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Germline mutations in the tumor suppressor gene APC
are the underlying cause of familial adenomatous
polyposis, an autosomal-dominant cancer predisposi-
tion syndrome of the colorectum. Here, we describe a
complex pathogenic rearrangement in the APC gene
that was detected during deletion screening and trans-
mitted throughout at least three generations. The rear-
rangement consists of a deletion of 604 bp in intron 4
that impairs the binding site of the reverse primer for
exon 4 and of an insertion of 119 bp in exon 4 that
interferes with the binding site of the multiplex ligation-
dependent probe amplification (MLPA) probes for exon
4. The insertion is composed of three duplicated se-
quences derived from exon 4, intron 3, and intron 4, all
in inverse direction. By transcript analysis, we found
that the mutation results in complete skipping of exon
4 and that it leads to a frameshift. The rearrangement
would not have been identified had it occurred outside
the MLPA hybridization site. Our findings demonstrate
that part of the pathogenic mutations remain undetec-
ted by routine methods. Moreover, MLPA and RNA
analysis alone would have led to an incorrect interpre-
tation of a genomic deletion of exon 4. (J Mol Diagn
2007, 9:122–126; DOI: 10.2353/jmoldx.2007.060096)

Germline mutations in the tumor suppressor gene APC
are known to cause familial adenomatous polyposis
(FAP) (MIM *175100, http://www.ncbi.nlm.nih.gov), an
early onset autosomal-dominant cancer predisposition
syndrome typically characterized by the presence of

more than 100 adenomatous polyps in the entire colorec-
tum.1,2 In the attenuated phenotype (AFAP), the number
of colorectal adenomas is often less than 100, and diag-
nosis of both polyposis and colorectal cancer is at a later
age than in typical FAP.3

Traditional diagnostic methods can identify APC mu-
tations in 50 to 90% of patients with typical FAP and in
20 to 30% of patients with AFAP, depending on the
patients examined and the methods used (Solomon C,
Burt RW: APC-Associated Polyposis Conditions. Gene-
Reviews: http://www.geneclinics.org., accessed Octo-
ber 21, 2005).4 –7 Recently, large genomic deletions
encompassing one to several exons or even the entire
APC gene have been identified by use of multiplex
ligation-dependent probe amplification (MLPA) in �7
to 12% of all patients with typical FAP.8 –10 Biallelic
mutations in the base excision repair gene MUTYH
have been identified in a subset of patients with an
attenuated or atypical course of the disease.11–13 Evi-
dence for the existence of unidentified APC mutations
came from other methods including mRNA inactivation
studies7,14 and monoallelic mutation analysis.15,16

Complex genomic rearrangements encompassing the
APC gene have been rarely described. Here, we report
on a novel complex intragenic mutation involving intron
3, exon 4, and intron 4 of the APC gene that was
detected in a FAP family by use of MLPA.
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Materials and Methods

Patients

The female index patient was diagnosed with familial
adenomatous polyposis (FAP) at the age of 44 years
because of rectal bleeding and abdominal pain. Multiple
tubular and tubulo-villous adenomas showing low-grade
dysplasia were present in the entire colorectum. Fundic
gland polyps were seen in the stomach; no duodenal
polyps were found. No congenital hypertrophy of the
retinal pigment epithelium could be detected. A colonos-
copy on her 69-year-old mother revealed an adenocar-
cinoma at the right colon flexure and, in addition, multiple
tubulo-villous adenomas with low-grade dysplasia. In the
18-year-old daughter of the index patient, �30 small
tubular adenomas without dysplasia were apparent
throughout the entire colorectum.

Mutation Analysis

Routine screening for APC mutations was performed on
genomic DNA by use of the protein truncation test for
mutations in exon 15, denaturing high-performance liquid
chromatography for mutations in exons 1 to 14 and the
first 500 bp of exon 15, and MLPA for the presence of
large genomic deletions (SALSA P043 APC exon deletion
test kit; MRC Holland, Amsterdam, The Netherlands), as
described.8,17

Long-Range Polymerase Chain Reaction (PCR)
on Genomic DNA

Long-range PCR was used to characterize the presumed
deletion uncovered by MLPA. With the Expand High Fi-
delity PCR system (Roche Diagnostics, Mannheim, Ger-
many), different primers located 5� and 3� to exon 4 were
applied (Table 1). PCR was performed according to the
manufacturer’s recommendations. PCR products were
separated on a 1% agarose gel and visualized by
ethidium bromide staining on a UV imaging system (Bio-
Rad Laboratories, Münich, Germany). To determine the
breakpoints of the rearrangement, long-range PCR prod-
ucts containing the assumed deletion were excised from

the gel, purified by QIAquick PCR purification kit (Qiagen,
Hilden, Germany), and sequenced on an ABI Prism 3100
automated sequencer (Applied Biosystems, Darmstadt,
Germany) using the cycle-sequencing procedure and the
BigDye terminator kit version 1.1 (Applied Biosystems).

APC Transcript Analysis

Fresh venous blood samples (2.5 ml) were collected into
PAXgene blood RNA tubes (PreAnalytiX; Qiagen) con-
taining RNA stabilizing solution. Total RNA was extracted
by use of the PAXgene blood RNA kit (Qiagen) according
to the manufacturer’s protocol. First strand cDNA was
synthesized from 2 to 3 �g of total RNA by random
hexamer-primed reverse transcription with the Super-
script first strand system for reverse transcriptase (RT)-
PCR (Invitrogen GmbH, Karlsruhe, Germany) according
to the manufacturer’s protocol. RT-PCR fragments were
obtained according to a standard PCR protocol by use of
a forward primer localized in exon 3 and a reverse primer
in exon 5. RT-PCR products were separated on a 1%
agarose gel and visualized with ethidium bromide. Indi-
vidual bands were excised from the gel and eluted by
use of the High Pure PCR product purification kit (Roche
Diagnostics). Eluted products were reamplified with the
same pair of primers and sequenced as described
above.

Results

No point mutation in the APC gene was identified by
protein truncation test or denaturing high-performance
liquid chromatography screening in the patient. However,
search for large deletions by MLPA indicated a heterozy-
gous deletion of exon 4. This deletion appeared not to be
an artifact because of a variant in the binding site of
MLPA probes for exon 4 because no mutation was de-
tected by sequencing of the PCR product obtained with
primers used in routine mutation analysis of exon 4
(primer no. 1595F and 1596R; Table 1).

A hint for a small deletion was obtained by long-range
PCR using primers localized in intron 2 (834F) and intron
5 (921R). The region involved was narrowed down by

Table 1. Primer Sequences Used for Characterization of the Rearrangement on mRNA or DNA Level

Primer no. Exon/intron Primer sequences
Location of primers

GenBank AC008575.7

834 Intron 2F 5�-TGGTTAAAATGTAAACCTAATATTTC-3� 56460_56485
2119 Exon 3F 5�-GGAAGCAGAGAAAGTACTGG-3� 56723_56742
2121 Intron 3F 5�-CACTGTGAGTCAGTAGTATGC-3� 60475_60495
2122 Intron 3F 5�-CACCTTGGACCTGGTAGGTC-3� 62276_62295
1595 Intron 3F 5�-ACAACTGATGTAAGTATTGCTC-3� 64928_64949
2173 Exon 4F 5�-AGGTCATTGCTTCTTGCTGATC-3� 65006_65027
1040 Exon 4F 5�-ACGCTCAACTTCAGAATCTCAC-3� 65061_65082
2164 Intron 4R 5�-CCTAGGTACTTTAAAATATCAAG-3� 65180_65158
1596 Intron 4R 5�-TGAATTTTAATGGATTACCTAGGT-3� 65197_65174
2123 Intron 4R 5�-GTTACCATTGCTAGCAACATCC-3� 66366_66345
2120 Exon 5R 5�-GCAACTCTGATTTGCCTTGC-3� 70233_70214
921 Intron 5R 5�-TGTAATTCATTTTATTCCTAATAGCTC-3� 70344_70318
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long-range PCR with different primers localized in intron 3
and intron 4 or in exon 4, respectively. With primers in
exon 4 (1040F) and intron 4 (2123R), an aberrant product
of �700 bp was obtained in addition to the normal prod-
uct of 1305 bp in the patient but not in controls (not
shown). To our surprise, sequencing of the 700-bp frag-
ment revealed a deletion of 604 bp localized exclusively
in intron 4 (deleted nucleotides g.65185_65788, Gen-
Bank AC008575.7) (not shown). This 604-bp deletion is
not a common polymorphism because it was not present
in 100 normal unrelated controls. The extent of the dele-
tion was in line with the pattern obtained on agarose gels
but could not explain the heterozygous deletion of exon 4
detected by MLPA.

We found that the 5� breakpoint of the deletion dis-
rupted the sequence of the reverse primer (1596R) of
exon 4. Sequencing of a PCR product obtained with
primers 1595F and a newly designed reverse primer
located more 5� (2164R) that was not impaired by the
deletion, revealed an insertion of 119 bp (insertion site
g.65044_65045; designed as c.459_460ins119). This in-
sertion occurred within the hybridization sequence of
MLPA probes for exon 4 (Figure 1). The inserted nucle-
otides 13 to 119 were composed of three different frag-
ments of the APC gene with small overlapping sequences
at the ends of each fragment (http://www.ncbi.nlm.nih.
gov/BLAST/). Nucleotides 13 to 33 of the inserted 119-bp
sequence originated from exon 4 (nucleotides
g.65051_65031), nucleotides 21 to 80 from intron 3 (nu-
cleotides g.63194_63135), and nucleotides 76 to 119
derived from intron 4 (nucleotides g. 67389_67346) (Fig-
ures 1 and 2). All fragments were inserted in an inverse
direction. No homology was found for the first 12 bp of the
119-bp insertion. Nucleotides 4 to 6 formed a premature

in-frame termination codon (TAA). A detailed description
of the rearrangement is shown in the supplementary
online material (Supplemental Figure S1 at http://jmd.
amjpathol.org/). The insertion in exon 4 was not ex-
pressed in mRNA. Instead, a deletion of exon 4 was
detected (not shown). Deletion of exon 4 of the APC gene
is predicted to result in a frameshift.

Both the deletion and the insertion were localized
within the same allele, as shown by sequencing of the
complete aberrant band obtained with primers at the 5�
end of exon 4 (2173F) and in intron 4 (2123R). The region
in intron 3 and intron 4 where the inserted sequences
originated were not deleted in the patient’s DNA. The
rearrangement segregated in a stable form throughout
three generations because it was identified in all three
affected family members.

Discussion

In a three-generation FAP family, we characterized a
complex genomic rearrangement of the APC gene, com-
posed of a 119-bp insertion in exon 4 and a 604-bp
deletion in intron 4, that was uncovered by coincidence
because the insertion had occurred close to the liga-
tion site of MLPA probes for exon 4. By transcript
analysis, we could demonstrate that the mutation re-
sults in skipping of exon 4. The attenuated course of
the polyposis disease in the family and the absence of
congenital hypertrophy of the retinal pigment epithe-
lium are in accordance with the known genotype-phe-
notype correlation.18 –21

Different mechanisms have been proposed to contrib-
ute to the origin of gross genomic alterations including
unequal crossing over by retrotransposon-mediated ho-
mologous recombination and replication slippage.22,23

Alu-driven recombination seems to be a frequent cause
of large deletions in APC and other (tumor suppressor)
genes.24–27 Complex rearrangements other than indels
are difficult to explain in terms of their underlying muta-
tional mechanisms, most of the assumed causes are
highly hypothetical.28 Complex alterations encompass-
ing exon 14 of APC, also resulting in inappropriate splic-
ing, have been described by Su and colleagues25 and
were supposed to be Alu mediated. This mechanism is
unlikely in our case because all six intronic breakpoints
are localized outside repetitive sequences. The compo-
sition of three duplicated and inverted insertions (and one

Figure 1. Partial sequencing pattern of exon 4 and the inserted fragments. a:
Normal sequence of APC exon 4. The sequence at the ligation site of MLPA
probes for exon 4 (according to MRC Holland) is marked by a horizontal bar.
b: Partial sequence of the mutant allele showing the breakpoint in exon 4
(arrow) and the sequence of the 5� and 3� end of the 119-bp insertion. c:
Complete sequence of the 119-bp insertion in exon 4. The origin of the first
12 bp is unknown. The corresponding genomic origin of the other fragments
is marked by horizontal arrows. The framed regions indicate the overlap-
ping sequences at the ends of each fragment [one mismatched nucleotide (A)
is shown in bold].

Figure 2. Diagram of the APC rearrangement in the family. The insertion of
119 bp is composed of a sequence of 12 bp of unknown origin (black box)
and of three fragments derived from the APC gene, each in inverse direction:
21 bp originated from exon 4, 60 bp from intron 3, and 44 bp from intron 4
(with overlaps of 13 and 5 bp, respectively).

124 Pagenstecher et al
JMD February 2007, Vol. 9, No. 1



deletion) involving four different intragenic sites (genomic
distance between the two inserted fragments: 4152 bp)
makes also simple (serial) replication slippage implau-
sible. Nevertheless, the presence of short homologous
sequence repeats at the ends of the inserted frag-
ments (13 bp containing one mismatch, 5 bp, and 3 bp,
respectively; Supplemental Figure S1 at http://jmd.
amjpathol.org/) is striking. The length of the repeats is
probably insufficient to mediate unequal crossing over by
homologous recombination.28 In contrast, they may have
facilitated the formation of more complex secondary
genomic structures such as loops within the mutated
allele, that serve as templates for the sequences between
the shared short sequences, possibly in a multistep pro-
cess. Chen and colleagues23,28 provide the explanation
of untemplated DNA incorporation as an attempt to repair
broken DNA strands. It comprises the capture of DNA
oligonucleotides, which could be promoted by short se-
quence complementarity.

Our findings highlight the difficulties in the identifica-
tion and correct interpretation of some specific mutation
types or sites. As in our patient, a variant in the primer
sequence may prohibit the amplification of one allele and
mask a mutation in the respective exon. The alteration
described here would not have been noticed at all had
the insertion occurred outside the hybridization sequence of
MLPA probes. Moreover, combined results of MLPA and
RT-PCR would have led to the wrong result of a true deletion
of exon 4 instead of an insertion. On the other hand, dele-
tions localized completely within introns are also shown to
be pathogenic by affecting splice sites.25

Gross deletions are a common cause of typical
FAP.8–10,25,29 The identification of the mutations de-
scribed here and by others25 suggests that complex
rearrangements might be more frequent than suspected,
but fail to be detected by routine diagnostic procedures.
Additional methods for mutation detection should be
applied in FAP families without identified mutation in APC
or MUTYH.
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