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Trophoblastic tumors represent a unique group of
human neoplasms because they are derived from fetal
tissue. Except for choriocarcinoma, the neoplasms
that develop from human trophoblast are poorly
characterized. Placental site trophoblastic tumors and
epithelioid trophoblastic tumors are thought to arise
from intermediate (extravillous) trophoblasts based
on histopathological studies, but direct molecular ev-
idence of a trophoblastic origin has not been estab-
lished. In this study, we performed molecular analy-
sis in an attempt to confirm their presumable
trophoblastic origin. We demonstrated that such tu-
mors contain a Y-chromosomal locus and/or new (pa-
ternal) alleles not present in adjacent normal uterine
tissue in all 31 informative cases. Loss of heterozygos-
ity was found in 60% of tumors and all 42 tumors
assessed contained wild-type K-ras. All of the tropho-
blastic tumors were heterozygous in at least 1 of 10
single-nucleotide polymorphism markers studied in
contrast to homozygosity in all 10 single-nucleotide
polymorphism markers in most complete hydatidi-
form moles indicating that these tumors are not re-
lated to complete hydatidiform moles. This study pro-
vides the first molecular evidence that placental site
trophoblastic tumors and epithelioid trophoblastic
tumors are of fetal (trophoblastic) origin. (Am J
Pathol 2002, 161:1033–1037)

Gestational trophoblastic tumors are a unique group of
neoplasms because they are semiallografts that are de-
rived from the conceptus and not from the patient.1 This
is of biological and clinical interest because of the fact
that the presence of paternal genetic material distin-
guishes gestational from nongestational tumors, which
may require different therapy. Choriocarcinoma, the most
extensively studied trophoblastic tumor, is always de-
rived from a proceeding gestational event, most often a
complete hydatidiform mole.2–4 In contrast, the origins of
two other types of trophoblastic tumors, placental site

trophoblastic tumor (PSTT) and epithelioid trophoblastic
tumor (ETT) have not been established.2,5 Unlike chorio-
carcinoma in which a recent gestational event can be
clearly documented, the clinical evidence to support a
gestational trophoblastic origin of PSTTs and ETTs is
usually lacking because the preceding gestational event
can be remote.2,6 The trophoblastic origin of both of
these tumors has been proposed based on morphologi-
cal studies that have demonstrated similarity of the tumor
cells in PSTTs and ETTs to the intermediate (extravillous)
trophoblastic cells in the normal implantation site and the
chorion laeve, respectively.2,5,7,8 In addition, a recent
study has shown that both tumors express a high level of
HLA-G, a trophoblast-associated marker.9

There have been only three molecular studies on
PSTTs, and the number of specimens studied was very
small.10–12 There have been no molecular studies of
ETTs, a relatively uncommon and only recently described
neoplasm. To confirm the trophoblastic origin of PSTTs
and ETTs, we analyzed the paternal genomic contribution
including the presence of a Y-chromosomal locus (the
SRY gene) and the presence of unique (paternal) alleles
in a relatively large number of PSTTs and ETTs using a
recently developed genotyping technique.13 Mutational
analysis of K-ras oncogenes was also assessed.

Materials and Methods

Tissues and Tumor DNA Samples

After approval by the Joint Committee for Clinical Inves-
tigation at Johns Hopkins University, formalin-fixed, par-
affin-embedded tissue samples of 23 PSTTs, 19 ETTs,
and 20 complete hydatidiform moles were retrieved from
the Gestational Trophoblastic Tumor Bank of The Johns
Hopkins Hospital, Baltimore, MD. Most of the specimens
were consultation cases sent to one of the authors (RJK).
Two gynecological pathologists reviewed all of the cases
before tissue microdissection. Adjacent normal uterine
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tissue was present in 12 PSTTs and 13 ETTs. In addition,
10 ovarian serous carcinomas were used as the controls
for the genotype analysis. Tumor and the adjacent normal
uterine tissues were separately dissected using an in-
verted microscope with the contamination from nonneo-
plastic cells estimated at less than 10% of the microdis-
sected tumor component. DNA was purified using a
QIAquick PCR purification kit (Qiagen, Valencia, CA) fol-
lowing the manufacturer’s instructions.

Polymerase Chain Reaction (PCR) for Genes on
Y and X Chromosomes

Identification of the SRY (human sex-determining region
Y) gene on the Y-chromosome was used to confirm the Y
genetic component14 and an X-linked protein gene on
the X-chromosome was used to confirm the X-chromo-
somal element. Genomic DNA was added to the PCR
cocktail containing pairs of primers that specifically am-
plified the SRY gene or the X-linked protein gene. For the
SRY gene, the sequence for the forward primer was
5�-aagatgctgccgaagaattg-3� and the reverse primer it
was 5�-tcttgagtgtgtggctttcg-3�. For the X-linked protein
gene, the sequence for the forward primer was 5�-
agaatcctttgcacacgg-3� and for the reverse primer it was
5�-cacaaaaggaggccacgt-3�. The PCR was performed us-
ing the following protocol: 95°C (2 minutes); 50 cycles of
95°C (30 seconds), 53°C (30 seconds), and 72°C (15
seconds); and 72°C (10 minutes). The amplified PCR
products with �150 bp were visualized by electrosepa-
ration on 10% TBE (Tris base, boric acid, ethylenediami-
netetraacetic acid) gels (Invitrogen, Carlsbad, CA).

Genotyping Using Single Nucleotide
Polymorphism (SNP) PCR Assay

The principles and applications of molecular beacons in
allelic determination have been previously reported in
detail.15,16 The genotyping method used in this study was
detailed in a previous report.13 In brief, the SNP markers
were randomly selected with a heterozygosity rate
greater than 0.38 based on the SNP database (http://
lpg.nic.nih.gov). The sequences of the primers and mo-
lecular beacons for 10 SNPs including 8118 (at chromo-
some 1p), 9067 (1p), 1756 (5q), 1745 (8p), 28254 (8p),
1085 (8p), 3833 (8p), 852 (12p), p53 (17p), and 1468
(18q) have been previously reported.16 Both forward and
reverse primers were designed for each SNP, allowing
the amplification of �100-bp PCR products. The paraffin
DNA sample (0.5 to �1.5 ng) was distributed into six
wells in a 384-well plate allowing at least 50 samples to
be included in one plate and analyzed at the same time.
In addition to all essential PCR reagents, the PCR cocktail
contained a pair of molecular beacons labeled with either
fluorescein (green fluorescence) or HEX (red fluores-
cence) that hybridized with the allele harboring the spe-
cific SNP (Gene Link, Thornwood, NY, and Operon Tech-
nologies, Inc., CA).17,18 An excess of the reverse primer
allowed generation of single-stranded DNA complemen-

tary to the molecular beacon. PCR was performed in a
single step with the following protocol: 94°C (1 minute);
four cycles of 94°C (15 seconds), 64°C (15 seconds),
70°C (15 seconds); four cycles of 94°C (15 seconds),
61°C (15 seconds), 70°C (15 seconds); four cycles of
94°C (15 seconds), 58°C (15 seconds), 70°C (15 sec-
onds); 60 cycles of 94°C for (15 seconds), 55°C (15
seconds), 70°C (15 seconds); 94°C (1 minute); and 60°C
(5 minutes). The fluorescence intensity in each well was
then measured using a Galaxy FLUOstar fluorometer
(BMG Lab Technologies, Durham, NC) and the ratio of
fluorescein/HEX fluorescence intensity was determined
from each well and the average from six repeats on each
sample was determined. The data were converted into
genotypes by a computer program. A novel allele in a
tumor was defined as the presence of a new allele in the
tumor that was absent in the corresponding normal uter-
ine tissue for a given SNP marker. Accordingly, a novel
allele (C for example) could be found in a tumor contain-
ing a heterozygous allele (GC for example) as compared
to the homozygous alleles (GG) in adjacent normal tis-
sues or in a tumor with homozygous alleles (CC) that
were different from the ones (TT) in normal controls.

To determine the confidence level of bipaternal contri-
bution in PSTTs, ETTs and complete moles, the homozy-
gosity rate (fhomo) for each SNP was determined by geno-
typing normal tissues from 50 individuals. The confidence
level was estimated from the cumulative homozygosity
frequency (1 � fhomo) from the 10 SNP markers used in
this study.

Mutational Analysis of K-ras

K-ras mutations at codon 12 and 13 were analyzed using
DNA sequencing of the PCR products amplified from
tumor DNA. The DNA was isolated from paraffin sections
using the QIAquick PCR purification kit. The sequences
of PCR primers and PCR conditions have been previously
described.19 Both forward and reverse primers were
used for sequencing and they were forward: 5�-cattgtttt-
tattataaggcctgc-3� and reverse: 5�-tctgaattagctgtatcgt-
caagg-3�. Sequencing was performed using fluores-
cently labeled Applied Biosystems Big Dye terminators
and an Applied Biosystems 377 automated sequencer
(Applied Biosystems, Foster City, CA). As a positive con-
trol, a low-grade ovarian serous carcinoma that has been
known to contain K-ras mutation (GGT to GCT) at codon
12 was included in the assays.

Results

The SRY gene was used to confirm the presence of a
Y-chromosomal component.14 Based on PCR analysis,
the SRY gene amplicon was found in 12 of 23 (52%)
PSTTs (Figure 1) and in 11 of 19 (58%) ETTs (Figure 2).
The SRY gene was confirmed by nucleotide sequencing
in representative PCR products (data not shown). As
negative controls, all normal uterine tissues adjacent to
the tumors were analyzed in parallel and none yielded the
SRY amplicons. The absence of the SRY gene in PCR-
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negative PSTT and ETT specimens was supported further
by repeating the PCR assays using higher template con-
centrations (3� of originals). The results in PCR-negative
PSTTs and ETTs were not because of the technical prob-
lems or too low copy number of templates in PCR reac-
tions because PCR products were detectable using a
pair of X-chromosome-specific primers.

To further determine the presence of a paternal ge-
netic contribution in PSTTs and ETTs, we performed
genotyping using a newly developed technique that over-
comes the technical difficulties associated with traditional

genotyping methods using microsatellite markers.13 The
genotype results for PSTTs and ETTs are summarized in
Figures 1 and 2, respectively. There were 25 specimens
(12 PSTTs and 13 ETTs) that contained adjacent normal
uterine tissues. This allowed comparison of allele profiles
between tumor and normal tissue. Among these informa-
tive cases, all PSTTs and ETTs contained at least one
novel allele present only in tumor DNA and not in the
normal uterine (maternal) tissue controls. Among 12
PSTTs and 13 ETTs with adjacent normal tissues, six
PSTTs and nine ETTs showed loss of maternal alleles in at
least one SNP marker as evidenced by different homozy-
gous alleles in tumor and the corresponding normal ma-
ternal tissue. For example, the SNP 852 genotype in PSTT
specimen P1 (Figure 1) was homozygous T in contrast to
homozygous C in the adjacent normal (maternal) tissue
N1; therefore the maternal C allele must have been lost
during the development of the trophoblastic tumor. There
were five PSTTs and two ETTS in which the normal tissues
were not available for comparison, and these tumors
were negative for the SRY-PCR assay. Therefore, these
tumors were not informative to assess paternal genomic
contribution. For the genotyping analysis, ovarian carci-
nomas were included as controls using the same panel of
SNP markers. Unlike PSTTs and ETTs, ovarian carcino-
mas did not contain novel alleles; instead there was
frequent loss of one of the alleles, ie, loss of heterozy-
gosity in several SNP markers (data not shown).

Because �50% of choriocarcinomas are related to
complete hydatidiform moles,3,4 most commonly the ho-
mozygous ones, we addressed whether PSTTs and ETTs
were genetically related to a complete hydatidiform mole.
Here we assessed the allelic representation in PSTTs and
ETTs and compared it to a complete hydatidiform mole.
Homozygosity is a common feature in most complete
hydatidiform moles because of duplication of one sperm
in an empty ovum.20 As shown in Figures 1 and 2, none
of the 22 PSTTs and 19 ETTs was homozygous in all 10
SNP markers. In contrast, 17 of 20 (85%) complete
hydatidiform moles were homozygous in all markers
(Figure 3). Based on the SNP panel used in this study,
the confidence level of bipaternal contribution in the
homozygous moles was 99.9% (ie, the probability that
homozygosity in all 10 SNPs occurs by chance is 0.1%)
(Figure 3).

Because mutations in K-ras oncogene are commonly
associated with the development of a variety of human
cancers,21,22 we attempted to assess the mutation status
of K-ras in PSTTs and ETTs. Mutational analysis of K-ras
oncogene was assessed in all 42 tumors and none of
them showed mutation in either codon 12 or 13. In con-
trast, a GGT to GCT mutation at codon 12 was found in a
low-grade ovarian serous carcinoma, which was in-
cluded as the positive control in this study.

Discussion

The results of this study confirm the presence of paternal
genetic contribution including the presence of Y-chromo-
somal material and novel (paternal) alleles in PSTTs and

Figure 1. Genotype analysis and PCR for Y- and X-chromosomes in PSTTs.
White- and light-gray-shaded boxes: novel alleles present in the tumor;
dark gray boxes: loss of maternal alleles in the tumor. P, PSTT; N, normal
uterine tissue; NI, noninformative; NP, not present; X, presence of X-chro-
mosome-specific PCR product; Y, presence of Y-chromosome-specific PCR
product; Ch, chromosome.

Figure 2. Genotype analysis and PCR for Y- and X-chromosomes in ETTs.
White- and light-gray-shaded boxes: novel alleles present in the tumor;
dark gray boxes: loss of maternal alleles in the tumor. E, ETT; N, normal
uterine tissue; NI, noninformative; NP, not present; X, presence of X-chro-
mosome-specific PCR product; Y, presence of Y-chromosome-specific PCR
product; Ch, chromosome.
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ETTs. These findings, together with our previous obser-
vation demonstrating HLA-G immunoreactivity in both of
these tumors,9 provide the first molecular evidence of
their trophoblastic origin.

In this study, the paternal allelic status of the PSTTs
and ETTs was not known because they were diagnosed
long after the last known pregnancy and thus the paternal
genetic material was not readily available for analysis.
Despite this, all of the PSTTs and ETTs examined dem-
onstrated the presence of a Y-chromosomal component
(the SRY gene) and/or novel (presumably paternal) al-
leles in tumors that were not present in adjacent uterine
(maternal) tissues. These findings provide clear evidence
of the fetal origin of both types of tumors. Sex chromo-
some analysis in a previous report suggested that the
development of PSTTs involves the paternal X-chromo-
some because no evidence of Y-chromosomal compo-
nent was identified in five PSTTs,10 but in our larger series
of specimens, we were able to detect Y-chromosomal
material in �50% of PSTTs and ETTs.

The trophoblastic origin of PSTTs and ETTs is further
supported by our previous immunohistochemical study
demonstrating strong expression of HLA-G in all cases of
PSTTs and ETTs examined, using the 4H84 HLA-G-spe-
cific monoclonal antibody.9,23–25 HLA-G is a nonclassical
major histocompatibility class I molecule and plays a role
in the escape of host immunosurveillance. It is not ex-
pressed in normal adult tissue, only in fetal thymus and
normal intermediate trophoblast. Thus, HLA-G expres-
sion in PSTTs and ETTs strongly suggests that PSTTs and
ETTs are related to intermediate trophoblasts.

Although PSTTs and ETTs both exhibit an intermediate
trophoblast phenotype, they have distinctive histological
features and gene expression profiles that justify their
separate designation. The tumor cells in PSTTs resemble
the intermediate trophoblastic cells in the implantation
site and express markers specific for these trophoblastic
cells.1,26 In contrast, both histological and immunohisto-
chemical features of an ETT are similar to those of cho-

rionic-type intermediate trophoblastic cells found in the
chorion laeve. Thus, PSTTs and ETTs seem to be derived
from distinct subpopulations of intermediate trophoblast.

Approximately 50% of choriocarcinomas develop from
complete hydatidiform moles, but the relationship of
PSTTs and ETTs to complete moles is not clear.3 In this
study, both PSTTs and ETTs demonstrated allelic types
heterozygous to at least one SNP marker, confirming that
these tumors, unlike choriocarcinoma,3,4 are not likely
related to a complete hydatidiform mole, although a re-
lationship to a heterozygous complete mole cannot be
excluded. This finding is consistent with previous clinical
observations that both PSTTs and ETTs occur most com-
monly after a normal pregnancy or nonmolar abortion,
whereas in only 5 to 8% of patients is there a history of a
complete mole.7,27,28

We attempted to assess the mutation status of K-ras in
PSTTs and ETTs, because mutations in the K-ras onco-
gene are commonly associated with the development of
a variety of human cancers.21,22 As with choriocarcino-
mas and complete moles,29 PSTTs and ETTs contained
wild-type K-ras at codons 12 and 13 in all of the cases
evaluated, suggesting that the aberration of the K-ras
signaling pathway does not play a major role in the de-
velopment of trophoblastic tumors, although K-ras muta-
tions at codon 61, another mutation hot spot of K-ras,
were not analyzed in this report. In this study, we did not
attempt to comprehensively assess loss of heterozygos-
ity in PSTTs and ETTs because the corresponding normal
fetal tissues from which trophoblastic tumors derived
were not available for comparison. Based on the geno-
type analysis between the tumors and adjacent normal
(maternal) uterine tissues, we were able to evaluate loss
of heterozygosity by determining whether there was loss
of the maternal alleles but not paternal alleles. Thus, the
loss of heterozygosity rate in the PSTTs and ETTs was
underestimated. Nevertheless, the frequent loss of het-
erozygosity in PSTTs and ETTs indicates that there is a
certain level of genetic instability in some of the tumors.

In recent years the routine use of ultrasound in preg-
nancy has led to a much earlier clinical diagnosis and
evacuation of complete moles, often in the first trimester.
As a result the classic histopathological features of com-
plete moles, which in the past were based on examina-
tion of specimens obtained in the second trimester, are
not as apparent, making the pathological diagnosis more
difficult.2 The genotyping method reported here may pro-
vide another molecular diagnostic tool for identification of
early complete moles. It has at least two advantages as
compared to the classic techniques using microsatellite
markers and gel-based assays. First, because molecular
beacons are used to hybridize the PCR products with
identical length (�100 bp) for both alleles, DNA degra-
dation of the larger microsatellite alleles in paraffin tis-
sues does not pose a problem.30 Second, our method is
based on paraffin sections and does not require fresh
tissues or special instruments for analysis.

In conclusion, this study has provided the first molec-
ular evidence of the fetal (trophoblastic) origin of PSTTs
and ETTs. PSTTs and ETTs are uncommon tumors, but
because they represent semiallografts, being derived

Figure 3. Genotype analysis in complete moles. Shaded boxes: homozy-
gous to a specific SNP marker. f homo, homozygosity rate for a specific SNP
marker; CM, complete mole; Ch, chromosome.
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from the conceptus and not from the patients, they pro-
vide a unique tumor system to study the immunological
aspects of human cancer.
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