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Atherosclerotic plaques are chronic inflammatory le-
sions composed of dysfunctional endothelium,
smooth muscle cells, lipid-laden macrophages, and T
lymphocytes. This study analyzed atherosclerotic tis-
sue specimens for expression of CD1 molecules, a
family of cell surface proteins that present lipid anti-
gens to T cells, and examined the possibility that
CD11 lipid-laden macrophages might present anti-
gen to T cells. Immunohistochemical studies using a
panel of specific monoclonal antibodies demon-
strated expression of each of the four previously
characterized human CD1 proteins (CD1a, -b, -c, and
-d) in atherosclerotic plaques. Expression of CD1 was
not observed in normal arterial specimens and ap-
peared to be restricted to the CD681 lipid-laden foam
cells of atherosclerotic lesions. CD1 molecules colo-
calized in areas of the arterial wall that also contained
abundant T lymphocytes, suggesting potential inter-
actions between CD11 cells and plaque-infiltrating
lymphocytes in situ. Using CD1-expressing foam cells
derived from macrophages in vitro , we demonstrated
the ability of such cells to present lipid antigens to
CD1 restricted T cells. Given the abundant T cells,
CD11 macrophages, and lipid accumulation in ath-
erosclerotic plaques, we propose a potential role for
lipid antigen presentation by CD1 proteins in the
generation of the inflammatory component of these
lesions. (Am J Pathol 1999, 155:775–786)

Atherosclerosis and its sequelae, including heart disease
and stroke, are a major cause of morbidity and the lead-
ing cause of mortality in the United States, and their
incidence continues to rise worldwide.1 Most concepts of
disease pathogenesis in atherosclerosis have focused on
the accumulation of lipid and the proliferation of smooth
muscle cells in the development of arterial wall lesions
and on the role of thrombosis in acute arterial occlusion.

However, more recently investigators have begun to ap-
preciate a component of chronic inflammation within ath-
erosclerotic lesions, consistent with the involvement of
the immune system in the pathogenesis of this disease.
Thus, the cellular components of atherosclerotic plaques
include not only dysfunctional endothelium, monocyte-
derived lipid laden foam cells, and smooth muscle cells,
but also various subsets of activated lymphocytes.2,3 T
lymphocytes are present throughout the life of the lesion
and produce a variety of cytokines locally. These medi-
ators can in turn contribute to the differentiation and
recruitment of surrounding cells, resulting in the evolution
of atherosclerotic lesions and the occurrence of long-
term complications with their associated morbidity and
mortality.2–7

Several lines of clinical and experimental evidence
suggest a role for the cellular immune system in the
development of atherosclerosis. In humans, the develop-
ment of accelerated coronary arteriosclerosis in heart
transplant patients supports the involvement of the im-
mune system in arterial disease.8–12 In mice a similar
process has been shown to be associated with mis-
matching at major and minor histocompatibility loci,13

implying that activation of T cells may initiate or acceler-
ate lesion formation. Studies of atherosclerosis in apoli-
poprotein E (ApoE)-deficient mice also indicate a role for
lymphocytes, since crossing these animals with recom-
binase activating gene-1 (RAG-1)-deficient animals,
which lack T and B lymphocytes, results in a 40% reduc-
tion in lesion formation in animals maintained on a stan-
dard laboratory mouse diet.14 Although this partial atten-
uation of atherogenesis by the immunodeficiency state
can be overcome by feeding a high fat diet, these find-
ings nonetheless point to a potentially important role for
the cellular immune response in accelerating arterial le-
sion formation. The inhibition of atherosclerosis in low-
density lipoprotein (LDL) receptor-deficient and C57BL/6
hyperlipidemic mice seen upon treatment with monoclo-

Supported by grants from the National Institutes of Health K11AIO13858
(NIH/NIAID) to A. M., AI40135 (NIH/NIAID) to S. P., and R37-HL34636 to
P. L. Additional support was provided by the American Heart Association/
Bugher Foundation fellowships to A. M. and by a grant from the American
Cancer Society to S. P.

Accepted for publication June 30, 1999.

Address reprint requests to Dr. Agustı́n Melián, Division of Rheumatol-
ogy, Immunology and Allergy, Department of Medicine, Brigham and
Women’s Hospital, Boston, MA 02115. E-mail amelian@bics.bwh.
harvard.edu.

American Journal of Pathology, Vol. 155, No. 3, September 1999

Copyright © American Society for Investigative Pathology

775



nal antibodies against lymphocyte surface molecules
such as CD4 and CD40 further support this concept.15,16

Likewise, apoE-deficient mice also lacking the interferon
g receptor have a substantial reduction in atherosclerotic
lesion size, lipid content, and cellularity. Thus, this impor-
tant T-cell-derived cytokine is implicated in the progres-
sion of this disease.17

Atherosclerotic lesions are characterized by the abun-
dant expression of major histocompatibility complex
(MHC) class I and II molecules on macrophages, endo-
thelia, and smooth muscle cells.4,15–19 These molecules
may present foreign or autologous peptide antigens to T
cells present within atherosclerotic plaques.20–23 In this
regard, it is extremely provocative that several investiga-
tors have demonstrated the presence of chlamydia spe-
cies and cytomegalovirus within human atherosclerotic
lesions, suggesting potential foreign microbial targets
that may drive the activation of infiltrating T cells.24–26

Alternatively, T cells within atherosclerotic plaques could
also react with self-antigens and thus generate an auto-
immune response with inflammatory changes character-
istic of these lesions. The possibility that T cell recognition
of altered self-antigens could contribute to atherosclero-
sis has been suggested by Stemme et al, who demon-
strated that T cell clones derived from atherosclerotic
plaques recognize oxidized LDL in a MHC class II-de-
pendent manner.23

Recent work has identified a novel mechanism for
antigen presentation in which T cells recognize specific
lipids and glycolipids in the context of non-MHC-en-
coded CD1 molecules.27–29 Both foreign microbial or
synthetic lipids and glycolipids are presented to CD1-
restricted T cells.30–32 In addition, a substantial number
of CD1-reactive T cells have been isolated that recognize
CD1 molecules in the absence of deliberately added
exogenous lipid antigens.33–36 Endogenous glycolipids
have been demonstrated to enhance CD1 restricted T
cell responses37 and autologous cellular lipids have
been eluted from CD1 molecules.38 These data suggest
that CD1-restricted T cells not only respond to exogenous
lipids, but may also recognize endogenous self-lipids.
These findings raise the possibility that CD1 molecules
could present native or altered lipid epitopes derived
from the abundant lipid deposits in atherosclerotic
plaques and, thus, drive a T-cell-dependent inflammatory
reaction in this disease.

As a step toward evaluating the possible role of anti-
gen presentation by CD1 molecules in the pathogenesis
of atherosclerosis, we have examined the expression of
CD1 proteins in atherosclerotic plaques in human patho-
logical specimens. We observed the expression of all
four previously characterized human CD1 proteins
(CD1a, -b, -c, and -d) within atherosclerotic lesions.
These proteins were expressed strongly and specifically
by lipid-laden macrophages (foam cells) and not by other
cells in the lesions. CD11 monocyte-derived foam cells
generated in vitro were able to present lipid antigens to
CD1-restricted T cells, suggesting that this mechanism
for T cell activation may be active for the phenotypically
similar cells observed within atherosclerotic plaques in
vivo. Given the abundance of potential lipid antigens

within atherosclerotic lesions, our results suggest that
lipid antigen presentation by CD1 proteins could contrib-
ute to the activation of T cells within plaques, and thus
play a role in the cascade of inflammatory processes that
influence the progression of this disease.

Materials and Methods

Tissue Specimens and Antibodies

Tissues from atherosclerotic lesions were obtained from
material removed and discarded during carotid endarter-
ectomy procedures. Surgical specimens of human ca-
rotid atheroma and aorta were obtained by protocols
approved by the Human Investigations Internal Review
Board at the Brigham and Women’s Hospital. Monoclonal
antibodies (mAbs) were either generated as mouse as-
cites fluids or purified from culture supernatants by pro-
tein G affinity column chromatography (Pharmacia, Upp-
sala, Sweden), or obtained commercially as purified
immunoglobulins. Previously unpublished mAbs F10/
21A3 and BCD1b2.1 were produced from mice immu-
nized with GM-CSF- and interleukin (IL)-4-activated
monocytes as previously described.39 Monoclonal anti-
bodies CD1d51.1.3, CD1d27.1, and CD1d68.3 were pro-
duced by fusion of spleen cells from mice immunized
with CD1d-mouse IgG2a fusion proteins.40 The specifici-
ties of anti-CD1 antibodies were confirmed by FACS anal-
ysis of CD1a, -b, -c, and -d transfected C1R cells.36,40

Antibodies tested included: OKT6 (IgG1, anti-CD1a),36

10D12 (IgG1, anti-CD1a),41 BCD1b2.1 (IgG1, anti-CD1b;
SM Behar and SA Porcelli, unpublished), 4A7.6.5 (IgG2a,
anti-CD1b),41 10C3 (IgG1, anti-CD1c..CD1b),42 F10/21A3
(IgG1, anti-CD1c; SM Behar and SA Porcelli, unpublished),
CD1d51.1.3 (IgG2b, anti-CD1d . -b ..-c),40 CD1d27.1
(IgG1, anti-CD1d; SA Porcelli, unpublished), CD1d68.3
(IgG1, anti-CD1d; SA Porcelli, unpublished), MT310 (IgG1,
anti-CD4; Dako, Carpinteria, CA), DK25 (IgG1, anti-CD8;
Dako), KP1 (anti-CD68, Dako), W6/32 (IgG2a, anti-HLA-A,
-B, -C),43 L243 (IgG2a, anti-HLA-DR),44 3C10 (IgG2b, anti-
CD14),45 IC3/1 (IgG1, anti-ICAM-3),46 LM2/1 (IgG1, anti-
Mac-1),47 and YZI (IgG1, anti-complement receptor 1).48

Non-binding isotype-matched controls were ascites fluids
or purified immunoglobulins generated from mouse my-
eloma cell lines P3X63Ag8 (P3; IgG1), MPC11 (IgG2b), and
RPC5.4 (IgG2a), all obtained from the American Type Cul-
ture Collection (ATCC, Manassas, VA).

Immunohistochemistry and Flow Cytometry

Serial cryostat sections (5 mm thickness) were air-dried
onto glass microscope slides and fixed in acetone at
220°C for 5 minutes. Sections preincubated with phos-
phate buffered saline (PBS) containing 0.3% hydrogen
peroxide were incubated with primary or control antibody
diluted in PBS with 5% horse serum. This was followed by
incubation with biotinylated secondary antibody for 45
minutes, and then by avidin-biotin-peroxidase complex
(Vectastain ABC kit, Vector Laboratories, Burlingame,
CA). Antibody binding was visualized with 3-amino-9-
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ethyl carbazole, with counterstaining using Gill’s hema-
toxylin (Sigma Chemical, St. Louis, MO). For double im-
munostaining, sections were first stained with anti-CD1a
mAb followed by biotinylated anti-mouse IgG, avidin-
biotin-peroxidase complex, and 3-amino-9-ethyl carba-
zole, as above. After development of the first immuno-
stain (red color), sections were subjected to treatment
with an avidin/biotin blocking kit (Vector Laboratories)
according to the manufacturer’s recommendations, and
further blocked with 5% normal horse serum for 20 min-
utes. Tissue sections were then processed for detection
of the second antigen using anti-human CD68 mAb
(clone KP1, DAKO), followed by biotinylated horse anti-
murine secondary antibody and streptavidin coupled to
alkaline phosphatase followed 30 minutes later by Fast
Blue substrate.

Flow cytometry was performed as described,49 with
gating on viable cells according to forward and side
scatter and exclusion of propidium iodide-stained cells.

T Cell Proliferation Assays

T cell lines DN1 (CD42CD82; M. tuberculosis mycolic acid-
specific and CD1b-restricted) and CD8.1 (CD42CD81, M.
tuberculosis phospholipid-specific and CD1c-restricted)
have been described.30,50–52 Maintenance of T cell lines
and T cell proliferation assays were performed as previ-
ously described.51 To induce antigen-specific prolifera-
tion, DN1 T cells were stimulated with either a sonicate of
M. tuberculosis (strain H37Ra; DIFCO, Detroit, MI) or with
purified mycolic acids (Sigma). A total lipid extract of M.
tuberculosis (strain H37Ra) was used to stimulate CD8.1
T cells as previously described.52 Serial dilutions of the
antigens were performed as described in Results and in
figure legends. All cultures contained 50,000 T cells and
50,000 irradiated monocyte-derived antigen-presenting
cells per well.

Preparation of Cytokine-Activated Monocytes
and Foam Cells

Monocytes were isolated from leukocyte concentrates of
normal donors by plastic adherence53 and incubated in
medium alone or in medium containing either 100 mg/ml
oxidized LDL or 100 mg/ml acetylated LDL (both from
Biotechnologies Inc., Stoughton, MA) for 7 days at 37°C
in a 5% CO2 incubator. Cells were collected by centrifu-
gation and recultured in fresh medium on day 5. Medium
for incubations was RPMI-1640 (Gibco BRL, Gaithers-
burg, MD) with 10% fetal calf serum (FCS, Hyclone, Lo-
gan, UT) with or without a combination of 300 U/ml of
GM-CSF (Immunex, Seattle, WA) and 200 U/ml IL-4
(Schering Corp., Kenilworth, NJ). Foam cells were ana-
lyzed on day 7 by Nile Red staining according to the
method of Greenspan et al.54 Quantitative fluorescence
analysis was performed with a FACSort flow cytometer
(Becton-Dickinson, Mountain View, CA) using 488-nm
excitation wavelength and 515–545 nm detectors. Qual-
itative analysis was carried out by fluorescence micros-
copy of Nile Red-stained cells in PBS on glass slides and

cover slips using a Nikon Optiphot 2 fluorescent micro-
scope with 470- to 490-nm excitation filters and a 505-nm
dichroic mirror and 520- to 560-nm visualization filters.

Results

Expression of CD1 Proteins in
Atherosclerotic Lesions

Monoclonal antibodies specific for each of the four cur-
rently defined human CD1 proteins were tested for stain-
ing of frozen sections from a total of 14 atherosclerotic
plaques and 6 non-atherosclerotic arteries used as nor-
mal controls (Figure 1). The latter included normal human
aorta and carotid arteries. Lesions studied were predom-
inantly advanced carotid plaques with characteristic fi-
brous caps, lipid-laden macrophages, intimal hyperpla-
sia, and lymphocytes distributed throughout the lesions.
Reactivity of CD1-specific mAbs was noted exclusively in
the intima where gross changes associated with the ath-
erosclerotic process were visible, but not in adjacent
areas of the media, which generally had grossly normal
architecture and cellularity.

In every specimen of atherosclerotic tissue studied, we
observed immunoreactive CD1a, -b, -c, and -d (Figure 1,
c–f), whereas these proteins were not detected in simi-
larly processed specimens of normal arterial tissue (Fig-
ure 1, g and h). No reactivity was seen using non-binding
isotype matched control mAbs (Figures 1b and 2d), dem-
onstrating that reactivity with anti-CD1 mAbs was specific
and was not due to binding to Fc receptors present on
cells within the lesions. Expression of CD1a, -b, -c, and -d
occurred, for the most part, in the same regions of the
atherosclerotic plaques. However, subtle differences did
exist, with the expression of CD1c generally appearing
more diffuse within the lesions. CD1 molecules were ex-
pressed predominantly in areas that also had a relatively
high density of CD31 lymphocytes (Figure 2, a and b),
indicating close contact and possible interactions be-
tween T cells and cells expressing CD1 molecules.

Identification of CD11 Cells in Atherosclerotic
Lesions as Lipid-Laden Macrophages

Staining of adjacent serial sections of the same plaque
with anti-CD68, a marker for macrophages, revealed that
CD1 expression occurred predominantly in macrophage-
rich areas of the lesion (Figures 1, a–f, and 2, e and f).
High-power views of atherosclerotic lesions demon-
strated that CD1 expression was restricted to the periph-
eral regions of large irregular cells containing abundant
lipid inclusions (Figure 2, c and e). The appearance of
these cells was characteristic of the macrophage-derived
lipid-laden foam cells commonly found in mature athero-
sclerotic plaques. To verify that CD1 expression was
restricted to macrophage-derived foam cells, we per-
formed double staining of individual sections with mAbs
specific for CD68 and either CD1a or CD1b. High-power
views of these sections revealed that all CD11 cells were
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also co-stained for CD68, and that all of these double-
labeled cells had vacuolated cytoplasmic inclusions (Fig-
ure 2g). These findings demonstrated the macrophage
origin of the CD11 foam cells in atherosclerotic lesions.

Generation of CD11 Monocyte-Derived Foam
Cells in Vitro

The expression of CD1 molecules by lipid-laden foam
cells suggested that these cells might present lipid anti-
gens to T cells present in atherosclerotic plaques. Be-
cause the relatively small number of such cells in the
available tissue specimens precluded their direct isola-
tion for in vitro functional analyses, we produced mono-
cyte-derived foam cells in vitro to assess their ability to act
as antigen-presenting cells for CD1-restricted T cell re-
sponses. Peripheral blood monocytes were cultured in
media containing GM-CSF and IL-4 to augment the ex-
pression of CD1 molecules (CD1a, -b, and -c). To induce
foam cell formation, some cultures were incubated with
medium containing either acetylated LDL or oxidized
LDL. In contrast to untreated control cells, staining of
these LDL-loaded cells with the lipid stain Nile Red dem-
onstrated lipid accumulation characteristic of foam cells
(Figure 3, a and b).

Direct observation by fluorescence microscopy con-
firmed the presence of intracytoplasmic lipid droplet ac-
cumulation in cells incubated with either oxidized (Ox-
LDL) or acetylated LDL (Ac-LDL) (Figure 3b). Acetylated
LDL-treated cells were brighter, with distinct lipid drop-
lets present diffusely throughout the cytoplasm, consis-
tent with a foam cell phenotype. Oxidized LDL-treated
cells were less bright, with hazy Nile Red staining in a
perinuclear distribution in addition to the cytoplasmic
droplet appearance, suggesting lipid accumulation in
additional compartments in these cells. In contrast, when
compared to these cells, GM-CSF and IL-4-treated
monocytes (G/4) cultured in the absence of modified LDL
treatment gave only weak fluorescence (Figure 3b).

CD1a, -b, and -c proteins were expressed on mono-
cyte-derived foam cells from cultures treated with either
oxidized or acetylated LDL in the presence of GM-CSF
and IL-4, as determined by flow cytometry (Figure 4).
These cells also expressed a variety of cell surface pro-
teins typically found on macrophages, including MHC
class I and class II molecules, CD11b (Mac1), comple-
ment receptor 1 (CR-1), CD14, and ICAM 3 (Figure 4,
Table 1, and additional data not shown). Overall, this
cell-surface phenotype showed strong similarities to that
described previously for foam cells in atherosclerotic
lesions in vivo,4,15–19,55–58 as summarized in Table 1.

Interestingly, incubation with oxidized LDL consistently
reduced the expression of most of the cell surface mol-
ecules studied when compared to acetylated LDL-
treated monocytes or cytokine-activated controls (Figure
4, Table 1, and additional data not shown). These in vitro
findings suggested that lipid accumulation resulting from
uptake of certain types of lipoprotein particles (eg, oxi-
dized LDL) could be responsible for further differentiation
and phenotypic modulation of CD11 foam cells within
atherosclerotic lesions in vivo.

T Cell Recognition of Lipid Antigens Presented
by CD11 Foam Cells

CD1-expressing monocyte-derived foam cells were
tested in T cell proliferation assays for their ability to
present known bacterial lipid antigens to established
CD1b- and CD1c-restricted T cell lines. Foam cells gen-
erated in vitro by loading with either oxidized or acety-
lated LDL were capable of inducing antigen-dependent
proliferation of the mycolic acid-specific CD1b-restricted
T cell line DN1 (Figure 5a). Similarly, the CD1c-restricted
T cell line CD8.1 was also induced to proliferate by pre-
sentation of mycobacterial phospholipid antigens by both
types of in vitro-derived foam cells (Figure 5b). As ex-
pected, neither T cell line showed responses to the spe-
cific lipid antigens in the presence of cultured macro-
phages, which lack expression of the relevant CD1b and
-c antigen-presenting proteins (Figure 5, a and b).

Cells treated with acetylated or oxidized LDL showed
reduced efficiency of antigen presentation by CD1 mol-
ecules (Figure 5, a and b), and we observed similar
reductions in antigen-presenting function when GM-CSF
plus IL-4-treated monocytes were exposed to crude lip-
ids extracted directly from atherosclerotic plaques (data
not shown). This reduction of antigen-presenting capac-
ity was particularly pronounced at low concentrations of
the exogenously added bacterial lipid antigen (Figure
5c). This observation provided additional evidence that
accumulation of certain forms of lipid may induce further
differentiation of foam cells, resulting in effects on their
antigen-presenting function. Nevertheless, CD11 foam
cells generated by either method activated lipid antigen-
specific CD1-restricted T cells, indicating that they re-
tained the capacity to present lipid antigens to T cells
through the CD1 pathway.

Discussion

Recent evidence favoring an inflammatory and possibly
even infectious component in the etiology of atheroscle-

Figure 1. Expression of CD1a, -b, -c, and -d molecules in human atherosclerotic plaques. Serial frozen sections from human atherosclerotic carotid arteries were
stained with a mAb against the macrophage marker CD68 or with mAbs specific for CD1a, -b, -c, or -d. (a) Intimal hyperplasia, fibrous cap formation and a
macrophage-rich lipid-laden core are seen in a low power (340) view of a section stained with antibody to the macrophage marker CD68. (b–f) Higher power
(3100) views of macrophage-rich areas (corresponding to area enclosed in box shown in a) demonstrate staining of CD1a, -b, -c and -d molecules. Antibodies
used were: a, KP1 (anti-CD68), b, MPC-11 (nonbinding control), c, OKT6 (anti-CD1a), d, 4A7.6.5 (anti-CD1b), e, 10C3 (anti-CD1c..CD1b), and f, CD1d51.1.3
(anti-CD1d . CD1b .. CD1c). Undiseased arterial tissue, including human aorta and carotid arterial tissue, demonstrated little or no staining with any of these
antibodies; see (g), OKT6, (h), CD1d51.1.3, and additional data not shown. For each CD1 isoform at least two different antibodies (see Materials and Methods)
were used with similar results (data not shown). Staining was performed on a total of 14 atherosclerotic plaques and 6 normal arterial controls, and the results
shown are representative of the findings for all samples examined.
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rosis has heightened interest in the potential role of T cell
activation within the arterial lesions in this disease. This
study demonstrated the expression of CD1 molecules in
atherosclerotic plaques, thus potentially implicating this
family of lipid antigen-presenting molecules in the devel-
opment or progression of this disease. We detected ex-
pression of all four previously characterized human CD1
proteins in these lesions by immunohistochemistry and
showed that this expression was confined to the macro-
phage-derived foam cells present within atherosclerotic
plaques. To assess the functional consequences of this
expression, we established an in vitro system for the
generation of CD11 monocyte-derived foam cells. These
cells shared phenotypic similarities with foam cells in
atherosclerotic plaques, and in the presence of lipid an-
tigens they activated CD1-restricted T cells in vitro.

The expression of CD1 proteins on foam cells in ath-
eroma agrees with the known distribution of these mole-
cules on cells derived from the myelomonocytic lin-
eage.27 However, whereas previous studies have
frequently shown the pronounced expression of CD1a,
-b, and -c on dendritic cells in various tissues, these
molecules have generally not been detected on resident
tissue macrophages.27 Information on the expression of
the fourth CD1 protein, CD1d, is currently limited. Studies
on the homologue of this protein in the mouse have
indicated its expression on a variety of hematopoietic cell
types,59,60 but have not established its expression by
resident tissue macrophage populations. Thus, the find-
ing of strong expression of all four known human CD1
proteins on the macrophage-derived foam cells of ather-
omatous plaques was an unexpected, novel result of this
study. Besides the thymus,61 the atherosclerotic plaque
is to our knowledge the only tissue thus far demonstrated
to express all four of these human CD1 molecules in vivo.

The mechanisms that induce the expression of CD1
proteins in atherosclerotic lesions are unknown. CD1 pro-
teins, with the exception of low levels of CD1d, have not
generally been detected on circulating myelomonocytic
cells in vivo.27 Thus, the expression of CD1 proteins that
we have observed on foam cells suggests that the local
environment of the atherosclerotic plaque may contain
factors that increase transcription or translation of these
proteins. Leading possibilities for such inducing factors
are the cytokines produced within these lesions, which
include interferon-g (IFNg), GM-CSF, tumor necrosis fac-
tor-a (TNFa), tumor necrosis factor-b (TNFb), and inter-
leukin-2 (IL-2).3,7,21 Among these, GM-CSF is the only
cytokine currently known to induce CD1 proteins on
monocyte-derived cells.27,51 The possibility of other in-
ducing factors within these lesions remains to be inves-
tigated. These could potentially include other secreted

proteins as well as signals mediated through receptors
interacting with either cell-bound or matrix-associated
factors present within the plaques.

Studies on the antigen-presenting function of CD1 pro-
teins suggest that CD1 restricted T cells can respond to
foreign as well as potential endogenous lipid antigens. It
is now well established that these molecules can present
a variety of foreign lipid and glycolipid antigens found in
the cell walls of pathogenic mycobacteria to human T
cells. Several of the lipid antigens presented by the hu-
man CD1b protein have been isolated and structurally
characterized.30–32 These studies reveal the existence of
a potentially broad range of CD1-presented lipid anti-
gens, including molecules as disparate in structure as
the mycolic acids and phosphatidylinositol-containing li-
poglycans.30–32 In addition, CD1d proteins can present
glycosylated ceramide-like and glycosylphosphatidyli-
nositol (GPI)-containing lipids to T cells.37,62 The mech-
anism of this lipid antigen presenting function of CD1
proteins has been illuminated by the solution of the crys-
tal structure of a mouse CD1 protein, which reveals a
large hydrophobic antigen-binding cavity that is well
suited to function as a lipid binding site.63

Several observations suggest that CD1 proteins may
also be capable of binding and presenting normal en-
dogenous cellular lipids to T cells. For example, the
mouse CD1d protein produced in Drosophila cells that
was studied by X-ray crystallography contained addi-
tional electron dense material within its putative lipid-
binding cavity.63 Based on the linear and unbranched
appearance of this density, it was suggested to most
likely represent a bound cellular lipid, presumably in-
serted during synthesis and assembly of the protein.
Consistent with this possibility, mouse CD1 proteins ex-
pressed in mammalian cells and purified on affinity col-
umns were shown to contain detectable amounts of
bound cellular GPI,38 and another study has shown that a
synthetic form of a mammalian GPI can be recognized by
CD1-restricted murine T cells.37 More recently, evidence
has been obtained that suggests that gangliosides found
in mammalian brain tissue may be presented to human
CD1b-restricted T cells.64 These findings indicate that
normal or structurally altered endogenous lipids could
serve as targets for CD1-restricted T cells, particularly in
inflammatory lesions where CD1 molecules are up-regu-
lated.

Although our data do not yet establish a functional role
for CD1 proteins expressed on foam cells in atheroscer-
otic plaques, several features of these lesions support
this possibility. T cells within atheroma appear to be
chronically activated19,21,65,66 and frequently express
markers of activation including HLA-DR, CD26, and VLA-

Figure 2. Expression of CD1 by foam cells and in T cell rich areas of atherosclerotic plaques. a and b: Serial sections through an atherosclerotic plaque
demonstrated staining for CD1 (a, 3100 view of anti-CD1a mAb OKT6 staining) that colocalized in T-cell-rich areas of the atherosclerotic plaque (b, 3100 view
of anti-CD3 mAb OKT3 staining). c and d: High-power (original magnification, 3400) views of a section from a typical atherosclerotic plaque revealed CD1d
staining predominantly in large lipid-laden cells with vacuolated cytoplasm characteristic of foam cells (c, mAb CD1d68.3), whereas a serial section from the same
plaque showed absence of staining using an isotype-matched negative control antibody (d, mAb P3). e–g: serial sections of another atherosclerotic plaque stained
with mAb against CD1a (e, mAb OKT6, red reaction product), the macrophage marker CD68 (f, mAb KP1, blue reaction product), or double-stained to reveal
CD1 expression in CD681 foam cells (g, stained with OKT6 revealed by the red reaction product and KP1 revealed as the blue reaction product; original
magnification, 3400). Arrows are provided as references points for serial sections e, f, and g (note colocalization). Similar results were seen in sections stained
for CD1b (data not shown).
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1.65 Immunohistochemical and PCR analyses demon-
strate that T cells within these lesions actively transcribe
and secrete cytokines, including IFNg and IL-2.3,7,21

Other studies suggest that T cells within atherosclerotic
plaques proliferate, as might be expected after antigen
recognition.67 Plaque T cells are predominately CD45RA
low and CD45RO high, which is characteristic of the
memory phenotype typically displayed by antigen-se-
lected T cells.65 Although none of these findings directly

demonstrates that ongoing antigen presentation occurs
within lesions, together they form a strong circumstantial
argument in favor of this hypothesis.

Potential targets that may contribute to the activation of
plaque-infiltrating T cells include infectious organisms
that have been identified in these lesions, such as cyto-
megalovirus or chlamydia, and also normal or chemically
modified self-antigens. Presentation of such antigens
may occur through the MHC class I or II pathways, as

Figure 3. Generation of lipid-laden foam cells in vitro. Freshly isolated monocytes accumulated intracellular lipid droplets when incubated in culture in the
presence of GM-CSF, IL-4 and exogenous acetylated or oxidized LDL. a: Intracellular lipid accumulation was stained with Nile red and quantitative analysis of
fluorescently labeled cells was performed by flow cytometry. b: Fluorescence microscopy of monocytes cultured with GM-CSF and IL-4 plus exogenous acetylated
LDL (Ac-LDL) or oxidized LDL (Ox-LDL) and stained with Nile Red revealed intracellular lipid droplets typical of foam cells (original magnification, 3400). The
top row of images shows the cells under phase contrast illumination, and the bottom row shows fluorescence of the same cells. Monocytes treated with GM-CSF
and IL-4 in the absence of exogenously modified LDL, indicated as “media,” are shown for comparison.
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these molecules are expressed by cells within the le-
sions. In fact, studies directly examining the specificity of
plaque-infiltrating T cells have demonstrated that a frac-
tion of these may recognize oxidized LDLs presented by
MHC class II proteins, whereas others appear to respond

to heat shock proteins.21,23,68 However, previous studies
have not considered the possibility that antigen presen-
tation by CD1 might account for some component of T
cell activation in atheroma. Clearly, as CD1 is now rec-
ognized to function in the presentation of lipid antigens

Figure 4. Expression of CD1 proteins by in vitro-generated lipid-laden foam cells. Cytokine-treated foam cells expressed high levels of CD1a, -b, and -c as assessed
by FACS analysis. Cells were stained with antibodies with the specificities indicated at the top of each column. Antibodies used were P3 (nonbinding negative
control), OKT6 (anti-CD1a), 4A7.6.5 (anti-CD1b), F10/21A3 (anti-CD1c), and W6/32 (anti-MHC class I, positive control). Further characterization of cytokine-
treated foam cells in a separate experiment revealed that these cells expressed the macrophage markers CD11b (Mac1) and complement receptor 1 (CR-1) but
expressed only low levels of CD14 when compared to macrophages cultured in medium alone, as shown in Table 1.

Table 1. Comparison of Surface Phenotypes of Foam Cells of Atherosclerotic Plaques in Vivo and Cultured Monocyte-Derived Cell
Populations

Foam cells Ac-LDL Ox-LDL G/4 Mac

CD1a 11* 11 1 11 2
CD1b 11* 11 1 11 2
CD1c 11* 11 1 11 2
CD1d 11* 1 1 1 1
MHC II 114,18,19 11 1 11 1
Mac-1 1158 11 11 11 11
CD14 155 1 1 1 11
CR1 1156,57 11 1 11 1

The phenotype of foam cells shown in this table is a summary of previously published immunohistochemical studies on atherosclerotic lesions
(references as indicated in table) and results from the present study (indicated by asterisks; data from Figures 1 and 2). For foam cells, 1 indicates
definite staining by immunohistochemistry, and 11 indicates strongly detected staining indicative of high expression. Monocytes were cultured with
GM-CSF and IL-4 in combination with either oxidized LDL (Ox-LDL) or acetylated LDL (Ac-LDL) for 7 days and stained with mAbs against various cell
surface markers known to be expressed on foam cells in atherosclerotic lesions and analyzed by FACS. These were compared to macrophages grown
in medium alone (Mac) or in combination with GM-CSF and IL-4 in the absence of exogenous addition of modified LDL (G/4). Positive staining is
indicated as 1 (corresponding to a mean fluorescence intensity (MFI) between channels 10 and 100 by FACS) or 11 (MFI between .100 and 500).
Absence of significant staining above background levels in FACS is indicated by the 2 symbol.
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and because atheroma contain an abundance of chem-
ically altered lipids, it now appears reasonable to con-
sider and carefully assess this possibility.

Using foam cells generated in vitro, we demonstrated
the capability of such cells to present defined exogenous
foreign lipid antigens to CD1-restricted T cells. These in
vitro cultured foam cells, similar to their in vivo counter-
parts,4,15–19,55–58 developed typical lipid inclusions and
expressed MHC class I and II, Mac-1, CR-1, CD14, and
CD1 proteins. Our results demonstrated that these cells
are capable of presenting lipid antigens by either the
CD1b or CD1c antigen presentation pathways. Although
our experiments have not yet directly demonstrated lipid
antigen presentation within atherosclerotic plaques, the
large accumulations of normal and altered lipids within
the same cells that express the CD1 proteins in these
lesions clearly suggests this possibility. Future studies
should help determine if direct recognition of foreign or
endogenous lipids is a common feature of plaque-infil-
trating T cells. And our initial studies on in vitro cultured
foam cells suggest they may be suitable for use to test for
CD1-restricted antigen recognition by these cells.

In summary, the present data suggest a potential role
for CD1-restricted antigen presentation in atherosclero-
sis. Atheroma are inflammatory lesions, and the progres-
sion of these lesions is likely to be driven and regulated
by the cells within the lesions. The activation of T cells
within atherosclerotic plaques likely contributes to the
development and evolution of these lesions, and macro-
phage-derived foam cells probably play a central role in
this process. Our finding that these cells express the CD1
system of lipid antigen-presenting molecules, coupled
with the abundance of abnormal lipids within atheroscle-
rotic lesions, points to a novel potential mechanism for
sustained T cell activation. Further development of the in
vitro system described here may allow direct analysis of
this component of atherosclerosis and may lead to new
strategies for prevention and therapeutic intervention in
this disease.
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