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Abstract
Only one genome scan to date has attempted to make use of the longitudinal data available in the
Framingham Heart Study, and this attempt yielded evidence of linkage to a gene for mean systolic
blood pressure. We show how the additional information available in these longitudinal data can
be utilized to examine linkages for not only mean systolic blood pressure (SBP), but also for its
trend with age and its variability. Prior to linkage analysis, individuals treated for hypertension were
adjusted to account for right-censoring of SBP. Regressions on age were fitted to obtain orthogonal
measures of slope, curvature, and residual variance of SBP that were then used as dependent
variables in the model-free linkage program SIBPAL. We included mean age, gender, and cohort as
covariates in the analysis. To improve power, sibling pairs were weighted for informativity using
weights derived from both the marker and trait. The most significant results from our analyses
were found on chromosomes 12, 15, and 17 for mean SBP, and chromosome 20 for both SBP slope
and curvature.

Background
Hypertension is a complex disorder that involves both
environmental and genetic components [1]. Unfortu-
nately, little is understood about the genetics of the over-
all variance of blood pressure or the changes in blood
pressure over time. Levy et al. [2] conducted a genome
scan of the Framingham Heart Study data using longitudi-
nal blood pressure measures in an effort to describe the
underlying variation of blood pressure in the community.
This report presents a similar analysis of longitudinal
blood pressure measures from the Framingham Heart
Study data. However, in addition to examining the age-
adjusted mean, as did Levy et al. [2], we evaluated longi-
tudinal measures including the slope, the curvature, and

the log residual variance of systolic blood pressure (SBP)
over time.

Methods
Sample and phenotype definition
Selection criteria, study design, and data collection meth-
ods for the Framingham Heart Study have been detailed
previously [3,4]. The sample available for study consists of
330 families with 2803 sibling pairs, a small subset of the
total Framingham Heart Study data that were suitable for
linkage studies. Phenotype information for all individuals
with exam data between the ages of 25 and 75 (2413 indi-
viduals) was used to obtain longitudinal phenotypes as
follows: let tij be the SBP measured at age xij, on the ith indi-
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vidual, j = 1, 2, ..., ni. To adjust for the effects of SBP due
to treatment for hypertension, we chose to employ a sim-
ple method that imputes an "untreated" SBP by taking the
maximum of: 1) SBP measured at time points when the
individual was being treated to lower blood pressure plus
a constant (chosen to be 15 mm Hg, based on results of
an independent study of the effect of treatment on SBP
after being off treatment for 2 weeks (M. Bochud, personal
communication)), 2) 140 mm Hg, the clinical threshold
for the diagnosis of hypertension for the Framingham
study, and 3) the last SBP measurement before treatment
commenced.

Define yij as

where tik is the most recent untreated measure of SBP for
individual i at some time-point k <j. Unlike other meth-
ods, we do not attempt to infer information about the tail
of the uncensored SBP distribution from those individuals
who, in spite of being clinically hypertensive, do not
receive treatment for their condition. We judged that there
was insufficient information on such individuals in the
available Framingham data set to attempt that style of
imputation.

Orthogonal polynomial summarization of longitudinal SBP
For each individual, we then transformed these ni values
of yij into four new variables: the mean (bi1), the slope
(bi2), the curvature (bi3), and log residual variance (log si

2),
by constructing orthogonal polynomials for unequally
spaced variables [5]. Let zi be an ni × 3 matrix,

The first three new variables for the ith individual are the
elements of

where yi is the ni × 1 vector of SBP values for the ith individ-
ual, and the fourth new variable is the logarithm of the
residual variance of the model,

Linkage analysis
Multipoint allele sharing identical by descent (IBD) was
estimated at approximately 2-cM intervals using the
GENIBD computer program from the S.A.G.E. package
[6]. After removing uninformative individuals and parti-
tioning pedigrees into independent sections (with no loss
of linkage information), 14 pedigrees were still too large
to be analyzed efficiently with GENIBD. Those pedigrees
were split into nuclear families that were analyzed as
though independent, once genotype inference and elimi-
nation had been performed to minimize information
loss.

Linkage analysis was then performed on approximately
1077 sibling pairs (varying by genetic marker informativ-
ity) by regressing the weighted squared sums and differ-
ences of each of the new variables (denoted below as ya
and yb for the pair of sibs a and b) on the mean proportion
of alleles shared IBD and covariates for cohort member-
ship, gender, mean age, and a conditional mean effect:

where  and  are the residual variances of similar
regressions on the mean-corrected squared trait sums and

differences [6-9],  is the estimated multipoint mean
marker allele sharing IBD between the full sibling pair a
and b, ca and cb are indicator variables for membership in
the offspring cohort, ga and gb are mean-corrected indica-
tor variables for gender (male = 0, female = 1), and aa and
ab are the mean ages of a and b over all exams. Including
the sum of the trait values as a covariate allows for the
simultaneous estimation of the mean trait value condi-
tional on marker allele sharing and all covariates, which
in turn increases the power to detect linkage.

The above model was fitted using generalized least
squares to account for the trait correlations among pairs of
sibling pairs that occur in sibships of size greater than two
[7,8]. Additionally, regression weights based on trait and
marker informativity were incorporated to increase the
power of our linkage test and account for the differential
information content (especially in the amount of longitu-
dinal data available on each subject). Marker informativ-
ity was determined by a distance metric, D, within a
simplex determined by the probability that a sibling pair
shares i alleles IBD fi, where
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Trait-based weights for bi1, bi2, and bi3 were calculated
based on the inverse sum of the variance of each parame-
ter estimate and the residual variance,

Trait-based weights for  were calculated based on a
first order approximation of the inverse of the variance of

,

A combined weight that included information on both
trait and marker informativity was obtained by taking the
geometric mean of the marker and trait weights. We tested
for the presence of significant linkage using usual right-

tailed t-test statistics , where  is an estimate of

β2, and  is the corresponding estimated variance of .

Results and Discussion
All results presented below include the covariates men-
tioned above in their models. However, the significance of
these covariates will not be discussed because it was not
the design of the analysis to obtain interpretable parame-
ter estimates, but rather to test for linkage. Criteria for sug-
gestive and significant evidence for linkage were chosen as
markers having p-values lower than 10-4 and 10-5, respec-
tively. Using these criteria, the most significant results for
mean SBP were found on chromosome 12 near marker
GATA47F05 (p = 0.00000029), on chromosome 15
between markers GATA22F01 and GATA27A03 (p =
0.00000021), and on chromosome 17 near marker
GATA28D11 (p = 0.0000048), and on chromosome 20
near marker GATA47F05 for both slope and curvature of
SBP (p = 0.000042, p = 0.0000028), as shown in Table 1

and Figure 1.

Although it was one of our goals, the analysis performed
for the mean SBP is not directly comparable to the linkage
scan performed by Levy et al. [2]. A fundamental source of
differences is the approach taken to correct for right-cen-
soring of the SBP phenotype for individuals treated for
hypertension. Levy et al. [2] used the full Framingham
data set on 87,840 examinations on 10,313 individuals to
estimate the trait distribution of SBP and applied an
empirical adjustment to the SBP of treated individuals
conditional on age, sex, and cohort. However, our analy-
sis was limited to the 2413 individuals available as part of
the Framingham linkage data, so an equivalent method of
adjustment was not deemed feasible. (However, the
Genetic Analysis Workshop13 contribution by Diego and
Almasy reports that they did duplicate the imputation

procedure described by Levy et al., and were successful in
reproducing the most significant linkage finding.)
Instead, we chose to adjust measurements of SBP of
treated individuals by increasing their SBP using an
approximate estimator based on their measured SBP plus
a constant, their last untreated measurement, and the
study-defined clinical threshold for being hypertensive.
Adding a constant to a treated SBP measurement reflects a
belief that hypertensive treatment has some degree of effi-
cacy. Utilizing a retrospective measure of the last
untreated SBP controls for many latent individual-specific
factors, and makes the mild assumption of a non-decreas-
ing trend in SBP over time for those who are eventually
treated for hypertension. The final criteria enforced the
minimum clinical criterion for diagnosis of hypertension,
presuming that any subject that was being treated for
hypertension had a SBP high enough to warrant
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Table 1: Regions with suggestive or significant evidence of linkage to SBP

Trait WeightsA Chromosome: Region Marker Name(s) MaximumB -log10 (p-value)

SBP mean (b1) t, c 5: 24–36 cM GATA3E10 5.09 at 32 cM
SBP mean (b1) t, m, c 12: 68–82 cM GGAT2G06 6.54 at 78 cM
SBP mean (b1) t, m, c 15: 111–134 cM GATA22F01, GATA27A03 6.68 at 129 cM
SBP mean (b1) c 16: 133–139 cM 4.34 at 137 cM
SBP mean (b1) t, c 17: 107–119 cM GATA28D11 5.32 at 109 cM
SBP slope (b2) m 20: 70–78 cM GATA47F05 4.38 at 72 cM
SBP curvature (b3) u, t, m, c 20: 70–82 cM GATA47F05 5.55 at 74 cM
SBP mean (b1) m, c 22: 35–48 cM GATA6F05, GATA11B12 4.85 at 38 cM

Au, unweighted model; t, trait weights; m, marker weights; c, combined weights. BReported maximum -log p-values refer to the corresponding 
weighting scheme indicated in bold.
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treatment. We believe that these three criteria provide a
better estimate of the SBP without treatment for hyperten-
sion than methods utilizing any of the criteria individu-
ally, and possibly even the imputation method of Levy et
al.

Conclusions
Weighting our regression models by marker and trait
informativity increased the power to detect linkage (Fig-
ure 1). In several of the significant regions, the p-value was
decreased by at least an order of magnitude when includ-
ing marker, trait, or both weights. Though we were not
able to conduct an analysis directly comparable to that
performed by Levy et al. [2], we present significant results
that confirm a genetic component to hypertension and
suggest the location of those genes to be on chromosomes

5, 12, 15, 17, and 20, and suggestive evidence of genes on
chromosomes 16 and 22. Further, we present straightfor-
ward yet effective methods to adjust for treatment effects
and to increase the power of linkage tests with siblings of
varying marker and trait informativity.
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