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Feline immunodeficiency virus (FIV) is the feline an-
alog of human immunodeficiency virus and a small
animal model of human acquired immune deficiency
syndrome (AIDS). We sought to identify early in vivo
target cells in cats infected with clade B or C FIV. In
tissues, however, neither mouse monoclonal nor rab-
bit polyclonal antibodies suitably detected FIV be-
cause of either insensitivity or lack of specificity. We
therefore developed an immunohistochemical proto-
col using high-antibody-titer serum from cats chron-
ically infected with FIVPetaluma. Native species anti-FIV
antibodies were labeled with biotinylated protein A
before placement on tissues, and downstream signal
was tyramide-amplified. This method revealed many
productively infected cells in bone marrow, lymph
node, thymus, mucosal-associated lymphoid tissue,
and spleen, but few such cells in liver and none in
kidney or brain. Concurrent labeling for virus and
cell phenotype revealed that antigen-bearing popula-
tions were primarily T lymphocytes but included
macrophages and dendritic cells. Our results demon-
strate that FIV: 1) expands rapidly in T cells, 2) targets
long-lived reservoir populations, and 3) is replica-
tively quiescent in brain at 3 weeks after infection.
Use of native species antibodies for immunohisto-
chemical detection of infectious antigens has applica-
tion to other settings in which xenotypic (eg, mouse
and rabbit) antibody sources are inadequate or un-
available. (Am J Pathol 2002, 161:1143–1151)

Elucidating host-virus interactions in vivo depends in
large part on the localization of virus to specific cells in
tissues. In situ identification of human immunodeficiency
virus (HIV)-1 RNA in human lymphoid tissues demonstrates
that viral replication continues even with declining or unde-

tectable viral loads in plasma.1–4 However, tissue-based
studies of early HIV pathogenesis are dependent on access
to limited biopsy or autopsy materials. For that reason,
animal models can be used to help characterize early len-
tiviral disease progression in vivo.

Feline immunodeficiency virus (FIV) infection in cats
causes disease virtually indistinguishable from that caused
by HIV-1 in humans and simian immunodeficiency virus
(SIV) in Asian macaques.5,6 The anatomical distribution
of FIV is similar to that of HIV-1 and SIV and includes
mucosal interfaces, lymphoid organs, sites of hematopoi-
esis, circulating mononuclear cells, and the central ner-
vous system.7–13 Proven in vitro FIV cell targets include T
lymphocytes,14,15 monocytes/macrophages,12,16 den-
dritic cells,10,17–20 and central nervous system astro-
cytes, and macrophages.21,22

Characterization of FIV pathogenesis in vivo has been
limited by a shortage of reagents for identification of cell
phenotypes in feline tissue sections, and by the small num-
ber of described assays for detecting virus in situ. FIV
is most often revealed in tissue sections by in situ RNA
hybridization.10,17,18,23–28 However, tissue digestion steps
required for in situ RNA hybridization often destroy pro-
tease-sensitive cell-specific antigens, limiting the number
of markers available to identify the cells infected. More-
over, the special precautions required to prevent target
and probe degradation by RNases and the relatively high
cost of developing or purchasing FIV RNA probes have
limited the application of this technique. Identification of
FIV-specific proteins by immunohistochemistry obviates
the need for protease digestion steps and RNase-free
protocols. However, few monoclonal antibodies proven to
sensitively and specifically bind FIV in tissue sections are
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available. Additionally, because monoclonal antibodies
only bind a single epitope, high virus copy number may
be required for detection. Thus, there are few reports
of FIV identification in tissue sections by immunostain-
ing.19,27

In this report we describe a modified immunohisto-
chemical assay that complemented other in situ meth-
odologies for the detection and quantitation of virus in
tissues from cats infected with clade B or clade C
FIV.29,30 FIV-B-2542 and FIV-CPaddyGammer (FIV-C-Pgmr)
replicate to high titer during acute-phase infection and
can be transmitted mucosally.10,26,31–33 The results de-
scribed in this report contribute further insights into the
cell targets and tissue replication kinetics of FIV during
acute infection.

Materials and Methods

Animals and Tissue Processing

Two groups (five cats per group) of 8-week-old cats from
a specific pathogen-free breeding colony maintained at
Colorado State University (Fort Collins, CO) were inocu-
lated intravenously with 100 tissue culture infectious
doses (TCID) of acute-phase plasma pools of FIV.34 Cats
were inoculated with FIV-B-254235 or FIV-C-Pgmr.36 The
cats were observed daily for signs of illness after virus
inoculation. Three weeks after inoculation, blood was
collected and the animals were euthanized. Tissues col-
lected at necropsy included brain, peripheral and internal
lymph nodes, thymus, liver, spleen, small and large in-
testine, pancreas, kidney, and bone marrow. Blood and
tissues from an age-matched uninfected specific patho-
gen-free cat were used as negative controls. Tissues
were preserved in a variety of fixatives including 10%
neutral buffered formalin, absolute ethanol, and Histo-
choice-MB (Amresco, Solon, OH). Tissues were fixed
overnight and processed the following morning into par-
affin-embedded blocks by a short-run method that
avoided the use of formalin and that minimized immersion
time in liquid paraffin (Colorado State University Histology
Laboratory, Fort Collins, CO). Routine 5-�m paraffin sec-
tions were placed on silanized slides without heat treat-
ment and allowed to air dry at least 1 day before staining.

Polymerase Chain Reaction and TCID Assays

Purified blood mononuclear cells from FIV-infected cats
were assayed for FIV by nested DNA PCR as described
elsewhere9 except that first round primers were modified
to increase specificity. The updated first round primers
were gag 129 (5�-CGTAACTACAGGACGAGAACCTG-
3�) and gag 802 (5�-CCAACTTTCCCAATGCTTCAAG-3�;
Sigma-Genosys, The Woodlands, TX). Semiquantitative
plasma viral RNA loads were determined using a previ-
ously described method.30 TCID determination of virus in
plasma and blood mononuclear cells was assessed by
serial dilution and co-cultivation with primary naı̈ve feline
blood mononuclear cells as previously described.30

Chromogenic Immunohistochemistry

Tissue sections on silanized glass slides were deparaf-
finized with brief heat treatment and rehydrated through
xylene and graded alcohols to water, and then washed in
TENT solution (0.05 mol/L Tris, pH 7.4, 1 mmol/L ethyl-
enediaminetetraacetic acid (EDTA) sodium, 0.15 mol/L
NaCl, 0.05% Tween). Formalin-fixed sections were sub-
jected to 10 minutes of microwave antigen retrieval in
citrate Antigen Unmasking Solution (Vector Laboratories,
Burlingame, CA) followed by slow cooling at room tem-
perature for 20 minutes. Endogenous peroxidases were
quenched with 3% H2O2 in phosphate-buffered saline
(PBS, pH 7.4). Sections were blocked in 1% each naı̈ve
goat and cat serum in TNB blocking buffer (TSA System;
NEN, Boston, MA). A second block was performed with 1
�g/ml of unconjugated protein A (Sigma Chemical Co.,
St. Louis, MO) in TNB. While the tissue sections were
being blocked, equal parts high titer antibody-positive
plasma from one of two cats chronically infected with
FIV-A-Petaluma35,37 and 1 mg/ml of stock biotin-conju-
gated protein A (Sigma) were diluted 1:100 in TNB and
allowed to bind at room temperature in solution. After 20
minutes of protein A-biotin binding to antibody at the Fc
fragment, the solution was further diluted as determined
empirically for a given collection of plasma. Final dilutions
typically ranged from 1:1000 to 1:10,000. Tissue sections
were washed and then incubated with the protein A-bi-
otin-labeled antibody solution in a humidified chamber at
37°C for 2 hours. Slides were washed and biotin was
labeled with Extravidin-peroxidase (Sigma) followed by
tyramide amplification using the TSA Biotin System
(NEN). Positive signal was detected with 3,3�-diamino-
benzidine tetrahydrochloride, Vector VIP, or Nova Red
chromogens (Vector Laboratories) and counterstained
with Gill’s hematoxylin, methyl green (Vector), or 0.5%
Evan’s blue dye (Sigma). Sections were dehydrated
through graded alcohols to xylene, mounted with Cy-
toseal XYL (Stephens Scientific, Kalamazoo, MI), and
routinely coverslipped. Equivalent specimens from a
sham-inoculated specific pathogen-free cat were in-
cluded in each run as negative controls.

Morphometric Analysis

Digital images of immunostained tissues were captured
using the 3-CCD 1140 � 1520 detail CoolSNAP camera
and software system (Roper Scientific GmbH,
Bergkirchen, Germany) and were analyzed with Meta-
morph software (Universal Imaging Corp., West Chester,
PA). Using a stage micrometer, field area through the
�20 objective was determined to be 0.13 mm2. Positively
stained cells were enumerated using thresholding (color
calibration) and cell counting functions. Average pixel
area per positive cell was determined by summing the
area of chromogen stain in 50 individual FIV� cells and
dividing the total by 50. Positive cell counts were deter-
mined by measuring the total pixel area of chromogen
within the field and dividing the total positive pixel area by
the average value per positively stained cell for that re-
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gion. Ten fields per tissue were counted. Field cell counts
were logged into an Excel spreadsheet (Microsoft Corp.,
Redmond, WA) from which mean values and standard
deviations were calculated. Because preliminary evalua-
tion demonstrated no significant differences between the
FIV-B-2542 and FIV-C-Pgmr source tissues, reported val-
ues are for the FIV-infected cats as a group. To estimate
the number of FIV� cells per gram of tissue, we made the
assumption that the examined field was representative of
the compartment as a whole. We then determined the
number of FIV� cells per cm2 tissue using the formula:

FivPosCells
0.13mm2 �

100mm2

cm2 �
FivPosCells

cm2 .

Assuming that 1 g of tissue � �1 cm3, we used the
following formula to estimate the number of FIV� cells per
g tissue:

�FivPosCells3

cm2 �
FivPosCells

g
.

RNA in Situ Hybridization

FIV RNA was demonstrated in formalin-fixed tissue sec-
tions using a previously described in situ hybridization
protocol.10

Fluorescence Immunohistochemistry

For fluorescence immunohistochemistry, we amplified
FIV signal with Cy3-conjugated tyramide (NEN). Cell phe-
notype antibodies were labeled with species-appropriate
fluorescein isothiocyanate-conjugated secondary anti-
bodies (Sigma). T cells were labeled with polyclonal rab-
bit anti-CD3 antibody (Sigma). Monocytes bearing lipo-
polysaccharide receptors were detected with anti-CD14
(DAKO, Carpinteria, CA) or Alexa 488-conjugated lipo-
polysaccharide (Molecular Probes, Eugene, OR). Four
antibodies were used to identify subsets of tissue mac-
rophages: AM-3K (a gift from M. Takeya, Osaka Prefec-
ture University, Sakai, Japan),38–40 FeMy, which recog-
nizes a feline myeloid cell antigen,41 Mac 387, which
labels a subset of macrophages and polymorphonuclear
cells (Serotec), and anti-CD 74 (Sigma), a histiocyte
marker. Dendritic cells were labeled with anti-follicular
dendritic cell monoclonal CNA.42 (DAKO), anti-fascin
(anti-p55, DAKO), or rabbit polyclonal anti-S-100 (Sero-
tec). Mesenchymal cells (including leukocytes) were dif-
ferentiated from epithelial cells by labeling for the inter-
mediate filaments vimentin and cytokeratin, respectively
(Serotec). Unless otherwise stated, all of the cell pheno-
type markers listed above are mouse anti-human mono-
clonal antibodies.

After fluorescent antibody labeling, cell nuclei were
stained with 1 �g/ml of 4�,6-diamidino-2-phenylindole di-
hydrochloride (DAPI, Sigma) for 1 minute. Sections were
allowed to partially air dry and were mounted with
Vectashield (Vector). Digital images were captured using
the CoolSnap system on an Olympus BX60 microscope

(Olympus America, Lake Success, NY). Serial images of
multistained fluorescent sections were overlaid using
Adobe Photoshop software (Adobe Systems, San Jose,
CA) on a Power Macintosh G4 computer (Apple Com-
puter, Cupertino, CA).

Results

FIV Acute Infection Kinetics

All cats inoculated with FIV were positive by DNA poly-
merase chain reaction on isolated blood mononuclear
cells collected 3 weeks after inoculation at the time of
necropsy (not shown). Plasma viral RNA loads ranged
from 105 to 106 copies/ml in cats inoculated with FIV-B-
2542, and 106 to 108 copies/ml in cats inoculated with
FIV-C-Pgmr (Figure 1). Pooled plasma-inoculated super-
natant TCID means were 5.1 � 103 TCID/ml for the FIV-
B-2542 group and 2.5 � 104 TCID/ml for the FIV-C-Pgmr
cohort (Figure 1). Blood mononuclear cells and plasma
from the sham-inoculated cat were negative for FIV by
polymerase chain reaction and co-culture.

Chromogenic Immunohistochemistry

FIV antigens were detected in tissues of all acutely in-
fected cats (Figure 2a). No labeling occurred in FIV�

tissues when antiserum from FIV-naı̈ve cats was used as
the primary antibody source, nor was there labeling of
tissues from the sham-inoculated cat regardless of anti-
serum source (Figure 2b). For detecting FIV proteins,
ethanol- and Histochoice-fixed tissues proved superior to
antigen-retrieved formalin-fixed specimens (not shown).
No FIV detection was observed in formalin-fixed tissues
without microwave antigen retrieval.

In lymph nodes, most FIV� cells were found in germi-
nal centers and in paracortical regions (Figure 2a). In
germinal centers, FIV was detected in or on the surface of
large stellate cells with arborizing extensions, suggestive
of antigen trapping along a follicular dendritic cell net-
work. Within the thymus, FIV� immature thymocytes in the
peripheral cortex outnumbered infected mature thymo-
cytes in the medulla, and antigen detection was espe-

Figure 1. Mean FIV blood mononuclear cell supernatant tissue culture in-
fectious doses (TCID/ml) and plasma viral RNA loads (copies/ml) 3 weeks
after inoculation in cats infected with FIV-B-2542 or FIV-C-Pgmr.
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cially prominent at the corticomedullary junction (Figure
2d). Most FIV expression in the thymic medulla was near
or within Hassal’s corpuscles. Within the spleen, most
FIV� cells were located in hyperplastic periarteriolar lym-
phatic sheaths (Figure 2e). Periarteriolar lymphatic
sheath hyperplasia, with occasional follicle formation,
was common in FIV-infected cat tissues but not in naı̈ve
controls. Few FIV antigen� cells were identified in red
pulp. There were abundant FIV� mononuclear cells in the
lamina propria of all intestinal sections examined (Figure
2f). Indeed, intestinal sections proved to be one of the
most consistent tissue sources for detecting FIV. Muco-
sal-associated lymphoid tissue in the ileum (Peyer’s
patches) demonstrated reactive and hyperplastic
changes in FIV-infected cats, with abundant germinal
center FIV antigens.

Liver contained scattered intra- or perisinusoidal FIV�

cells morphologically consistent with Kupffer cells or cir-
culating mononuclear cells (Figure 2g). FIV antigens
were not demonstrated in resident cells of nonlymphoid
organs such as pancreas and kidney. However, non-cell-
associated staining of endothelial surfaces of small ves-

sels, but not large vessels, was observed in nonlymphoid
as well as lymphoid organs (Figure 2h). Although many
FIV isolates, including FIV-B-2542, have a known tropism
for the central nervous system,9,22,42 we identified no FIV
antigens in the brains of these animals at our collection
point 3 weeks after inoculation (Figure 2i).

Morphometric Analysis

As expected, lymphoid and hematopoietic organs exhib-
ited high concentrations of FIV, with calculated values �1
million antigen� cells per gram of tissue in lymph node,
thymus, and bone marrow (Table 1). Intestinal sections
contained a high concentration of FIV� leukocytes in the
lamina propria and submucosa. Indeed, when only those
layers were considered, FIV� cell concentrations were
equivalent to those in lymphoid compartments (Table 1).
Spleen had a lower overall tissue virus burden, because
most antigen� cells were concentrated in periarteriolar
lymphatic sheath. Only a few perisinusoidal mononuclear
cells contained FIV antigen in liver, and no cell-associ-

Figure 2. FIV chromogenic immunohistochemistry. a: FIV antigen� cells in lymph node germinal center (large arrow) and paracortical cells (small arrow). b:
No FIV antigens in sham-inoculated control cat lymph node. c: Scattered labeled cells (arrows) by RNA in situ hybridization in lymph node from FIV� cat. FIV
immunohistochemistry on tissues from FIV� cat including: thymic lobule with clustering of antigen� cells along junction between cortex (C) and medulla (M),
with additional antigen localization in or near Hassal’s corpuscle (HC) (d, arrow); viral antigen expression in splenic periarteriolar lymphatic sheaths (e);
abundant FIV antigen in ileal lamina propria leukocytes and mucosal-associated lymphoid tissue (Peyer’s patch) germinal centers (f); one antigen� mononuclear
cell (arrow) in lumen or lining hepatic sinusoid (g); apparently cell-free virus lining endothelial surface of small venule in kidney (arrow), but not in renal tubules
or larger artery (at left; h); and brain with no detectable viral antigens (i). Original magnifications: �200 (a, c, and e), �100 (b and d), �240 (f), �600 (g), �400
(h), and �40 (i).
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ated virus was detected in brain, kidney, or pancreas,
although cell-free virus (not quantitated) lined the endo-
thelial surface of small vessels in some sections of the
latter two tissue types.

RNA in Situ Hybridization

We detected FIV� cells by RNA in situ hybridization in
many of the same tissues positive by immunohistochem-
istry (Figure 2c). Tissues from the sham-inoculated cat
were negative. However, qualitative comparison of RNA
in situ hybridization versus immunohistochemistry revealed
that in our hands immunohistochemistry was superior for
retention of tissue architecture and was equivalent or su-
perior in sensitivity with the same high specificity.

Fluorescence Immunohistochemistry

For three-color fluorescence immunohistochemistry we
labeled FIV red with Cy3, cell phenotype markers green
with fluorescein, and nuclei blue with DAPI (Figure 3a).
Most phenotypically identified cells containing detect-
able FIV antigens were CD3� T cells (Figure 3b). In most
lymphoid tissues, �10 to 15% of FIV� were macro-
phages detected with monoclonal antibody AM-3K (Fig-
ure 3c). AM-3K labeled many more tissue macrophages
than did the other histiocyte markers we used including
Mac 387, FeMy, and CD74. Monocyte/macrophages
bearing lipopolysaccharide receptors, as determined by
labeling with anti-CD14 antibody or Alexa 488-conju-
gated lipopolysaccharide, very rarely contained detect-
able FIV antigens. Five to 10% of FIV� cells in lymphoid
organs were S-100� (Figure 3d). These were probably
dendritic cells, although S-100 antigen is also found in
cells of the nervous system and in melanocytes.43 Thymic
medullary dendritic cells labeled with antibody CNA.42
(DAKO). CNA.42 is an antibody derived from a human
follicular dendritic cell antigen. Feline thymic CNA.42�

dendritic cells rarely contained detectable FIV antigens.
Moreover, in feline lymph nodes CNA.42 recognized
parafollicular interdigitating dendritic cells but not germi-
nal center follicular dendritic cells. In all tissues FIV anti-
gens were rarely if ever detected in or on CNA.42� cells
(Figure 2h). Likewise, FIV rarely co-localized with the
interdigitating follicular cell marker fascin (p55; DAKO) in

lymph nodes. FIV antigens were detected in large
MHCIIhi antigen-presenting cells in lymph node germinal
centers, which likely included follicular dendritic cells and
macrophages.

Some cytokeratin� cells in the deep thymic medulla
co-localized with FIV antigens (Figure 3e). In all other
tissues only vimentin� cells and not cytokeratin� cells
contained FIV antigens. In the thymus, many phenotypi-
cally unidentified FIV� cells in the cortex were morpho-
logically consistent with immature thymocytes (Figure 3f).
CD45R/B220� B cell infiltrates occasionally formed
pseudofollicles in the thymuses of FIV-infected cats (Fig-
ure 3g), but were absent from the sham-inoculated cat. B
cells in all tissues contained no detectable FIV antigens.
In sections of intestine we identified FIV� CD3� T cells
and S-100� dendritic cells, but many FIV� leukocytes
were not labeled by any of our phenotypic markers. Bone
marrow was a rich source of phenotypically unidentified
FIV antigen� cells. These were likely immature leukocyte
progenitors.

Discussion

In this report we describe a modified immunohistochem-
ical protocol for the localization of FIV in feline tissues. We
developed the protocol using native species antibodies
only after exhausting more traditional approaches. Al-
though murine monoclonal antibodies can detect by im-
munocytochemistry FIV in stimulated cells from primary
culture with very high viral antigen levels,12 we found no
murine monoclonal antibody or combination of such an-
tibodies sufficiently sensitive to detect FIV in tissue sec-
tions (not shown). In hopes of increasing sensitivity, we
generated rabbit anti-FIV polyclonal antisera, but ulti-
mately were forced to abandon this source as well be-
cause of high background staining (not shown), possibly
in part because of the use of complete and incomplete
Freund’s adjuvant. For the native species antibody assay
described in this report, we labeled feline antibodies with
biotinylated protein A, a staphylococcal product that
binds at the Fc fragment, to leave the antigen recognition
site free for epitope binding. Tissues were blocked with
unlabeled protein A before application of the labeled
antibodies. Streptococcal protein G also binds Fc frag-
ments, but has a species affinity different from protein A,
and does not bind feline antibodies.

Our immunohistochemistry protocol held two advan-
tages over RNA in situ hybridization. First, for RNA in situ
hybridization protease digestion had to be optimized for
each tissue, a cumbersome enterprise, and there was
always reduction in morphological detail. Second, by
using undigested nonformalin-fixed tissues in immuno-
histochemistry, a much broader array of cell phenotype
markers was available for co-localization studies. In our
hands RNA in situ hybridization was no more sensitive
than immunohistochemistry, although had we used a ra-
diolabeled probe we might have increased hybridization
sensitivity.1

Our modified immunostaining protocol permitted us to
broadly survey the tissue distribution and cell types tar-

Table 1. Concentration of Viral Antigen� Cells in Tissues
from Cats Acutely Infected with FIV

Tissue FIV� cells/�20 field* FIV� cells/g tissue

Brain 0 0
Thymus 15.3 1,278,713
Lymph node 18.5 1,700,175
Liver 0.6 9,930
Spleen 8.0 483,472
Intestine† 12.1 899,320
Kidney 0 0
Bone marrow 14.3 1,155,421

*Mean for all FIV� cats; non-cell-associated virus excluded; �20
objective field � 0.13 mm2.

†Mucosa and submucosa only; all FIV� cells were morphologically
consistent with leukocytes.
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geted by FIV. The drawbacks of using native host spe-
cies antisera as polyclonal antibody source include: 1)
the need for empirical titration of every plasma collection
because of titer variation between individuals and within
the same individual over time, 2) the presence of poten-
tially confounding nonspecific antibodies, and 3) diffi-
culty in assay standardization between users and labo-
ratories. However, we found that with optimization and
vigorous attention to blocking and controls, our assay

was repeatable, sensitive, and specific within our specific
pathogen-free experimental setting. Apart from the serum
titer of the primary antibody source, the greatest deter-
minant of success in our histological studies was choice
of tissue fixatives. Although we could detect some FIV
antigens in formalin-fixed tissues subjected to microwave
antigen retrieval, we found that sensitivity in such speci-
mens was markedly lower than that seen in the same
tissues fixed with the precipitating agent ethanol or pro-

Figure 3. Fluorescence immunohistochemistry. a: Diagram of three-color immunofluorescence assay demonstrating prelabeling of heterologous antiserum with
biotin-protein A followed by tissue binding and Cy3-tyramide amplification for red labeling of FIV, fluorescein isothiocyanate-conjugated secondary antibodies
for green labeling of cell phenotype antibodies, and DAPI counterstaining for blue labeling of nuclear chromatin. b: FIV antigens co-localized with CD3� T cells
in lymph node paracortex. c: An FIV� AM-3K-labeled macrophage (yellow arrow) and a macrophage without FIV antigens (green arrow) in lymph node
medulla. d: S-100� dendritic cells with (yellow arrow) and without (green arrow) FIV antigens in lymph node follicle; also present is a FIV� S-100� cell (red
arrow). e: A few cytokeratin� thymic epithelial cells (yellow arrows) as well as cytokeratin� FIV� cells (red arrow) that are probably mature thymocytes in
medulla. f: FIV antigens in both CD3� (yellow arrow) and CD3� (red arrow) cortical thymocytes. g: CD45R/B220� B cell infiltrates, occasionally forming
pseudofollicles (outlined) in thymus of FIV-infected cat. Original magnifications: �1000 (b and d), �600 (c and f), �400 (f), �200 (e), and �100 (g).
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prietary non-cross-linking preservative Histochoice.
Thus, our study agrees with others that non-cross-linking
fixatives may suitably conserve antigenic integrity for im-
munohistochemistry while preserving a degree of tissue
morphological integrity superior to that usually seen in
frozen sections.44

As expected, lymphoid organs including lymph
node, thymus, and spleen were important sites of FIV
propagation. Bone marrow also exhibited a high in situ
viral burden by 3 weeks after infection. Somewhat sur-
prising to us was the marked tropism of virus for intestinal
leukocytes and gut-associated lymphoid tissue, although
intestinal localization of virus is well known in macaques
infected with SIV and SIV/HIV.45,46 Because the cats
were inoculated intravenously, intestinal leukocytes pre-
sumably acquired virus in the circulation or within a lym-
phoid compartment before trafficking to enteric mucosa.
Local cell-to-cell transmission may have occurred once
virus reached the intestinal compartment. In both lym-
phoid and nonlymphoid tissues except brain, we de-
tected apparently cell-free virus lining the endothelial
surface of small vessels but not large vessels. We did not
determine whether selective detection of cell-free virus in
small vessels represented a biological or methodological
phenomenon.

In SIV-infected macaques, viral RNA has been de-
tected by in situ hybridization in CD14� perivascular
macrophages in the brain at 2 weeks after inoculation.47

We did not detect FIV antigens in any brain sections
collected 3 weeks after inoculation from these cats. More-
over, FIV antigen� CD14� monocytes/macrophages
were rare in any tissue by our methods. Future studies
may help determine whether there is an actual difference
in central nervous system viral expression at different
time points during acute infection, whether there is a
pathogenetic difference between the FIV isolates we
studied and neurotropic SIV, or whether the discrepancy
was the result of methodological differences. Apart from
reactive lymphoid hyperplasia in multiple tissues, the only
morphological lesion we observed in the FIV-infected
cats was infiltration of the thymus with B lymphocytes,
which sometimes formed pseudofollicles. Other investi-
gators have observed thymic B cell infiltrates in animals
infected with FIV24,48 and SIV.49 No B cells in our study
contained detectable FIV.

The virulent FIV isolates we used in this study resulted
in a large number of FIV� cells per gram of lymphoid
tissue as determined by morphometric analysis. These
values are in agreement with equivalent studies demon-
strating high lymphoid tissue viral RNA burdens in people
during acute-phase HIV-1 infection.4 As in previous stud-
ies from our laboratory, FIV-B-2542 and FIV-C-Pgmr
reached high plasma viral RNA and blood mononuclear
cell proviral titers.10,31,50,51 Plasma and mononuclear
cells from infected cats readily infected naı̈ve feline blood
mononuclear cells in culture and resulted in high TCIDs in
the supernatants. Thus, in vitro data corroborated our
finding of widespread and productive infection in vivo.

FIV-B-2542 and FIV-C-Pgmr infected the same range
of cells known to be targeted by HIV-1 and SIV, including
but not limited to T lymphocytes, macrophages, and den-

dritic cells.52,53 In this group of cats in the acute-phase of
infection, �70 to 85% of phenotypically identified cells
with detectable FIV antigen were T cells. The remaining
FIV antigen� phenotypically identified cells were macro-
phages, follicular dendritic cells, and occasional thymic
epithelial cells. We were unable to identify the phenotype
of many FIV� cells, particularly in the intestine, thymic
cortex, and bone marrow. Unidentified FIV� leukocytes in
intestine may have included CD3� intraepithelial lympho-
cytes, natural killer cells, and/or macrophage subsets not
recognized by our histiocytic markers. In the thymic cor-
tex and bone marrow, the unidentified FIV� cells proba-
bly included CD3� cortical thymocytes and leukocyte
progenitors, respectively.

Our finding of acute-phase T lymphocyte tropism is in
agreement with other studies that demonstrate that lenti-
viral expansion occurs in T cells from the earliest phases
of infection onward.54 Previous studies with FIV-C-Pgmr
demonstrated early thymic tropism after transmucosal
inoculation.10 Transmucosal infection by HIV-1 and SIV
may involve T cells directly at the site of exposure.45,55,56

As early as day 2 days after vaginal inoculation, simian/
human immunodeficiency virus (SHIV)� cells are de-
tected in cortical parafollicular cells of lymph nodes in
pig-tailed macaques.57 Macaques vaginally inoculated
with SIVmac251 demonstrate infection of intraepithelial
dendritic cells (Langerhans cells) within 1 hour, but within
24 hours the majority of cells infected are T cells, both at
the site of inoculation and in regional lymph nodes.58

Thus, regardless of the cell types first targeted by lenti-
viruses, it seems clear that CD4� T cells rapidly consti-
tute the majority of cells productively infected after initial
exposure.59

In summary, we describe a modified immunohisto-
chemical assay for detecting and quantitating FIV in vivo.
Most phenotypically identified FIV antigen� cells were T
cells, but viral proteins also co-localized with macro-
phages, dendritic cells, and occasional thymic epithelial
cells. Further work is needed to classify the full range of
cells infected by FIV in vivo. Our studies reinforce the
value of collecting tissues in multiple fixatives, and cor-
roborate the work of others demonstrating that non-cross-
linking fixatives may provide an attractive alternative to
frozen sections for many in situ immunoassays.44 Contin-
ued refinement of methods for detecting FIV in tissues will
enhance our understanding of lentiviral pathogenesis,
which may point to new targets for the prevention and
intervention of HIV and acquired immune deficiency syn-
drome.
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