
pathway knowledge has become a key research area in com-
putational genomics in recent years. In particular, metabolic
pathways in bacteria provide an example of how to abstract
biochemical knowledge into common templates, namely,
graph representations. Here, we report the application of an
efficient graph algorithm to predict operons using metabolic
pathways. This approach has been shown to be high-
throughput and highly specific. The computational pipeline
used in this work requires a genome enzyme catalog and
documented pathway information. For a newly sequenced ge-
nome, the enzyme catalog can be acquired by identifying ho-
mologous relations with known genes via sequence compari-
son methodology. Moreover, the pipeline can provide a non-
homology-based tool to identify genes within operons that
are candidates to encode missing enzyme of the pathway that
cannot be annotated by the conventional homology method.

It is important to realize the crucial role of knowledge
representation of biochemical rules (Fukuda et al. 2001), es-
pecially when one considers the plasticity of certain meta-
bolic pathways in microorganisms (Dandekar et al. 1999). For
highly divergent regulatory pathways or more complex bio-
logical processes in higher organisms, they may differ from
one organism to another. Then, it becomes a challenge to

Figure 3 Distribution of operon length in E. coli. The solid line shows the distribution of operon
length in the E. coli genome. The broken line shows the distribution in the randomly shuffled E. coli
genome. (inset) A normalized histogram of operon length distribution in E. coli.
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make a generalization of pathways
to perform high-throughput com-
putation. More research needs to be
done toward building a consistent
infrastructure.

Operon identification helps us
understand how genes are regu-
lated as a group in bacterial ge-
nomes. Metabolic genes are com-
monly highly expressed in bacterial
cells. By turning on and off a set of
functionally related genes together
instead of regulating them indi-
vidually, operon structures help the
cell cope with variations of envi-
ronmental conditions and enhance
the chances of cell survival. Our
method helps identify putative op-
erons related to metabolic processes
in each microorganism. It opens a
gate for investigating the process of
gaining and losing of operons
across genomes during evolution.
In pathogens, this approach could
create opportunities for identifying
possible drug targets.

We provide a formal proof that
identifying gene clusters by match-
ing to a subgraph in a pathway is
NP complete. Our result suggests (at
least in theory) that the most gen-
eral statement of the problem
might be computationally difficult.
In practice, however, we expect
that we can take advantage of sev-
eral constraints that make the clus-
ter identification problem much
easier. The most significant con-
straints are as follows: (1) the
length of most functionally related
gene clusters appears to be bounded
by a small constant; (2) it is rela-
tively rare that all genes appearing
in a gene cluster have multiple
matches in a pathway graph. If any
of the genes in a cluster has a
unique occurrence in a pathway
graph, it immediately provides a
strong constraint on the number of
matching subgraphs that must be
considered by the algorithm.

Consequently, a number of
simple ideas can be used to solve
the general problem optimally. For
example, we could build a dictio-
nary by hashing all possible con-
nected subgraphs and find all pos-
sible partial matches during a linear
time scan of the genome. Then, we
can easily extend these partial
matches to identify all maximally
sized functionally related clusters
(in a BLAST-like fashion).

Compared with other algo-

Figure 4 GC content change inside operons and at operon boundaries. Histogram of GC content
change (x-axis, 0 ∼1) in operon and boundary regions in E. coli (a) and B. subtilis (b). GC content
change was computed from two genes next to each other. If both of them are inside an operon, it is
counted as inside operons. If either one is outside of the operon, it is counted as at the boundaries. GC
content change is calculated for each gene. Ellipses mark the high GC transitions at the boundaries of
the operons.
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rithms suggested earlier (Ogata et al. 2000), our algorithm is
simpler to implement and appears to have at least comparable
sensitivity and specificity. The running time of our algorithm
is more or less linear with the total size of the pathway graph.
This, of course, assumes that the genomes have been prepro-
cessed previously and each position of a gene has been in-
dexed. We took a heuristic approach to reduce the computa-
tional complexity by making several biologically meaningful
assumptions. The matching scheme can be revised and gen-
eralized to capture different biological contexts and different
definitions of functionally related gene clusters that can in-
clude protein–protein interactions or other events.

METHODS

Data
All sequence data is taken from the GENES database in KEGG.
(http://www.genome.ad.jp/kegg/kegg2.html). In addition to
the original annotations given by each sequencing group,
KEGG keeps a well-maintained enzyme catalog for each or-
ganism. The organisms analyzed include bacteria, archaea,
and budding yeast (see Table 1 for a full list of organisms
analyzed). Metabolic pathways data are taken from the PATH-
WAY (http://www.genome.ad.jp/kegg/metabolism.html) and
the BRITE databases (http://www.genome.ad.jp/brite/) in

KEGG. The pathway data includes about 90 reference meta-
bolic pathways now in KEGG.

Graph Construction
Pathway data retrieved from KEGG are in a binary relation
format representing pairwise interactions in pathway reac-
tions (Goto et al. 1997). Using this binary relational data, we
constructed a graph representation for each pathway. All
metabolic pathways are represented as labeled undirected
graphs, G (V,E), in which V is a set of vertices in a pathway
graph and E is a set of edges connecting two vertices. There are
two types of vertices in the graphs, as used in KEGG pathway
diagrams, a compound type, which corresponds to either re-
actants or products in a particular pathway reaction, and an
enzyme type, which is needed to catalyze this reaction. They
differ in their labels, in which the compound vertex uses a
compound’s ID from the KEGG database as labels, and the
enzyme vertex uses an EC number as a label. In the pathway
graph, there is at least one enzyme vertex between two dif-
ferent compound vertices, representing a biochemical conver-
sion catalyzed by this enzyme. In cases in which a reaction
can be catalyzed by multiple enzymes, each enzyme vertex is
present between compound vertices. The edges of the graph
are weighted (all weights are equal to one for simplicity). The
edge distance between two compound vertices, or metabolic
distance (Ettema et al. 2001), is a measure of how many reac-
tion steps are needed to accomplish this chemical conversion

Figure 5 trp operon alignment. Genes are drawn with directions (sharp end is a transcription stop) and are labeled with all the enzymatic
activities they have. Genes colored gray are nonenzymes and are not inside the operon. The single line represents a DNA strand (5� to 3�). Double
lines represent both strands.
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in a metabolic process. Graphs are
built and analyzed using variants of
algorithms in the LEDA package (Li-
brary of Efficient Data types and Al-
gorithm, http://www.mpi-sub.
mpg.de/LEDA/leda.html).

Algorithm
The specific computational prob-
lem we addressed is to identify a
subgraph in which vertices in this
subgraph appear in close proximity
on the genome. Naturally, an im-
portant special case of this problem
is identification of a genomic clus-
ter that appears in the same path-
way. A solution to this problem re-
quires an efficient way of traversing
the pathway graph and at the same
time keeping track of the metabolic
distance between vertices. Several
graph traversal algorithms such as
breadth-first search and depth-first
search could be used. In this effort,
we use a variant of breadth-first
search.

We start the traversal from a chosen vertex (root) and
visit vertices in stages; vertices connected to the root are
reached first and placed in the second layer. We iteratively
visit all vertices that are reachable in one step from vertices in
layer I and have not been visited before, place them in layer
I + 1 and proceed to the next layer. The most distant vertices
from the root are reached last. By setting a depth parameter,
we can control how far in the pathway graph a traversal can
reach. As a special case, we can traverse the entire pathway by
setting the depth larger than the diameter of the graph. The
traversal will return a tree of vertices, in which the root is the
start vertex and all other vertices are ordered in layers by their
distances from the root. After we have the traversal tree, we
then look into the genome, examining whether the vertex set
in the tree falls into a neighborhood on the genome, as illus-
trated in Figure 6. A breadth-first search is started from each
enzyme vertex in the pathway graph. As a result, the total

number of searches is linearly proportional to the size of the
pathway graph.

Enzyme vertices in the reference metabolic pathways can
be matched with genes by comparing EC numbers. EC num-
bers are abstracted in four levels (e.g., EC:1.1.1.1). Not all en-
zymes have clear assignments in all four levels. The lower the
level to which it has been assigned, the more specifically we
know about its biochemical activity. When EC numbers are
not available in all four levels, a loose matching scheme could
be used assuming enzymes with unknown activity at a certain
level could function as any type of enzyme at that level. How-
ever, to avoid overprediction, the results presented here do
not utilize the loosely matched genes, that is, we only rely on
exact matching of EC numbers.

Because this work focuses on inference of operons rather
than general functionally related clusters, a conservative
depth parameter of 3 is currently used, which means the

breadth-first search can go as deep
as three reactions away from the
starting vertex. In follow-up stud-
ies, we will report the results for
other much looser depth settings of
parameters and additional statisti-
cal results from comparative ge-
nomics of functionally related gene
clusters (Y. Zheng, in prep.). Genes
are considered to be in close prox-
imity if they are separated by fewer
than three ORFs. Naturally, other
settings of these gap parameters
(both in the pathway graph and in
the genome) will yield slightly dif-
ferent results.

To improve the specificity of
our algorithm, a pruning step is
added after an initial putative op-
eron is detected. The idea of prun-
ing is illustrated in Figure 7. With
the depth parameter equal to three,
one of the genes in a cluster could
appear somewhat separated from
other genes that form a more
closely connected subgraph. We
found that such remotely occurring

Figure 7 Graphical illustration of pruning procedure. Nodes with the labels A,B,C,D in the pathway
graph and the genome (line) are matched enzymes. The black vertex is the remote gene, which is three
reaction steps away from the nearest gene (A) in the graph and three open reading frames (ORFs) away
from the nearest gene (A) on the chromosome (gray genes are genes that were not matched).
Consequently, the black vertex gets pruned from the cluster. The idea of pruning is implemented by
computing the shortest distance in the graph from each matched vertex to the nearest matched
vertex. A special case occurs when only two genes are reported as a possible operon. If their metabolic
distance is equal to 3, they are pruned out.

Figure 6 A graphical interpretation of breadth-first search (BFS) graph traversal. The black vertex is
the start vertex for BFS traversal in a metabolic pathway. In this example, the depth parameter is set
to 2; the first layer is filled with dark gray and the second layer is filled with light gray. After a tree is
returned from traversal, we locate the gene in the genome with the same EC number as the start vertex
and extend a window on each side of it. We then compare genes in this window and in the traversal tree
by EC numbers. If there is more than one match, this gene cluster window is marked for further pruning.
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genes are less likely to be part of an operon. The purpose
of the pruning procedure is to eliminate such genes and
thereby improve the overall specificity of the detection
algorithm.

For each genome, this procedure is applied using all ref-
erence metabolic pathways independently. A set of potential
operons is reported for each of 90 metabolic pathway maps.
Operons reported from each different pathway may overlap
with each other on the genome. Accordingly, a final cluster-
ing step is added to perform a transitive closure, in which all
potential operons are projected back onto the genome accord-
ing to their relative positions, and overlapped operons are
merged into larger putative operons. Park and Kim (2001)
proposed that functional units can be assembled into a larger
operon by a modular type gene transfer (Park and Kim 2001),
which partly justifies the final clustering step (Fig. 1). A sim-
plified pipeline flowchart is shown (Fig. 8). All source codes
are written in C++ and available upon request.

We applied this procedure to each genome using all ref-
erence metabolic pathways independently. This is a single
operon(mhp) in E. coli with six genes as follows: mh-
pA(b0347), mhpB(b0348), mhpC(b0349), mhpD(b0350), mh-
pF(b0351), and mhpE(b0352). The Mhp operon catalyzes suc-
cessive reactions in the phenylpropionate catabolic pathway
(Fig. 1a) (Burlingame et al. 1986). The KEGG pathway data-
base does not have this pathway, so our algorithm cannot
detect it from a single pathway. Instead, it first detects this
operon in pieces from different pathways, which are later as-
sembled into the whole operon by a clustering step. The mhp
operon in E. coli is not found intact in any other microorgan-
ism genomes analyzed in this work. However, in Mycobacte-
rium tuberculosis, a smaller gene cluster similar to b0350,
b0351, and b0352 is identified (Rv3534c, Rv3535c, Rv3536c)
with EC numbers matched and gene order conserved. We
later found that the transcriptional activator of the mhp op-
eron is encoded by b0346, which is also part of the mhp
operon. However, because gene b0346 does not have an EC
number entry, the algorithm ignores it, which partly shows a
potential limitation of this method. The above example sug-
gests that a large operon can be divided into smaller con-
served gene clusters and subsets of a large operon can partici-
pate in different pathways.

Statistical Significance
The statistical significance of the number of predicted oper-
ons is tested against the expected number of predicted oper-
ons in a randomly shuffled genome. The shuffling process
simulates genomic rearrangements by randomly picking two
genes and exchanging their positions in the genome. For each
shuffling experiment, the gene exchange step is repeated for a
sufficient number of times to generate a random genome.
Then, we can calculate the number of putative operons by
applying the operon identification pipeline to shuffled ge-
nomes and averaging the results. Such shuffling experiments
are repeated ten times for each genome. The P-value of the
number of operons in a genome is given by Chebyshev’s in-
equality: P<[(N-µ)/�]�2 (reported in Table 1), in which N is
the number of operons predicted in a genome, µ is the mean
of the number of operons from the shuffling experiments,
and � is the standard deviation.

ACKNOWLEDGMENTS
We thank the KEGG group, for their invaluable efforts in or-
ganizing the metabolic pathways and making them publicly
accessible. This research has been supported in part by NSF-
KDI0196227.

APPENDIX

Computational Complexity
The problem of computing functional clusters in bacterial ge-
nomes appears to be relatively simple. However, at least in
theory we can provide evidence that a general algorithm for
extracting functional clusters by graph matching is likely to
require exponential time. In other words, it is NP-complete.

We briefly describe two simple variants of this problem
and sketch out a proof of the intractability result:

Variant 1: Given a labeled line graph (genome) G and a
labeled pathway graph P, is there a contiguous cluster of
genes of length K that appears as a connected reaction chain
in the subgraph of the pathway graph P? This problem is
clearly NP-complete since it is equivalent to the Hamiltonian
cycle problem. Simply, consider the case where all the nodes
are not labeled (or labeled with the same tag). We need to
locate a path in the pathway graph of length K where each
node is visited only once in order to include every gene in the
cluster.

Variant 2: Here we define a more natural (i.e., more
relevant to the detection of biologically plausible clusters)
variant of the problem, which is still provably intractable.
Given a labeled line graph G and a labeled pathway P, where
all the nodes in the genome (or a large subset of it) are
uniquely labeled, is there a connected component of P of size
K that occurs as a cluster in G?

This problem is also NP-complete. We will use reduction
from the best-known NP-complete problem that requires
finding a satisfying Boolean assignment to the variables of a
formula to make the formula TRUE. The formula is assumed
to be in 3-CNF form with m clauses and n variables. That is,
given a logical formula of this form we will show an efficient
reduction to the genome-pathway cluster detection problem.
This will establish that if we can solve the pathway problem
we can also solve the satisfiability problem for a logical for-
mula.

Given a formula F, we create the following graph. For
each variable xi we create two nodes labeled xi and xi (xi
means not xi). We then create a node for each clause and one
“supernode”. The supernode is connected to all of the xi

Figure 8 Flowchart of our computational pipeline.
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nodes and xi nodes. The clause node is connected to the vari-
ables in its clause. The nodes xi and xi are labeled with the
same functional label i. The clauses and the supernode all
have different labels. Then it’s easy to see that we have a
connected component ofm+n+1 nodes of different functional
labels iff the original formula is satisfied.

These two natural variants of the cluster identification
problem suggest that the general problem is as computation-
ally difficult as many other problems in computational biol-
ogy, such as multiple alignment. Therefore the heuristics used
in our paper as well as the previous papers are better justified
in view of the computational intractability of the general
problem.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.
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