Skip to main content
. 2003 Dec 31;4(Suppl 1):S21. doi: 10.1186/1471-2156-4-S1-S21

Table 1.

Weighted segregation analysis of intercepts*

Hypothesis
Mendelian
Segregation Parameter General Codominant Dominant Recessive Additive No Major Gene
Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE
Intercept 4.769 0.0078 4.771 0.0072 4.802 0.0052 4.801 0.0051 4.776 0.0065 4.846 0.0041
βcohort -0.088 0.0077 -0.092 0.0043 -0.092 0.0046 -0.091 0.0047 -0.092 0.0043 -0.085 0.0049
βSex 0.011 0.0046 0.011 0.0046 0.012 0.0046 0.010 0.0047 0.012 0.0046 0.005 0.0049
βAA 0.288 0.0143 0.283 0.0142 0.165 0.0066 0.167 0.0072 0.269 0.0107
βAa 0.118 0.0076 0.115 0.0078 0.165A 0.000B 0.135C
q A 0.323 0.0539 0.305 0.0373 0.139 0.0180 0.511 0.0304 0.257 0.0285
σ2 0.004 0.0004 0.004 0.0004 0.006 0.0004 0.006 0.0004 0.004 0.0004 0.011 0.0004
τaa 0.000 0.0000 0.000D 0.000D 0.000D 0.000D
τAa 0.476 0.0610 0.500D 0.500D 0.500D 0.500D
τAA 0.935 0.0611 1.000D 1.000D 1.000D 1.000D

-2(log-likelihood) -3482.64 -3480.94 -3400.16 -3376.52 -3463.32 -3155.59
p-valueE 0.43 < 0.001 < 0.001 < 0.001 < 0.001
AICF -3462.64 -3466.94 -3388.16 -3364.52 -3451.32 -3147.59

*The outcome being modeled in equation (2) is ai from equation (1). AConstrained to equal βAA. BConstrained to equal 0. C Constrained to equal 1/2 βAA. D Parameter value is fixed. Ep-value based on a likelihood ratio test with the general model as the base model.FAIC = -2(log-likelihood) + 2(number of free parameters).