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We investigate the co-occurrence of domain families in eukaryotic proteins to predict protein cellular
localization. Approximately half (300) of SMART domains form a “small-world network”, linked by no more
than seven degrees of separation. Projection of the domains onto two-dimensional space reveals three clusters
that correspond to cellular compartments containing secreted, cytoplasmic, and nuclear proteins. The projection
method takes into account the existence of “bridging” domains, that is, instances where two domains might not
occur with each other but frequently co-occur with a third domain; in such circumstances the domains are
neighbors in the projection. While the majority of domains are specific to a compartment (“locale”), and hence
may be used to localize any protein that contains such a domain, a small subset of domains either are present in
multiple locales or occur in transmembrane proteins. Comparison with previously annotated proteins shows that
SMART domain data used with this approach can predict, with 92% accuracy, the localizations of 23% of
eukaryotic proteins. The coverage and accuracy will increase with improvements in domain database coverage.
This method is complementary to approaches that use amino-acid composition or identify sorting sequences;
these methods may be combined to further enhance prediction accuracy.

A corollary to the sequencing of a genome is the determina-
tion of the functions of its proteins. It is not yet feasible to
characterize each protein directly by experiment, so instead
we perform large-scale in silico analyses, using methods that
assign attributes on the basis of sequence similarity and ho-
mology. These approaches implicitly assume that protein
function evolves slowly relative to protein sequence, but nev-
ertheless are a useful first prediction of function, which can be
tested by experiment.

A key functional attribute of a protein is its subcellular
localization. Methods such as green fluorescent protein (GFP)
tagging (Sawin and Nurse 1996) and gene trap screens
(Sutherland et al. 2001) are beginning to provide experimen-
tal details of localization for relatively large sets of proteins.
However, there remains a need for fast, accurate, cheap, and
complementary approaches that provide localization predic-
tions for any organism. The following three classes of meth-
ods are prevalent currently:

(1) Sorting signals, which are short sequence segments
that localize proteins to intra- or extracellular environments.
These include (Nakai 2000) signal peptides, membrane-
spanning segments, lipid anchors, nuclear import signals, and
motifs that direct proteins to organelles such as mitochon-
dria, peroxisomes, lysosomes, chloroplasts, the Golgi appara-
tus, and the endoplasmic reticulum.

Current methods (Nakai and Horton 1999; Drawid and
Gerstein 2000) that predict subcellular localization from sort-
ing signal data are not infallible. They rarely achieve true posi-
tive rates over 80% while simultaneously making <10% false
positive or negative predictions (Menne et al. 2000; Moller

et al. 2001). Furthermore, protein sequences predicted from
draft genomes are often incomplete, lacking N-terminal re-
gions that contain signal peptides (Lander et al. 2001; Venter
et al. 2001), and in forthcoming years these sequences will
represent a significant proportion of the eukaryotic protein
databank. Consequently, we need complementary prediction
methods that are independent of the presence of complete
sequences and a bona fide N-terminal sequence.

(2) Amino-acid composition. Neural networks (Rein-
hardt and Hubbard 1998) and support-vector machines (Hua
and Sun 2001) have been used to classify proteins into sub-
cellular locales using amino-acid composition. On a test set, a
prediction accuracy of just under 80% for eukaryotic proteins
has been reported (Hua and Sun 2001). This approach is
promising and has the advantage of very high coverage, but
the test set excluded all multilocale and plant proteins. Con-
sequently, the prediction accuracy may be lower when ap-
plied more generally. It is important to predict which proteins
might shuttle between locales or are transmembrane proteins.

(3) Genomic context methods. A protein’s localization to
an organelle correlates with the distribution of phyla possess-
ing its homologs (Marcotte et al. 2000); such correlations may
be used for localization predictions. In this work, we develop
another context method that is based on domain co-
occurrences in proteins. We exploit a “rule-of-thumb” used by
molecular biologists for many years, namely those proteins
containing particular domains often share the same cellular
localization (“locale”). For example, disulphide-rich structures,
such as epidermal growth-factor–like or kringle domains, are
found mostly in secreted proteins as disulphide bridges, and
rarely are formed under reducing intracellular conditions, while
ATPases and DNA-binding domains are found in intracellular
compartments. In this study, we codify the “rule-of-thumb”
into a probabilistic method that predicts proteins’ locales.
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Here, we define a domain family as a set of compact,
structurally similar and homologous protein segments, and
depending on the context, “domain” refers to either a domain
family or an instance of a domain in a particular protein. The
detection and classification of domains is straightforward
(Ponting and Birney 2000), and it now is possible to annotate
single proteins, complete proteomes (e.g., Lander et al. 2001;
Venter et al. 2001), and entire sequence databases using col-
lections of domain families such as Pfam (Bateman et al.
2000) and SMART (Schultz et al. 2000).

We consider three locales: secreted (representing extra-
cellular and proteins in many organelles and the extracellular
portions of most transmembrane proteins), cytoplasmic, and
nuclear. We use data from 300 SMART domains that fre-
quently co-occur in proteins (Ponting et al. 2000; Schultz et
al. 2000) to estimate the probabilities that domains are se-
creted, cytoplasmic, nuclear, or multilocale. We then predict
the probable locales of proteins that contain these domains.

RESULTS

SMART Domain Family Locale Probabilities
Of 523 SMART (Schultz et al. 2000) domains, we chose a sub-
set of 329 genetically mobile domains that co-occur with at
least two distinct domains in eukaryotic proteins. Evolution-
arily related domain families, such as serine/threonine- and

tyrosine-specific protein kinases, or the different types of epi-
dermal growth-factor–like domains, were merged into single
domains. Approximately half of these domains co-occur with
over 10 other domains, and only 10% co-occur with only two
or three other domains.

We analyzed the domains’ patterns of co-occurrence in
57,909 eukaryotic proteins from SP-TrEMBL that contain at
least one of the 329 domains. This represented ∼23% of SP-
TrEMBL eukaryotic proteins at the date of the analysis. In
total, 130,898 instances of domains from 329 SMART domain
families were found, an average of 2.26 domains per protein.
Removing repeats of the same domain in a protein left on
average 1.30 domain families per protein. Twelve thousand,
one hundred forty-five proteins contained domains from
more than one family.

We set out to visualize the propensities of domains to be
found together in proteins. A “domain projection” method
was devised based on a pairwise distance measure for the co-
occurrence of domain pairs (A, B). We took account of “bridg-
ing” domains, where, for instance, domains A and B are rarely
or never found together yet each occur together with another
domain, C. Three hundred of the domains formed a single
connected component; the remaining 29 domains were not
considered further. The data then were projected onto two
dimensions (Fig. 1).

Manual classification based on literature surveys of the
300 SMART domain families in Figure 1 indicate 121 cytoplas-

mic, 76 nuclear, 70 secreted, and 33 other
domains. The latter “indiscriminate” group
contains repeats such as ankyrin, cystathio-
nine �-synthase, leucine-rich, tetratricopep-
tide, and WD40, or domains such as fibro-
nectin type III, immunoglobulin, IPT, trans-
glutaminase-like, and von Willebrand
factor A that are prevalent in multiple lo-
cales, as well as RNA-binding domains (e.g.,
double-stranded RNA-binding motif, K ho-
mology, RNA-recognition motif, S1, and S4)
that are localized to both cytoplasmic and
nuclear structures.

By coloring the domains in the Figure
1 according to their SMART locale, it is ap-
parent that domains of known locale are
distinguishable. There are three overlapping
clusters corresponding closely to the
nuclear, secreted, and cytoplasmic locales.
There is almost no overlap between secreted
and either cytoplasmic or nuclear locales,
but there is some intersection between
nuclear and cytoplasmic domains. Because
the domain projection did not use informa-
tion concerning the domains’ locales, Fig-
ure 1 provides strong evidence that a pro-
tein’s locale is predictable from its domain
composition.

We identified two substructures within
the Figure 1. Among the nuclear domains,
those regulating chromatin structure (Jenu-
wein 2001) are clustered, perhaps because
these domains have highly specific nuclear
functions. There is also a more diffuse clus-
ter of domains that regulate the functions
of Ras-like small GTPases among the cyto-
plasmic domains.

Figure 1 Domain projection of 300 SMART domains, colored according to their SMART
subcellular locales. The axes are the first two principal coordinates in the metric scaling
projection. Open circles identify chromatin-related nuclear domains and domains that regu-
late Ras-like small GTPase functions. The “others” are domains classified in SMART as indis-
criminate or multilocale. The labels refer to the misclassified domains in Table 2.
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Benchmarking
Three-state locale probabilities were assigned to the 300 do-
mains. We divided the domains into two broad categories,
depending on their specificity. We found 232 (77%) had a
probability of over 0.9 of residing in a single locale, while 29
(10%) were strongly multilocale, having probabilities >0.33 in
two locales (Table 1). Two domains, WSN and FN3, were pre-
dicted to be in both cytoplasmic and secreted proteins,
whereas the remaining 27 were predicted in cytoplasmic and
nuclear proteins. This suggests that evolutionary constraints
on protein structure and function are more similar between
cytoplasmic and nuclear environments than they are between
extracellular and intracellular environments. It also reflects
an extensive trafficking of molecules between the cytoplasm
and the nucleus (Gorlich and Mattaj 1996).

There were 35 (12%) domains whose most probable pre-
dicted locales conflicted with their SMART annotations (Table
2). Six of these domains were also strongly multilocale (Table
1), with a second-best locale that coincided with the SMART
annotation. Twelve of these domains (4.1m, ARM, BPI2, Cal-
x_beta, HTH_CRP, Ku78, MATH, MBT, MIR, SAND, TIR, and
TSPc) were predicted as single locale with probability >0.9.

Examination of the proteins containing these 35 do-
mains showed that 18 cases are from “indiscriminate” do-
mains that occur in two or more locales, rather than one,

while a nineteenth domain (SFM) was correctly predicted by
the projection method as cytoplasmic, but erroneously listed
in SMART as nuclear. The method therefore predicts the lo-
cale of 284 of 300 domain families (95%) correctly. To evalu-
ate how well the automated process works, these domains
were not reassigned to their correct locales for the remainder
of the analysis. Consequently, a number of avoidably incor-
rect predictions occurred.

Table 1. Domains Predicted to Be Strongly Multilocale,
with a Probability >0.33 in Two Compartments

Cytoplasmic/Nuclear

Pc Pn Ps

REC 0.53 0.46 0
HDc 0.56 0.38 0.04
GAF 0.58 0.41 0
G-alpha 0.61 0.38 0
UBCc 0.62 0.37 0
ZnF_UBP 0.40 0.59 0
AAA 0.40 0.59 0
AT_hook 0.52 0.47 0
TOP4c 0.59 0.40 0
TOP2c 0.60 0.39 0
SMR 0.64 0.35 0
KRAB 0.33 0.66 0
LER 0.35 0.64 0
ZnF_U1 0.37 0.62 0
SANT 0.39 0.60 0
ZnF_NFX 0.40 0.59 0
RRM 0.56 0.43 0
CUE 0.58 0.41 0
PolyA 0.33 0.66 0
R3H 0.36 0.64 0
ZnF_TAZ 0.36 0.63 0
LON 0.36 0.63 0
CLH 0.37 0.62 0
GEL 0.42 0.57 0
TUDOR 0.43 0.56 0
ZnF_UBR1 0.46 0.63 0
KH 0.49 0.50 0

Cytoplasmic/Secreted

WSN 0.53 0.03 0.43
FN3 0.63 0 0.36

Pc , Pn , Ps are the probabilities each domain is respectively cyto-
plasmic, nuclear, or secreted.

Table 2. Domains Whose Predicted Locales Differ from
Their SMART Annotations

Domain Prob Reasonb

cytoplasmic → secreted
4.1m 1.00 TM
Calx_beta 0.99 TM
TIR 0.99 TM

cytoplasmic → nuclear
AAAa 0.59 I
ARM 0.99 I
BIR 0.83 I
BTB 0.74 I
CASc 0.76 I
CARD 0.75 I
MIR 0.95 I
RING 0.72 I
SPRY 0.88 I
UBOX 0.73 I
VHP 0.73 I
ZnF_AN1 0.99 I
ZnF_RBZ 0.85 I
ZnF_UBPa 0.60 I

nuclear → cytoplasmic
A1pp 0.59 I
AT_hooka 0.53 (i)
HLH 0.76 CI (PAS)
HOX 0.77 CI (LIM)
HSF 0.73 CI (REC)
HTH_CRP 0.90 CI (cNMP)
HTH_LUXR 0.70 CI (REC)
MBT 0.95 I
SFM 0.63 (ii)
SMRa 0.64 I
TOP2ca 0.60 CI (HATPase_c)
TOP4ca 0.59 CI (HATPase_c)

nuclear → secreted
Ku78 0.99 CI (VWA)
SAND 0.91 (iii)

secreted → cytoplasmic
BPI2 0.98 (iv)
LysM 0.67 TM
TSPc 0.94 CI (PDZ)

secreted → nuclear
MATH 0.99 I

For example, cytoplasmic → nuclear means domains listed as cy-
toplasmic in SMART but predicted to be nuclear. Prob is the pre-
dicted locale probability of the domain. aDomain predicted as
strongly multilocale. bTM: Domain occurs in transmembrane pro-
teins. I: Indiscriminate domain for which there is literature evi-
dence that the domain occurs in proteins found in more than one
locale. CI: Domain is companion of an indiscriminate domain
(listed). (i) AT_hook was wrongly predicted as cytoplasmic be-
cause of its close proximity in the domain projection plot to
UBOX, an indiscriminate domain. (ii) SFM was wrongly desig-
nated as a nuclear domain in SMART. (iii) SAND was wrongly
predicted as secreted because of an error in the domain architec-
ture prediction by SMART of sequence Q9JLW9. (iv) BPI2 was
predicted as nuclear rather than secreted as a result of a likely
aberrant fusion with a PHD-containing sequence Q9LTR5.
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Of the remaining 16 domains that were incorrectly pre-
dicted:

(1) Nine were because of their frequent co-occurrence
with “indiscriminate” domains. This was, in effect, “guilt by
association”. For example, the indiscriminate (cytoplasmic and
nuclear) PAS, REC (CheY-like), and HATPase_c (histidine kinase-
like) domains are found with HLH, HTH_LUXR, and TOP2c do-
mains in, for instance, mammalian single-minded (O70284), al-
gal transcriptional regulator YCF29 (P51343) and eukaryotic to-
poisomerase type II (O55078) sequences, respectively. Thus
HLH, HTH_LUXR, and TOP2c domains were assigned as cyto-
plasmic when, from their well-established interactions with
nuclear DNA, they are clearly situated in the nucleus.

(2) Four were from their presence in multidomain pro-
teins that span the plasma membrane. For example, 4.1m is a
cytoplasmic motif that occurs in, among others, neurexins.
Here they are the only intracellular portions of transmem-
brane proteins containing other domains (for example, LamG
and EGF) that are only found in extracellular environments.

(3) One, BPI2, is likely to have arisen from errors in se-
quence that give rise to aberrant fusions. BPI2 contrasts with
domains such as KU, which is correctly predicted as secreted
even though it is wrongly fused with a HOX domain in Cae-
norhabditis elegans C02F12.5 (Q11101) (Eisenhaber and Bork
1999), and FAF/UAS (cytoplasmic), another example of an
aberrant fusion (SpTrEMBL code Q23467). The reason for
these successes, when the assignment of BPI2 fails, is that for
KU and FAF/UAS there is a significant contribution from
other, accurate, domain co-occurrence information.

(4) The prediction of AT_hook was inaccurate because of
its close proximity in the projection plot to an indiscriminate
domain, whereas the prediction for the SAND domain was
wrong because of a false positive prediction by SMART (see
Table 2 legend).

Protein Locale Probabilities
Domain locale probabilities were used (see Methods, equation
4) to predict the cellular locales of 53,821 eukaryotic protein
sequences from the SpTrEMBL database that contains at least
one of the 300 domains. For 31,605 proteins (58%) the most
likely locale had a probability of >0.9, and the protein was
assigned a single locale. The remainder were assigned their
two most probable locales (Fig. 2). The likely reason why pro-
tein locale predictions tend to be less definite than domain
locale probabilities is that many multidomain proteins con-
tain indiscriminate, and hence uninformative, domains that
dilute locale specificity.

Only 50 proteins (0.1%) were assigned to the nuclear and
secreted category (Fig. 2), consistent with the expectation that
no protein possesses both nuclear and secreted functions. Fur-
thermore, only nine of the 50 had a large (P>0.15) secreted
locale probability. These represented a small number of false
positive predictions where disulphide-rich (secreted) domains
and cysteine-rich (nuclear) zinc fingers were predicted by
SMART to overlap.

The accuracy of the protein locale predictions was as-
sessed by comparison with the annotation-based locale as-
signments of Meta-A (Eisenhaber and Bork 1998, 1999).
Meta-A predicts subcellular localization only for SWISSPROT
sequences (a subset of the SpTrEMBL database) so we were
only able to compare domain projection and Meta-A annota-
tions for 2965 proteins annotated by both methods. In those
cases where either method predicted more than one locale for

a protein, an agreement was recorded if at least one locale was
in common. We identified 262 proteins (8.9%) with conflict-
ing predictions. In 1839 cases (62%), the most probable pre-
diction was consistent. Detailed consideration of the 262 con-
flicting cases showed that, in 23 instances, either the Swiss-
Prot or the Meta-A annotation contradicted the literature
evidence, and for a further six proteins there was evidence for
multiple locales (Table 2). Consequently, protein locales are
predicted with 92% apparent accuracy, which agrees well
with the 95% prediction accuracy for domain locales. The
domains implicated in the conflicts with Meta-A, together
with example sequences, are listed in Table 3.

A comparative breakdown of the two methods’ locale
assignments for the 2965 proteins is given in Table 4. There is
generally good agreement for secreted proteins. We investi-
gated those instances where the domain projection method
predicted proteins as either cytoplasmic/nuclear or nuclear/
cytoplasmic, when Meta-A classifies them as nuclear. Of the
827 proteins classified as nuclear by Meta-A but cytoplasmic/
nuclear by domain projection, 760 contain one or more of
the domains HOX (536 cases), RRM (155), WD40 (143), and
HLH (118). Only six of the 760 contain other domains. These
four domains are either promiscuous or companions of
promiscuous domains. Similarly, of the 237 proteins classi-
fied as nuclear by Meta-A but nuclear/cytoplasmic by domain
projection, 168 contain one or more of the domains ZnF_C2H2
(64), AAA (50), RING (31), HATPase_c (23), or SANT (22).

As a further check on the accuracy of the method, we
performed a cross-validation exercise in which each of the
2965 proteins was excluded in turn from the data set, and the
complete analysis repeated (i.e., domain projection and locale
assignment of the excluded protein). The results were almost
identical to the original analysis; in particular the number of
errors was unchanged.

We also compared our predictions with those obtained
from signal peptide and transmembrane helix searches and
gene ontology (GO) annotations (Ashburner et al. 2000).

Figure 2 Pie chart of protein (multi)locale assignments for the
57,909 SpTrEMBL proteins used in the domain projection showing
the distribution of locale assignments. A protein was assigned to a
single locale if it had a locale probability >0.9. The number of se-
creted/nuclear proteins is 50 (0.1%).
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There was moderate agreement (∼80%) with the signal
peptide/TM predictions but poor agreement (∼50%) with
GO annotations. However, signal peptide/TM predictions are
relatively inaccurate (Menne et al. 2000; Moller et al. 2001)
and there are substantial locale ambiguities in the GO anno-
tations of domains. For example, the term “membrane” is
the sole GO assignment for many different nuclear, cytoplas-
mic, and secreted domains (see http://golgi.ebi.ac.uk/ego/
QuickGO?mode=display&entry=GO:0016020).

The “maximum” method (see Methods, equation 5) for
assigning proteins to locales also worked quite well, although
the assignment probabilities were more diffuse: The percent-
age of proteins assigned to a unique locale dropped from
58.7% to 51.4% but the number of incorrect predictions also
fell from 8.9% to 6.7%. However, because this improvement
was made at a considerable loss in specificity, and because the
number of proteins assigned as nuclear, secreted doubled, we
prefer to use the product method (see Methods, equation 4).

The complete analysis of 57,909 sequences and 329 do-
mains (i.e., creation of dissimilarity matrix from a file of the
domain composition of each protein, followed by principle
coordinates projection and assignment of domains and pro-
teins to their locales) took 35 CPU seconds on a Pentium III
workstation running Debian Linux.

DISCUSSION
We have demonstrated that most mobile eukaryotic protein
domains can be clustered on the basis of their domain co-
occurrences, which may be projected into two-dimensional
space in such a way that the subcellular localization of the
domains is preserved. In general, domains only co-occur if
they have the same locale, and approximately three-quarters
of protein domains have a unique locale. The remainder are
either indiscriminate domains, or occur in transmembrane
proteins, or are artefacts caused by sequence or prediction
errors. One of the method’s strengths is that it is probabilistic
and models multilocale domains and proteins with ease.

It is worth remarking that, rather than lying in many
small, disconnected groups, over half of the SMART domains
form one highly connected cluster. These domains form a
small-world network, in which no pair of domains suffers
more than seven degrees of separation, and the majority not
more than two. This observation supports the view that a large
fraction of domains are reused in many different contexts, but
in a manner that tends to preserve subcellular localization.

In terms of domain reuse, our results show that the se-
creted and nuclear locales are almost entirely distinct (no do-
main has probabilities >0.25 in both locales), consistent with
the hypothesis that few proteins perform functions in both
locales. Secreted and cytoplasmic domains are well separated,
even though many of these domains are found together in
transmembrane proteins that span both locales. The distinc-
tion between cytoplasmic and nuclear domains is not so clear-
cut, most likely because of the greater degree of molecular
trafficking between the cytoplasm and nucleus, than between
the cytoplasm and extracellular compartments. The method
is not able to predict protein localization down to subcellular
structures, including organelles, except for chromatin-related
domains. Notwithstanding this, some domains such as
ZnF_C4 and HOLI domains of nuclear receptors, which trans-

Table 3. Domains Occurring in Proteins Whose Locale
Predictions by Domain Projection and Meta-A Differed

Domain Q Example L Pr(L) Meta-A

ArfGAPa GLO3_YEAST Cyt 1.00 Nuc
ARM PLAK_XENLA Nuc 0.99 Cyt
BPI1 CETP_RABIT Nuc 0.99 Sec
DnaJ YRY1_CAEEL Nuc 0.87 Sec
DYNc MX1_MOUSE Cyt 1.00 Nuc
Efhandb FCA4_TRYBB Cyt 1.00 Sec
EXOIIIc YWO2_CAEEL Nuc 0.76 Sec
FA58C DISA_DICDI Sec 0.99 Sec
HX ALB2_PEA Sec 0.99 Cyt
IPT REL_MOUSE Sec 0.88 Nuc
KISc KIP1_YEAST Cyt 1.00 Nuc
LH2 LOXA_LYCES Sec 0.97 Cyt
LIM LI11_CAEEL Cyt 0.98 Nuc
LysM KTXA_KLULA Cyt 0.67 Sec
MATH TRA1_HUMAN Nuc 0.99 Cyt
PAS ARNT_MOUSE Cyt 1.00 Nuc
PDZ SPA1_MOUSE Cyt 0.99 Nuc
Phosphatase MCE1_MOUSE Cyt 0.89 Nuc
PI3Kc PIK1_YEAST Cyt 0.98 Nuc
PLAc PLB1_YEAST Cyt 1.00 Sec
PP2Ac PP11_SCHPO Cyt 1.00 Nuc
Protein Kinase CC2_HUMAN Cyt 0.94 Nuc
SH2 STA1_MOUSE Cyt 1.00 Nuc
SH3 MIA_BOVIN Cyt 1.00 Sec
TGc TGLD_RAT Cyt 0.91 Sec
TIR MY88_MOUSE Sec 0.90 Cyt
TSPc IRBP_BOVIN Cyt 0.94 Sec
VWA KU88_MOUSE Sec 1.00 Nuc
ZnF_C2HC CNBP_HUMAN Nuc 0.91 Cyt
ZnF_C2HCd GRP2_NICSY Nuc 1.00 Sec
ZnF_ZZ RF2P_DROME Cyt 1.00 Nuc

aMeta-A wrongly predicts a nuclear localization for ArfGap zinc
finger domains on the basis that all zinc fingers bind DNA.
bMeta-A predicts a nuclear localization for centrosomal proteins.
However, the centrosome is a nucleus-associated structure, rather
than being a region of the nucleus.
cThe signal peptide predicted in SwissProt for YWO2_CAEEL is
unlikely, as it is not predicted using other methods.
dPredicted as secreted by Meta-A on the basis that it was originally
described as a cell-wall structural protein. The six proteins men-
tioned in the text that have multiple locales and were predicted
to have different locales by the domain projection and Meta-A
methods are: SCD1_SCHPO, YB54_XENLA, YB56_XENLA,
NUMB_DROME, RANG_YEAST, and SNF4_YEAST.

Table 4. Comparison of Domain Projection and Meta-A
Classifications of 2965 Proteins that Could be Predicted by
Both Methods

Meta-A

Domain Projection

c c,n n,c c,s n n,s s s,c Total

c 109 46 34 11 15 0 29 2 246
c+n 10 30 48 6 5 0 0 0 99
n 156 827 257 14 573 4 8 1 1840
s 25 1 1 0 12 0 537 193 769
c+s 0 0 1 0 0 0 0 10 11
Total 300 904 341 31 605 4 574 206 2965

n,c,s are abbreviations for nuclear, cytoplasmic, secreted. E.g.,
“n,c” means proteins predicted to be either nuclear or cytoplas-
mic by domain projection, but with a higher probability for the
nuclear local. “c+n” means predicted as either nuclear or cyto-
plasmic by Meta-A, with no preference.
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locate between the cytoplasm and nucleus, are predicted to be
only nuclear with high probability (>0.9).

Domain projection predicted the localization of 53,821
eukaryotic proteins to an accuracy of at least 92%, in a com-
parison with the Meta-A textual analysis algorithm. Coverage
is limited mainly by the proportion of eukaryotic protein se-
quences (23%) containing at least one domain from the set of
300 SMART domain families. The method is likely to be of
particular use in predicting the localization of proteins whose
gene sequences are only known partially through expressed
sequence tags or incomplete gene prediction. The majority of
locales wrongly predicted by us arise from indiscriminate do-
mains (i.e., those found in multiple locales) or else from do-
mains that often co-occur with indiscriminate domains.

In a few cases, cellular localization was predicted incor-
rectly because of gene fusion sequence errors (Table 1). How-
ever, it is worth noting that not all aberrant fusions cause
inaccuracies in locale assignment. For example, SpTREMBL
entry Q9UNH1 represents an aberrant fusion in a mucosa-
associated lymphoid tissue lymphoma (Dierlamm et al. 1999).
This aberrant sequence is predicted to contain both BIR
(nuclear) domains and IG-like C2-type (secreted) domains.
This example demonstrates how the influence of other pro-
teins with manifold domain combinations can compensate
for a small number of erroneous sequences.

Coverage could be extended significantly, for those pro-
teins containing domains not linked to the set of 300 do-
mains used here in those cases where these isolated domains
have a well-defined locale. Prediction accuracy is expected to
improve as the number of domains in SMART and other do-
main databases increases. This is particularly the case for
those proteins that at present are only known to contain in-
discriminate domains such as HOX, where we cannot distin-
guish reliably between the nuclear and cytoplasmic locales.
Accuracy also would improve if the secreted and intracellular
portions of transmembrane proteins were treated as indepen-
dent sequences. However, this approach was not pursued
because, as mentioned previously, it would have been ham-
pered by the relatively low accuracy of transmembrane seg-
ment prediction. The domain projection approach is more
accurate than, but complementary to, methods based on pre-
dicting signal peptides and transmembrane helices, and to
predictors based on amino-acid composition. Thus, in prin-
ciple, the locale probabilities of all of these methods could
be combined to produce further improvements in prediction
accuracies.

Data relating to this work may be found at http://www.
well.ox.ac.uk/∼rmott/DOMAINS; the localization prediction
method will be implemented shortly in SMART (http://smart.
embl-heidelberg.de).

METHODS

Domain Co-Occurrence Measures
We first cluster domain families represented in the SMART
database by their co-occurrences in eukaryotic proteins and
then investigate how the clusters correlate with locale. Here,
domain co-occurrence is measured by the probability Pr(A|B)
that a protein contains domains of type A given that it con-
tains others of type B. This probability is estimated as the
number of known proteins containing A and B divided by the
number containing B. A symmetric pairwise dissimilarity for
domains A, B then is defined as

D�A,B� = 1 − min�Pr�A| B�, Pr�B|A��

Thus D(A,B) is 1 if the domains never co-occur, 0 if they al-
ways occur together, and lies between otherwise. We investi-
gated using several alternatives to this definition, namely 1�
max(Pr(A|B), Pr(B|A)), 1� (Pr(A|B)+Pr(B|A)/2,�log((Pr(A|B) +
Pr(B|A))/2). Although they produce broadly similar domain
projections, we found that these measures give markedly in-
ferior predictions of protein locale.

D(A,B) has the drawback that it is a short-range measure:
Any pair of domains that never co-occur will have a dissimi-
larity of 1, regardless of whether or not the domains are pre-
sent in proteins that have the same locales. Furthermore,
D(A,B) is not a metric—it does not obey the triangle inequal-
ity, and therefore is hard to visualize by projection into a
Euclidean space. However, we can create a metric d(A,B) from
this dissimilarity to infer relationships between domains for
which D(A,B) = 1, but which still preserves the short-range
structure.

We treat the domain families as nodes in a weighted,
undirected graph in which there is an edge between A, B if,
and only if, D(A,B) < t, where t is a threshold value, set at 0.98.
Next, we identify all connected components in the graph. In
our data set, 300 domains form a single connected compo-
nent, the remainder in isolated small components, which are
ignored for the remainder of the analysis. Within each com-
ponent we find the shortest path between every pair of nodes,
that is, a sequence s of adjacent nodes [A, x1 . . . xn, B] con-
necting A, B such that

d�A,B� = mins D�A, x1� + D�x1, x2� + . . . + D�xn, B�

By construction, d(A,B) is a metric, as it is the length of a
shortest path between A and B. By using either Floyd’s (1962)
or Dijkstra’s (1959) algorithms, it is possible to compute d for
all pairs of nodes in a graph of n nodes efficiently.

Domain Projection
We project the domains onto a two-dimensional Euclidean
space (Fig. 1) using metric scaling (Torgeson 1958) applied to
d, creating a “domain projection”. To determine whether do-
mains that are found in the same locale are clustered, we
colored the domain projection according to known SMART
locales. The idea of shortest-path reconstruction followed by
projection has been used previously in different contexts
(Newell et al. 1995; Tenenbaum et al. 2000).

Assignment of Domain Family Locale Probabilities
We use kernel density estimation to attach locale probabilities
to the domains. Throughout this section, we use the two-
dimensional projected Euclidean distance between domains,
which we denote by d2(A,B). Let NL1,NL2, . . . NLn be the list of
domains with a particular SMART locale L. We then define the
probability that the (possibly unlocalized) domain A is from
locale L as

Pr�A| L� = �i exp� − d2�A,NLi�
2�2�2���K �i exp� − d2�A,NKi�

2�2�2�
( 1 )

That is, Pr(A|L) is the sum of n normal distributions, each with
variance �2, centered on a domain in locale L. A is excluded
from the sums to avoid self-effects. The standard deviation �
controls the degree of smoothing. After some experimenta-
tion, we found that �2 = 0.025 was a good choice.

Assignment of Multidomain Protein
Locale Probabilities
The probability that a protein Q, containing distinct domains
AQ1, AQ2, . . . AQn, is in one of the three locales L is defined as

Pr�Q| L� = ��L� � �L���L�� ( 2 )
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Here µ(L) is �i Pr(AQi|L), the product of the locale domain-
based probabilities Pr(AQi|L), taken over the number i = 1,
2, . . . , n of different domains. The index L� varies over the
three locales. By considering domains repeated in a protein
only once rather than by their multiplicity, we avoid an over-
weighting by single domain types.

We also investigated an alternative assignment method,

Pr�Q| L� = maxi Pr�AQi| L� � �L maxi Pr�AQi| L� ( 2*)

That is, the domain with maximum probability of locale L is
taken as the evidence for the protein residing in L.

Benchmarking Domain- and Protein-Based
Locale Probabilities
Domains were classified as secreted, cytoplasmic or nuclear,
based on their SMART annotations derived from detailed lit-
erature searches. Locale assignments were based on experi-
mental data for the majority of domains; exceptional cases,
such as the PDZ domain in the secreted molecule interleukin-
16 and the SH3 domain in the extracellular melanoma de-
rived growth regulatory protein, were ignored. Domains that
occur in multiple locales were labeled “other”.

Domain projection was benchmarked against the Meta
annotation prediction of subcellular localization derived from
the annotation of SwissProt (Eisenhaber and Bork 1998; Ei-
senhaber and Bork 1999; Bairoch and Apweiler 2000). Meta-A
is a lexical analyzer that uses keywords to infer locale. Results
also were compared with locale assignments of signal peptide,
(Krogh et al. 2001) and transmembrane (Nielsen et al. 1997)
prediction algorithms, and with the GO consortium (Ash-
burner et al. 2000), as applied to SMART via their mapping to
InterPro (Apweiler et al. 2000).
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