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Abstract
The simultaneous testing of a large number of hypotheses in a genome scan, using individual
thresholds for significance, inherently leads to inflated genome-wide false positive rates. There exist
various approaches to approximating the correct genomewide p-values under various assumptions,
either by way of asymptotics or simulations. We explore a philosophically different criterion,
recently proposed in the literature, which controls the false discovery rate. The test statistics are
assumed to arise from a mixture of distributions under the null and non-null hypotheses. We fit
the mixture distribution using both a nonparametric approach and commingling analysis, and then
apply the local false discovery rate to select cut-off points for regions to be declared interesting.
Another criterion, the minimum total error, is also explored. Both criteria seem to be sensible
alternatives to controlling the classical type I and type II error rates.

Background
The increase in genome-wide experiments and sequencing
of multiple genomes has resulted in the analysis of large
data sets that involve the simultaneous testing of statisti-
cal hypotheses on a large number of features in a genome.
Traditionally, researchers have tackled the problem of
multiple testing in linkage analysis by proposing a com-
mon threshold to control the family-wise (i.e., genome-
wide) error rate. The simplest and frequently used Bonfer-
roni correction is often conservative and is mainly useful
when the number of tests involved is not very large.
Recently, new criteria have been proposed, the false dis-
covery rate [1] being one of them. The large number of
hypotheses can be looked upon as coming from a mixture
of null and non-null hypotheses. Linkage analysis is then
a matter of assigning categories after fitting a mixture to
the linkage signals.

A nonparametric empirical Bayes approach that makes
simultaneous inferences based on z-values (standard nor-
mal deviates), converted from the p-values of the test sta-
tistics has been introduced [2,3]. The authors have
explored a philosophically different approach that does
not claim whether a test is significant or not, but rather
whether a result is "interesting" or "uninteresting". The
problem of multiple testing is addressed via the concept of
the local false discovery rate (LFDR). Let the prior propor-
tion of "uninteresting" hypotheses (e.g., absence of any
major gene effect) be po, with corresponding density for
the z-values being fo(z), and let the "interesting" hypothe-
ses (e.g., presence of a major gene effect) have a prior pro-
portion p1, with corresponding density for the z-values
being f1(z). Thus, f(z) = po fo(z) + p1 f1(z) gives the distribu-
tion of the z-values under the mixture of the populations
of interesting and uninteresting hypotheses. The posterior
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probability for a particular z-value,z, to be from an unin-
teresting hypothesis, is p0f0(z)/f(z), and that to be from an
interesting hypothesis is 1 - po fo(z)/f(z) The LFDR is
defined to be fdr(z) = f0(z)/f(z), which should be very
close to the posterior probability P(hypothesis is uninter-
esting | z) = p0 f0(z)/f(z) under the often valid assumption
that p0 is close to 1. In Efron [2], all the z-values for which
fdr(z) ≤ 0.10 are declared to be from interesting hypothe-
ses. A threshold of 0.10 or smaller is desirable in that the
proportion of false discoveries will in this way be control-
led. We have devised another criterion, the minimum
total error (MTE), for identifying "interesting" regions in
the genome. This method is explained in the methods sec-
tion.

Efron [2] estimated the mixture distribution f(z) nonpar-
ametrically by fitting a Poisson regression to the z-values.
In addition to implementing this approach, we also esti-
mate the mixture distribution parametrically. For the non-
parametric approach, a natural spline, as proposed by
Efron [2], is fitted to the z-values resulting from the
genome scan. The normal empirical null is then estimated
from the central peak. The results of the analysis can
change drastically depending on whether the null distri-
bution is set to be the usual N(0, 1) or is estimated from
the data. We use the notation N-LFDR for the procedure
of estimating the mixture nonparametrically via a spline
and then applying the LFDR to determine the cut-off
point.

We also propose, as an alternative, to assume that both
f0(z) and f1(z) are normal distributions with common var-
iances but a larger mean for f1(z). This is a common prac-
tice in statistics as a first step in comparing two treatments,
with the difference in the means of the normals being the
treatment effect. After fitting the mixture distribution via
commingling analysis as implemented in S.A.G.E. [4],
both the LFDR and the MTE criteria were applied to deter-
mine the cut-off for claiming a chromosomal region as
being interesting. These two approaches are referred to as
parametric-local false discover rate (P-LFDR) and para-
metric-minimum total error (P-MTE), respectively, in
what follows.

Methods
Data and linkage model
Linkage analysis was performed on the Kofendrerd Per-
sonality Disorder (KPD) data with disease being expressed
as a binary trait. The true regions causing the disease were
known. This study is based on the nuclear family data
available from the Aipotu (AI), Karangar (KA), and Dan-
acaa (DA) populations. The analysis was performed on
both the microsatellite (MS) and the single-nucleotide
polymorphism (SNP) data sets. For the parametric
approaches, ten replicates (2, 14, 17, 23, 35, 42, 67, 84,

85, and 90), were randomly chosen and analyzed.
Another ten replicates of the AI population (1, 26, 48, 50,
51, 60, 65, 88, 93, and 95) were used in calculations stud-
ying the effects of increasing sample size. For the N-LFDR,
we used all twenty of the above replicates. All methods of
analysis were performed on each population, for the SNPs
and the MS markers separately.

In each case, the Haseman-Elston [5] regression model as
extended by Shete et al. [6] was fitted using the W4 option
of SIBPAL in S.A.G.E. 4.5[4]. In this approach, the
dependent variable is a weighted combination of the
squared difference and squared mean-corrected sum of
the sibling trait values. The p-values for a whole
multipoint genome scan at 2-cM intervals were converted
to standard normal z-values, that is, z = Φ-1(1-p), where
Φ(● ) is the standard normal cumulative distribution
function, so that interesting hypotheses are more likely to
produce larger z-values.

The N-LFDR approach

For the N-LFDR, the z-values were plotted in a histogram
of 60 equi-length intervals, each of 0.1 unit. Then a natu-
ral spline of degree seven was fitted to the histogram
(which has been shown in Efron [2] to be equivalent to
fitting a Poisson regression to estimate the expected
number of counts in each interval into which the data

have been partitioned) to obtain , the estimate of the

mixture distribution. A spline of degree seven has the
same degrees of freedom as a polynomial of degree six. To
fit a bimodal curve a polynomial of degree at least six is
needed. Generalized cross-validation [7] was used to eval-
uate the choice of the degree for fitting a spline. We
applied this procedure to both the MS and SNP data of
replicate 85. For the MS data, both AI and KA showed the
optimal degrees to be approximately seven. The optimal
degrees for the other data were higher than seven and were
all different. For uniformity we decided to fit a spline of
degree seven in every case. SPLUS was used to fit the mix-
ture distribution.

The empirical null distribution, f0(z) is assumed to be nor-

mal with mean δ0 and variance σ0
2. These parameters were

estimated from the central peak of the observed mixture
distribution. Specifically, the mean is estimated by the

mode of the spline,  = argmax . A potential esti-

mate for the standard deviation is

ˆ( )f z

δ̂0 { ( )}f x
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However, this estimate is numerically unstable and a
smoothing technique, as suggested by Efron [2], was used

instead. A quadratic equation of the form 

(where xk is the median of the kth of 30 0.1-unit intervals

within 1.5 units of δ0) was fitted by least squares, and the

estimated standard deviation is . Table 1

shows the parameter estimates of the null distributions
for the different populations using SNPs and MSs from

replicate 85. The N-LFDR is estimated as  and

those chromosomal locations for which the N-LFDR is
less than or equal to 0.1 were deemed interesting.

The P-LFDR and P-MTE approaches

Commingling analysis was performed on the z-values
using the SEGREG program in S.A.G.E. 4.5 [4]. Initially, a
Box-Cox transformation [8] was attempted. However, this

produced a density  with a smaller mean than that

of . Thus, z-values less than – 2, which are classified

as uninteresting, were trimmed off to allow the fitting. The
percentage of z-values below -2 was on average 1%. Prom-
ising results were then found after fitting a mixture of two
normal distributions without any transformation and
with both means estimated from the data. The variances
were constrained to be equal to avoid numerical instabil-
ity.

After fitting the mixture distribution, a criterion is called
for to identify z-values that are likely to be classified as
interesting, i.e., locations that are potentially genetically
linked to disease causing regions. Two criteria, the P-LFDR
and the P-MTE, were explored for this purpose. The P-MTE
method sets the cut-off at the intersection of the fitted null
and alternative distributions. Figure 1 illustrates this

method. If x0 is the intersection point of  and

, then locations with z-values > x0 are declared

interesting. In Figure 1, x0 = 1.45. Note that the area under

the null distribution curve to the right of this point is the
probability of type I error, that is, we make an error by
declaring an underlying uninteresting region as interest-
ing. Similarly, the area under the alternative distribution
curve to the left of this point is the probability of type II
error, that is, genuine interesting regions are declared
uninteresting. The P-MTE method minimizes the total
probability of these two types of errors. Note that the P-
MTE criterion implicitly assigns equal costs to committing
either type of error, which may not be desirable. The P-
LFDR criterion, on the other hand, assumes most of the
large number of hypotheses are uninteresting and con-
trols the false discovery rate. As for N-LFDR, we declared a
region as interesting when fdr(z) < 0.1.

Results
For each population in each replicate, analysis yields p-
values at 1,921 locations on the ten chromosomes with
the MS data, and at 2,380 locations with the SNP data. The
p-values were converted to z-values by inverting the distri-
bution function of a standard normal. Mixture distribu-
tions were fitted to the z-values from each population,
each replicate, separately for each type of marker data.
Both the nonparametric and the parametric approaches
were used in the fitting. The interesting regions obtained
were compared with the true regions. The disease causing
loci are D1, D2, D3, and D4 for the AI and KA populations
and D1 and D2 for the DA population. The modifying
loci, D5 and D6, were not considered as disease loci, as
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The P-MTE and P-LFDR methods applied to the DA popula-tion, replicate 14, MS dataFigure 1
The P-MTE and P-LFDR methods applied to the DA popula-
tion, replicate 14, MS data.

Z−values

D
en

si
ty

−2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0
0.

1
0.

4
0.

6
0.

8
1

1.
2

P
−

LF
D

R
(z

)

P−MTE Cut−off = 1.45 −> <− P−LFDR Cut−off = 2.29

p0f0(z)
p1f1(z)
f(z)
P − LFDR(z)

Table 1: Estimates of means and standard deviations of the 
empirical null distributions (replicate 85, N-LFDR).

Marker type Population (SD)

AI DA KA

MS -0.05 (1.20) -0.15 (0.95) 0.45 (1.03)
SNP -0.15 (1.03) -0.45 (0.89) 0.25 (0.88)
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our focus is to compare the performance of the new crite-
ria rather than to seek the best linkage analysis model. We
defined a location as being "linked" to the disease if it is
within 10 cM of a disease locus. We defined loci more
than 20 cM from any disease locus as "unlinked". Chro-
mosomal regions between 10 cM and 20 cM away from
any disease locus were intentionally ignored to allow for
a sharp distinction between "linked" and "unlinked"
cases.

For N-LFDR, where the mixture distribution is fitted by a
spline, in all the replicates of the DA population the true
regions were identified 39.52% of the time using the MSs
and 46.67% of the times using the SNPs. Given that the
SNPs are more than twice as dense as the MSs, the power
of using either is comparable in our data. Figure 2 shows
the z-values on chromosome 1 for the MS and SNP data
from the DA population in replicate 85. The thresholds

for declaring interesting regions are different in the two
datasets. Thus we shifted the z-values for the MS data
down by 1.1 to equate the thresholds presented in Figure
2. In this replicate the MS marker data were unable to
identify D1. The figure shows that MSs and SNPs do not
always yield concordant results. Also, it appears that the
SNPs yield more accurate localizations than the MSs
because the peak of the signal using MS markers is shifted
to the left. However, the method was not very successful
in identifying the true disease locations for the AI popula-
tion, possibly due to a relatively more complicated disease
model and the lack of covariates in the linkage model.

The parametric approach fitted the mixture distributions
to the z-values via commingling analysis. Both the P-MTE
and the P-LFDR criteria were applied to the fitted mixture
distributions to determine the threshold on the z-values
for declaring a genome location interesting. The results for
the DA population with MS data are shown in Figure 1.
The former gives a threshold of 1.45, while the latter gives
one of 2.29.

For each of the three populations and each of the two
types of marker data, the probability of committing each
of the two types of errors, pooled over all replicates con-
sidered, has been calculated and is reported in Table 2.
The P-MTE method, as expected, minimizes the total
probabilities of the two types of errors, while the P-LFDR
more effectively minimizes type I error. For both meth-
ods, the SNP data yielded a relatively smaller type II error
rate and a larger type I error rate compared with those
from the MS data. Overall, the DA population has the
smallest error rates, which is not surprising because the
genetic effects are better defined and more evident in this
population.

We also investigated whether increasing the sample size
will provide better results. For this, we merged replicates
to form larger samples and repeated the analysis on these
samples. The results on the AI population are reported in
Tables 3 and 4. Specifically, there are 20 replicates, each of
100 pedigrees. To make samples of 200 pedigrees, pairs of

Table 2: Estimated probabilities of the two types of errors, with criteria P-MTE and P-LFDR.

Population Marker P-MTE (%) P-LFDR(%)

Type I error rate Type II error rate Type I error rate Type II error rate

AI MS 10.94 30.0 3.87 47.5
SNP 19.43 17.5 6.55 30.0

DA MS 7.49 25.0 2.85 35.0
SNP 9.61 0.0 4.80 15.0

KA MS 12.67 22.5 3.37 57.5
SNP 13.37 20.0 4.51 37.5

Comparison of linkage signals between data with MS and SNP markers using the N-LFDR (DA population, replicate 85)Figure 2
Comparison of linkage signals between data with MS and 
SNP markers using the N-LFDR (DA population, replicate 
85).
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replicates are merged to yield 10 such samples. Five 400-
pedigree samples are obtained by merging 4 replicates.
Similar analysis was performed each time on the merged
datasets.

The results for N-LFDR are provided in Table 3. With
increasing sample size, the true regions are discovered
with higher probabilities. The method also then control-
led the false positive rates considerably. The false positive
rate for the data with 400 pedigrees appears to be higher
than that for samples with 200 pedigrees (0.29% versus
0.47%). However, not much confidence can be placed on
estimates of small probabilities for a binomial distribu-
tion in small samples, as the standard deviation is several
times the magnitude of the estimate. What is clear is that
the type I error rates are quite small for all three sample
sizes.

Results for the parametric approach are presented in Table
4. Type I error rates were reduced considerably for both P-
MTE and P-LFDR when the sample size increased from
100 to 200, and the improvement is more dramatic when
the sample size increased from 200 to 400. Power
improves considerably as sample size increases from 100
to 200, but does not see an improvement when the sam-
ple size is further increased to 400. This again may be due
to the fact that we have only five 400-pedigree samples.

Discussion
Appropriate control of various types of error rates in mul-
tiple testing scenarios has long been an intriguing research
problem. However, despite the immense efforts spent on
this subject, satisfactory solutions are not available. For
example, the application of the genome-wide significance

criterion suggested by Lander and Kruglyak [9] to the sim-
ulated dataset yielded extremely conservative results.

In this article, we explored the control of false discovery
rates, a philosophically different approach, instead of the
classical type I and type II error rates in multiple testing
problems. Individual test statistics, after appropriate scal-
ing, are viewed as having arisen from a mixture of null and
non-null hypotheses. The ratio of the null density versus
the mixture density at a given test statistic provides a
measure of the LFDR. A procedure that places a cut-off on
this ratio controls the FDR.

The mixture distributions were fitted using two different
procedures: by fitting 1) a spline (N-LFDR), and 2) a mix-
ture of normal distributions with differing means (P-MTE
and P-LFDR). A direct comparison of these approaches
with methods in the literature that control the classical
types of error rates is not necessarily meaningful because
of the philosophical difference between them. Both the
local FDR and the MTE criteria have intuitively simple and
appealing interpretations.

P-MTE and P-LFDR were compared in terms of finding
genuine regions containing disease genes. We observed
that the P-LFDR method is more conservative than the P-
MTE method in declaring a location "interesting". There-
fore, while fewer type I errors are incurred, more truly
interesting locations are missed. Table 2 indicates that the
SNP data produced greater type I error rates and smaller
type II error rates compared with the MS data using the
same linkage analysis method. This might be due to that
SNPs and MS data have different information content.

The DA population had a simpler genetic model and
hence the associated genes were identified with lower type
I and type II error rates than in the other populations, as
expected. As the sample size increases (Tables 3 and 4) the
power increases, which we would expect from any good
criterion and analysis method. In N-LFDR we also observe
that the type I error remains the same for samples of 100
pedigrees and 200 pedigrees, but there is an increase in
the type I error in the samples of 400 pedigrees. This may
be due to the fact that there were only five samples of 400

Table 4: Effect of sample size on the error rates (AI population, MS marker, parametric approaches with criteria P-MTE and P-LFDR).

Sample size P-MTE(%) P-LFDR (%)

Type I error rate 1-Type II error rate (power) Type I error rate 1-Type II error rate (power)

100 10.94 70.0 3.87 52.5
200 9.42 92.5 2.10 77.5
400 1.77 90.0 0.57 70.0

Table 3: Efficiency of N-LFDR versus sample size (AI population, 
MS markers, N-LFDR).

Number of pedigrees 
per sample

Type I error rate (%) 1- Type II error rate 
(power) (%)

100 0.29 21
200 0.29 55
400 0.47 90
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pedigrees. With increasing sample size in the parametric
approach both types of error rate decrease, confirming
that the two distributions in the mixture separate further
with increasing sample size. Note that we are estimating
small binomial probabilities, which have standard errors
many times the mean and hence these estimates should
not be trusted when the sample size is small.

Finally, although both methods for fitting the mixture dis-
tributions implicitly assume that the test statistics are
independent, which is surely violated in a true multipoint
genome scan, the estimate of the mixture distribution is
nevertheless consistent and requires a large sample size to
be accurate.
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