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Abstract
Methods to handle missing data have been an area of statistical research for many years. Little has
been done within the context of pedigree analysis. In this paper we present two methods for
imputing missing data for polygenic models using family data. The imputation schemes take into
account familial relationships and use the observed familial information for the imputation. A
traditional multiple imputation approach and multiple imputation or data augmentation approach
within a Gibbs sampler for the handling of missing data for a polygenic model are presented.

We used both the Genetic Analysis Workshop 13 simulated missing phenotype and the complete
phenotype data sets as the means to illustrate the two methods. We looked at the phenotypic trait
systolic blood pressure and the covariate gender at time point 11 (1970) for Cohort 1 and time
point 1 (1971) for Cohort 2. Comparing the results for three replicates of complete and missing
data incorporating multiple imputation, we find that multiple imputation via a Gibbs sampler
produces more accurate results. Thus, we recommend the Gibbs sampler for imputation purposes
because of the ease with which it can be extended to more complicated models, the consistency
of the results, and the accountability of the variation due to imputation.

Background
Methods to handle missing data have been a statistical
area of research for many years [1]. Little has been done
within the context of pedigree analysis. The goals of this
paper are: 1) to present two imputation methods for miss-
ing phenotype information, and 2) to compare estimates
of the additive polygenic effect using variance compo-
nents or mixed models between the Genetic Analysis
Workshop 13 (GAW13) simulated missing phenotype
and the complete phenotype data sets for each imputation
method [2-4]. In narrowing the focus of our topic, we
only looked at the phenotypic trait systolic blood pressure
and the covariate gender at time point 11 (1970) for
Cohort 1 and time point 1 (1971) for Cohort 2. The meth-
ods for imputation described herein include traditional

multiple imputation and multiple imputation (data aug-
mentation) via a Gibbs sampler, with both methods
accounting for the familial information in the imputa-
tion. In fitting the polygenic model to produce estimates
of the overall mean effect, gender effect, additive genetic
variance, and the residual error variance, we used the
expectation-maximization (EM) algorithm program Pol-
yEM [5] and a Bayesian analysis involving use of a Gibbs
sampler.

Methods
Traditional multiple imputation method
Multiple imputation is carried out by using the condi-
tional distribution of the missing values given the
observed values. Let Yi = (YT

mis, YT
obs)T be the quantitative
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phenotype values for the ith family with Ymis representing
the vector of missing values and Yobs representing the vec-
tor of observed values. Similarly, we can partition the
mean and covariance matrix. Thus, for the polygenic
model (including an overall mean and a gender effect),
the distribution of Ymis given Yobs is

Ymis | Yobs ~ N(µ1, Σ1),

with µ1 = (µ + X1β) + (σ2 D12)(σ2 D22 + τ2 I22)-1(Yobs - (µ +
X2 β))

and Σ1 = (σ2 D11 + τ2 I11) - (σ2 D12)(σ2D22 + τ2 I22)-1 (σ2

D21).

The imputation is carried out by generating missing values
from the conditional multivariate normal distribution,
taking into account the family structure. This imputation
is completed m times to produce m complete data sets to
analyze. From these m analyses, the final point estimate
would be the mean of the m estimates. The computation
of the standard error can be done by first computing the
between-imputation variation, Bm, and the within-impu-
tation variation, Wm. Then, the total variability is Tm = Wm
+ Bm (m + 1)/m. Confidence intervals for parameters of
interest use the t-distribution with degrees of freedom (m
- 1) (1 + 1/ (m + 1)*Wm/Bm)2 [6].

The one problem with this imputation scheme is that val-
ues for µ, β, σ2, and τ2 are required for the imputation. To
address this issue, we ran the analysis on the observed
data and used the resulting estimates to create k complete
data sets, from which k sets of point estimates are found.
Then, the average of the k sets of estimates is used for the
m multiple imputations. Point estimates were found using
the EM algorithm program PolyEM with k = 5 and m = 25
[5,7]. Variance estimates were found using the Fisher
Information matrix and the large sample properties of
maximum likelihood estimates (MLEs) [4,7,8].

Multiple imputation via Gibbs sampler
Another approach for the imputation of missing data is
through a Bayesian analysis via a Gibbs sampler. The
Gibbs sampler is a particular Markov chain algorithm that
is useful when working with high dimensional problems.
In addition to the traditional use of the Gibbs sampler, an
imputation step can also be added to impute missing val-
ues. A multiple imputation scheme can be implemented
by having an imputation step at the beginning of the
Gibbs sampler. For each iteration, a new imputation is
done, giving multiple imputations for each missing value
[9-15]. For a detailed proof of the data augmentation
methodology, see Tanner and Wong [12].

A Bayesian polygenic model with non-informative prior
distributions for the ith family is Yi = Xiβ + ai + εi, where Yi
is a vector containing the individual responses in family i,
Xi is a design matrix containing covariate information, β is
a vector of covariate effects, ai is a vector of random family
effects where ai ~ MVN(0, σ2Di) and Di is a known coeffi-
cient of relationship matrix, and εi ~ MVN(0, τ2I). Non-
informative priors were then placed on all other parame-
ters in the model, i.e., p(β) proportional to 1, p(σ2) pro-
portional to 1/σ2, and p(τ2) proportional to 1/τ2 [6].

The steps for implementing the Gibbs sampler with an
imputation step for the Bayesian polygenic model follow.

1. Set starting values for β(0), σ2(0), τ2(0), ai
(0) for all i = 1,...,

k, and set m = 1 (iteration).

2. If yij is missing, impute yij by simulating an observation
from N(Xij β (m-1) + aij

(m-1), τ2(m-1)).

3. Generate β(m) from MVN((XTX)-1XT(y - a(m-1)), τ2(m-

1)(XTX)-1).

4. Generate τ2(m) from INGAM(N/2, 1/2 Σ(yi-Xiβ(m) - ai
(m-

1))T(yi-Xiβ(m) - ai
(m-1))).

5. Generate σ2(m) from INGAM(N/2, 1/2 Σ ai
(m-1)T Di

-1ai
(m-

1)).

6. Generate ai
(m) from MVN(µa

(m), Va
(m)), where µa

(m) =
(1/σ2(m) * Di

-1 + 1/τ2(m)* Ii)-1 * (1/ τ2(m) * Ii (yi - Xiβ(m)))
and Va

(m) = (1/σ2(m) * Di
-1 + 1/τ2(m) * Ii)-1.

7. After one iteration of the algorithm, you have (β(m),
σ2(m), τ2(m), a(m)). Set m = m + 1 and repeat steps 1
through 6.

Approximate (1 - α)% posterior confidence intervals are
found by taking the α/2 and the 1-α/2 percentiles of the
simulated marginal posterior distributions for parameters
of interest. The simulated posterior distributions will
reflect the uncertainty in the estimation of the parameter
along with the uncertainty due to the imputation of the
missing data.

Results
The two imputation methods were run for three replicates
of the GAW13 simulated complete and missing data sets
for the phenotypic trait of systolic blood pressure and the
covariate of gender at time point 11 (1970) for Cohort 1
and time point 1 (1971) for Cohort 2. We limited our
analysis to two odd-numbered replicates and one even-
numbered replicate to demonstrate the methods due to
time and computational restrictions. Table 1 displays the
results for the GAW13 missing and complete data sets, in
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which a likelihood analysis using an EM algorithm using
the traditional imputation approach for the missing data.
Table 2 displays the results for the GAW13 missing and
complete data sets, in which a Bayesian model was used
involving a data augmentation step for missing data.

The confidence intervals show little difference between
the complete and missing data set analysis within each
type of imputation method with regards to the estimates
for the error variance component. The data augmentation
within a Gibbs sampler gives intervals similar to those of
the complete data set, while the traditional imputation
approach for missing data produced differing intervals
when compared with the complete data set analysis. Not
only are the confidence intervals narrower after the impu-
tation of missing data, but the point estimates for the
polygenic variance component are much smaller (under-
estimated) as compared to the results of the complete data
sets for the traditional imputation method. These inter-
vals show that the traditional imputation method pro-
duced inaccurate intervals as compared with the intervals
for the complete data set. The inaccuracy may be due to
the choice of the parameter values for the imputation or
the degrees of freedom used for the intervals [16].

Conclusions
Missing data complicates statistical analysis. One way to
deal with missing data is through the use of imputation.
In the case of family data, the information provided by the

dependence structure can be utilized in the imputation of
missing data. We have discussed two methods of imputa-
tion and illustrated their application through the GAW13
simulated data sets. We assumed the missing data mecha-
nism in the GAW13 data set was ignorable. The Gibbs
sampler and the traditional multiple imputation method
can be easily applied to non-ignorable missing data, such
as in cases involving censored phenotype data. In the case
of non-ignorable missingness, not adjusting for the miss-
ing/censored values will lead to biased estimates. Based
on results from the three replicates, the Gibbs sampler
approach seems to give more accurate confidence inter-
vals, as opposed to the traditional multiple imputation
approach. In addition, the traditional imputation method
has the drawback of needing parameter values for the
completion of the imputation. The Gibbs sampler
approach does not encounter this problem, because any
set of estimates may be used as starting values for the algo-
rithm. In conclusion, we recommend the Gibbs sampler
for imputation purposes because of the ease with which it
can be extended to more complicated models, the consist-
ency of the results, and the accountability of the variation
due to imputation. Future work is planned to investigate
the use of data augmentation for missing phenotype data
in longitudinal studies and quantitative trait locus
analysis.

Table 1: 95% Confidence intervals using "traditional" multiple imputation within a likelihood analysis for the complete and missing 
simulated data

Missing Data Complete Data

Rep Polygenic VC Error VC Polygenic VC Error VC

003 (77.68, 90.99) (152.25, 189.97) (86.08, 133.07) (145.59, 188.12)
004 (71.29, 96.34) (151.42, 190.75) (81.58, 127.39) (151.10, 189.15)
019 (75.86, 88.50) (154.40, 188.91) (65.23, 107.04) (154. 90, 191.57)

Table 2: 95% Approximate posterior intervals using data augmentation within a Bayesian/Model for the complete and missing simulated 
data

Missing Data Complete Data

Rep Polygenic VC Error VC Polygenic VC Error VC

003 (90.38, 129.60) (148.30, 182.30) (88.47, 131.90) (151.50, 186.30)
004 (80.30, 122.50) (147.90, 183.20) (86.75, 126.70) (153.40, 185.40)
019 (67.49, 95.44) (157.50, 188.10) (71.13, 104.80) (158.90, 189.30)
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