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The small-round-cell tumors of childhood include neuro-
blastoma, the Ewing family of tumors, rhabdomyosar-
coma, lymphoma, and desmoplastic small-round-cell tu-
mor. Although classical histological features are
generally highly suggestive of tumor type, on occasion
these tumors may be indistinguishable by light micros-
copy, making a definitive diagnosis difficult. Accurate
diagnosis of pediatric small-round-cell tumors has be-
come increasingly crucial , as disparate approaches to
therapy are used for distinct tumor types. In addition,
because for many pediatric cancers, therapy is also
tailored according to patient risk, it has become impor-
tant to further classify tumors biologically, using cytoge-
netic or molecular studies to identify chromosome trans-
locations, gene amplification, gene expression patterns,
and/or mutations.

In this issue of The American Journal of Pathology, Gil-
bert and colleagues used a reverse transcriptase poly-
merase chain reaction (RT-PCR) assay to analyze the
expression of two genes involved in the catecholamine
biosynthetic pathway, tyrosine hydoxylase and dopa de-
carboxylase, in 84 pediatric malignancies.1 Their studies
demonstrate that the expression of these two genes is
highly specific for neuroblastoma. Of the 29 non-neuro-
blastoma tumor samples examined, only pheochromocy-
tomas expressed clearly detectable levels of the genes.
These results suggest that analysis of tyrosine hydoxy-
lase and dopa decarboxylase expression may help dis-
tinguish neuroblastoma from other small-round-cell child-
hood tumors.

Despite recent advances in immunohistochemistry
and molecular pathology, some cases of small-round-cell
tumors of childhood remain diagnostically problematic.
Thus, additional diagnostic tools, such as the ones de-
scribed by Gilbert and co-workers, are needed to ensure
that every child with a small-round-cell tumor is diag-

nosed correctly. The value and limitations of current im-
munohistochemical, cytogenetic, and molecular studies
as diagnostic aids for the small-round-cell tumors of
childhood are highlighted below.

Immunohistology

Immunhistochemistry can be helpful in narrowing the
differential diagnosis of small-round-cell tumors. For ex-
ample, the cell surface glycoprotein p30/32MIC2 is highly
expressed in the Ewing family of tumors.2 Several mono-
clonal antibodies have been developed that detect dif-
ferent epitopes of this antigen. Many studies have used
HBA71 or O13, and up to 98% of Ewing family tumors
have been shown to exhibit immunoreactivity.3,4 How-
ever, positive results with HBA71 can also be seen in
non-neoplastic tissues and other tumor types, including
rhabdomyosarcoma and non-Hodgkin’s lymphoma.5 An-
tibodies to desmin can be used to distinguish rhabdo-
myosarcoma from Ewing’s sarcoma, neuroblastoma, and
lymphoma.6,7 Similarly, antibodies to leukocyte common
antigen (LCA) can be used to separate hematolymphoid
malignancies from the remainder of small-round-cell tu-
mors.8 Nevertheless, there is no antibody specific for a
single tumor type. Overlap of mesenchymal, epithelial,
and neural markers are present in a variety of tumors.
Furthermore, reactivity to antibodies can vary depending
on the preparation of the specimen, the antibody used,
and the degree of tumor differentiation.

The immunohistochemical markers used for neuroblas-
toma have significant limitations. Neuron-specific enolase
(NSE) is seen in neuroblastomas as well as tumors from the
Ewing’s family. In addition, NSE is present in a wide variety
of non-neural cells, such as smooth muscle cells, and is
present in some rhabdomyosarcomas.6,9,10 Ganglioside 2
antibodies identify neuroblastomas but may also react in
osteosarcoma and rhabdomyosarcoma.11 Similarly, synap-
tophysin and neurofilament proteins are not specific for
neuroblastoma.
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Cytogenetic and Molecular Studies

Cytogenetics are routinely performed in hematolymphoid
malignancies, and in some cases the diagnosis is depen-
dent on the presence of specific cytogenetic abnormali-
ties. Similarly, many small-round-cell tumors of childhood
also exhibit highly characteristic cytogenetic abnormali-
ties. However, accurate karyotyping of solid tumors is
technically difficult, and successful cytogenetic analysis
can be performed in only a subset of cases. Despite the
technical limitations, detection of a cytogenetic abnor-
mality can be an important diagnostic aid in some child-
hood cancers. For example, the t(11;22)(q24;q12) trans-
location is frequently seen in the Ewing family of tumors,
which includes Ewing’s sarcoma, peripheral neuroecto-
dermal tumors (PNET), and Askin’s tumor.12 However,
this translocation is not specific for the Ewing’s family of
tumors. Recent studies have demonstrated that the t(11;
22)(q24;q12) translocation can be identified in some
cases of neuroblastoma13 and rhabdomyosarcoma.14

Molecular approaches, including fluorescence in situ
hybridization (FISH) and reverse transcription polymer-
ase chain reaction (RT-PCR), have facilitated the detec-
tion of chromosome translocations and have provided the
methodology necessary for fully characterizing the in-
volved genes. The t(11;22)(q24;q12) translocation has
been shown to result in the production of a chimeric gene
between EWS, which codes for a novel putative RNA-
binding protein, and FLI1, a member of the ETS family of
transcription factors.15 Two other variant translocations
have been described that involve other members of the
ETS gene family. The t(21;22)(q12;q12) translocation in-
volves the gene ERG, which is located on chromosome
21, and t(7;22)(p22;q12) translocation involves a gene
known as ETV1 at 7p22. Although several subtly different
EWS/FLI1 and EWS/ERG fusion transcripts have been
identified,16 to date, significant correlations between the
different chimeric EWS transcripts and clinical parame-
ters have not been identified.17,18

Specific cytogenetic abnormalities have also been
used in the diagnosis and classification of rhabdomyo-
sarcomas.19 The translocation t(2;13)(q35;q14) is consis-
tently found in the alveolar form of rhabdomyosarcoma.20

This translocation results in the fusion of 59 sequences of
the PAX3 gene to 39 sequences of the gene FKHR. PAX3
codes for a developmentally regulated transcription fac-
tor involved in muscle development21 and FKHR is a
member of the fork head family of transcription factors.22

The PAX3-FKHR fusion protein has been shown to be a
more potent transcriptional activator than PAX3 protein
alone.23 A variant t(1;13)(p36;q14) translocation has also
been described in alveolar rhabdomyosarcoma, involv-
ing the PAX7 gene located on chromosome 1.24 Although
the more common embryonal form of rhabdomyosar-
coma does not exhibit a consistent cytogenetic profile, in
many cases loss of heterozygosity on the short arm of
chromosome 11, at 11p15.5, is found.19

Intra-abdominal desmoplastic small-round-cell tumor
is an extremely rare, highly aggressive neoplasm that
exhibits a nesting growth pattern.25 Although only a few
karyotypic studies have been performed on desmoplas-

tic small-round-cell tumors, the reciprocal translocation
t(11;22)(p13;q12) has consistently been described.26,27

This translocation results in the creation of a fusion gene
between the EWS gene and the Wilms tumor 1 gene
(WT1).28

There are no consistent molecular genetic abnormali-
ties in neuroblastoma tumors. However, cytogenetic ab-
normalities have been identified in subsets of neuroblas-
tomas and found to be prognostically significant. For
example, poor outcome is associated with deletion of the
short arm of chromosome 1, 17q gain, and amplification
of the MYCN oncogene.29 Chromosome number or ploidy
has also been shown to be clinically important in neuro-
blastoma. Hyperdiploidy is correlated with favorable out-
come in patients with neuroblastoma, whereas resistance
to chemotherapeutic agents has been observed in in-
fants with diploid tumors.30–34 In an effort to tailor therapy
according to patient risk, Bowman and colleagues re-
cently conducted a prospective nonrandomized Pediat-
ric Oncology Group (POG) study using ploidy as the sole
guide for treatment selection in infants with unresectable
or metastatic neuroblastoma.35 Patients with hyperdip-
loid tumors were treated with a less intensive chemother-
apeutic regimen than those with diploid neuroblastomas.
The 3-year survival estimate for 127 assessable infants
with hyperdiploid tumors was 94%, whereas the overall
3-year survival estimate for the 41 infants with diploid
disease was 55%. Although the outcome for patients with
diploid tumors improved in this clinical trial compared
with a previous study in which infants were treated with
cyclophosphamide and adriamycin,31 better therapy is
still needed for this subset of patients.

Gene amplification generally is detectable by cytoge-
netic analysis either as extrachromosomal double minute
chromatid bodies (DMs) or as chromosomally integrated
homogeneously staining regions (HSRs).36 DMs or HSRs
are present in most neuroblastoma cell lines as well as
some neuroblastoma primary tumors.37–39 In situ hybrid-
ization studies have demonstrated that the normal single
copy of MYCN is located on chromosome 2p24 and that
in neuroblastoma MYCN amplification is present in the
majority of DMs and HSRs.40,41 However, MYCN amplifi-
cation is not unique to neuroblastoma. Amplification of
the oncogene has also been reported in some cases of
rhabdomyosarcoma42 and retinoblastoma.43 Further-
more, high levels of MYCN expression have been de-
tected in Wilms tumor and hepatoblastoma.44

MYCN amplification is seen in 30% to 50% of patients
with advanced-stage neuroblastoma. In this subset of
patients, MYCN amplification is strongly correlated with
rapid tumor progression and poor outcome.45,46 Only 5%
to 10% of patients with localized disease or stage 4s
neuroblastoma have tumors with MYCN amplifica-
tion,45,47 and the clinical relevance of MYCN amplification
in favorable stage disease remains controversial.47–49

There are reports of small numbers of patients with local-
ized MYCN-amplified tumors treated with either surgery
alone or surgery and low-dose chemotherapy that have
been cured of their disease.47,48 Furthermore, in a large
Italian study, Tonini and colleagues recently reported that
MYCN amplification was not associated with a worse
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outcome in infants with stage 4s disease.50 In contrast,
poor outcome was seen in stage 4s infants with MYCN
amplification in a study conducted by the POG.51 The
conflicting results highlight the biological heterogeneity
of neuroblastoma, and suggest that multiple factors are
likely to contribute to tumor phenotype.

Deletion of the short arm of chromosome 1 is found in
;30% of primary human neuroblastomas resulting from
simple terminal deletions, interstitial deletions, and unbal-
anced translocations with known or unknown chromo-
some fragments to the short arm of chromosome
1.37,38,52,53 It has been hypothesized that a neuroblas-
toma suppressor gene is located at 1p36, and this hy-
pothesis is supported by the observation that neuroblas-
toma has developed in children with constitutional 1p
abnormalities.54,55 However, Maris and colleagues were
unable to detect loss of heterozygosity at 1p36 in 13
patients with familial neuroblastoma, suggesting that
there may be more than one NB suppressor gene.56

Chromosome 1p deletions are most often seen in tumors
that are near-diploid and MYCN amplified.37,53,57–60 Two
large independent studies have shown that while deletion
of 1p is associated with unfavorable outcome in univari-
ate analysis, this factor is not prognostic after adjusting
for MYCN copy number.58,61 In contrast, Caron and col-
leagues recently reported that loss of 1p was predictive
of unfavorable outcome, independent of MYCN amplifi-
cation.60 Studies to identify the putative neuroblastoma
suppressor gene (or genes) are ongoing.

Chromosome 17q abnormalities are also found in a
subset of neuroblastoma tumors. Gilbert and co-workers
found 17q gains in 8 of 35 (23%) neuroblastomas by
classical cytogenetic technique.39 Chromosome 17q ab-
normalities were subsequently detected by FISH and
allelic imbalance studies by other investigators.60,62,63

These studies demonstrated 17q gains in more than 90%
of high-risk patients with neuroblastoma.63 Clinical stud-
ies have demonstrated that favorable outcome is associ-
ated with whole chromosome 17 gains, whereas poor
outcome is seen in the subset of neuroblastoma patients
with 17q gains.64

The Trk family of neurotropin receptors are important
regulators of survival, growth, and differentiation of nor-
mal and neoplastic cells, and there is increasing evi-
dence that these genes also play an important role in the
biology and clinical behavior of neuroblastoma tumors.
Several independent retrospective studies have demon-
strated that high levels of TrkA expression in neuroblas-
toma are associated with favorable outcome.65–69 High
levels of TrkA mRNA are present in tumors from patients
with favorable stage disease, whereas low to undetect-
able levels are observed in MYCN-amplified tumors. Re-
cently, high levels of expression of TrkC have also been
shown to correlate with favorable prognosis in neuroblas-
toma patients.70,71 Truncated TrkB is predominantly ex-
pressed in differentiated tumors, whereas co-expression
of full-length TrkB and brain-derived neurotrophic factor
(BDNF) is associated with MYCN amplification and may
represent an autocrine survival pathway.69,72

Summary

Accurate diagnosis and classification of small-round-cell
tumors of childhood has become increasingly important
as modern therapy is not only disease specific but is also
tailored according to patient risk. Despite advances in
immunohistochemistry, cytogenetics, and molecular
techniques, in some cases of small-round-cell tumors of
childhood the correct diagnosis can remain elusive. An-
tibodies used in immunocytochemistry studies have lim-
itations in sensitivity and specificity. Furthermore, al-
though chromosomal abnormalities have proven to be
useful in the characterization of certain pediatric cancers,
other tumors lack a consistent genetic profile. It has also
become evident that many genetic abnormalities are not
tumor specific. Thus, although individual molecular tests
can aid in delineating the entities of small-round-cell tu-
mors of childhood, the diagnosis should not be based
solely on the result of a molecular study. Rather, standard
clinical and laboratory diagnostic modalities should be
combined with immunohistochemistry, cytogenetics, and
molecular studies. Studies similar to the one reported by
Gilbert and colleagues,1 analyzing the expression of pat-
terns of genes specific to certain tumor types, are likely to
result in the identification of additional molecular tools
that will ensure that each child with a small-round-cell
tumor is diagnosed correctly. The identification of addi-
tional molecular markers may also lead to a further re-
finement of risk-group classification and thereby provide
the biological information needed to determine optimal
treatment for every affected child.
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