Table 1.
Hypothesis | ||||||||||||
Mendelian | ||||||||||||
Segregation Parameter | General | Codominant | Dominant | Recessive | Additive | No Major Gene | ||||||
Estimate | SE | Estimate | SE | Estimate | SE | Estimate | SE | Estimate | SE | Estimate | SE | |
Intercept | 4.769 | 0.0078 | 4.771 | 0.0072 | 4.802 | 0.0052 | 4.801 | 0.0051 | 4.776 | 0.0065 | 4.846 | 0.0041 |
βcohort | -0.088 | 0.0077 | -0.092 | 0.0043 | -0.092 | 0.0046 | -0.091 | 0.0047 | -0.092 | 0.0043 | -0.085 | 0.0049 |
βSex | 0.011 | 0.0046 | 0.011 | 0.0046 | 0.012 | 0.0046 | 0.010 | 0.0047 | 0.012 | 0.0046 | 0.005 | 0.0049 |
βAA | 0.288 | 0.0143 | 0.283 | 0.0142 | 0.165 | 0.0066 | 0.167 | 0.0072 | 0.269 | 0.0107 | — | — |
βAa | 0.118 | 0.0076 | 0.115 | 0.0078 | 0.165A | — | 0.000B | — | 0.135C | — | — | — |
q A | 0.323 | 0.0539 | 0.305 | 0.0373 | 0.139 | 0.0180 | 0.511 | 0.0304 | 0.257 | 0.0285 | — | — |
σ2 | 0.004 | 0.0004 | 0.004 | 0.0004 | 0.006 | 0.0004 | 0.006 | 0.0004 | 0.004 | 0.0004 | 0.011 | 0.0004 |
τaa | 0.000 | 0.0000 | 0.000D | — | 0.000D | — | 0.000D | — | 0.000D | — | — | — |
τAa | 0.476 | 0.0610 | 0.500D | — | 0.500D | — | 0.500D | — | 0.500D | — | — | — |
τAA | 0.935 | 0.0611 | 1.000D | — | 1.000D | — | 1.000D | — | 1.000D | — | — | — |
-2(log-likelihood) | -3482.64 | -3480.94 | -3400.16 | -3376.52 | -3463.32 | -3155.59 | ||||||
p-valueE | — | 0.43 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | ||||||
AICF | -3462.64 | -3466.94 | -3388.16 | -3364.52 | -3451.32 | -3147.59 |
*The outcome being modeled in equation (2) is ai from equation (1). AConstrained to equal βAA. BConstrained to equal 0. C Constrained to equal 1/2 βAA. D Parameter value is fixed. Ep-value based on a likelihood ratio test with the general model as the base model.FAIC = -2(log-likelihood) + 2(number of free parameters).