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The classification of small cell lung cancer (SCLC) and
non-small cell lung cancer (NSCLC) can pose diagnos-
tic problems due to inter-observer variability and
other limitations of histopathology. There is an inter-
est in developing classificatory models of lung neo-
plasms based on the analysis of multivariate molecu-
lar data with statistical methods and/or neural
networks. DNA methylation levels at 20 loci were
measured in 41 SCLC and 46 NSCLC cell lines with the
quantitative real-time PCR method MethyLight. The
data were analyzed with artificial neural networks
(ANN) and linear discriminant analysis (LDA) to clas-
sify the cell lines into SCLC or into NSCLC. Models
used either data from all 20 loci, or from five signif-
icant DNA methylation loci that were selected by a
step-wise back-propagation procedure (PTGS2 ,
CALCA , MTHFR , ESR1 , and CDKN2A). The data were
sorted randomly by cell line into 10 different data
sets, each with training and testing subsets composed
of 71 and 16 of the cases, respectively. Ten ANN mod-
els were trained using the 10 data sets: five using 20
variables, and five using the five variables selected by
step-wise back-propagation. The ANN models with 20
input variables correctly classified 100% of the cell
lines, while the models with only five variables cor-
rectly classified 87 to 100% of cases. For comparison,
10 different LDA models were trained and tested using
the same data sets with either the original data or with
logarithmically transformed data. Again, half of the
models used all 20 variables while the others used
only the five significant variables. LDA models pro-
vided correct classifications in 62.5% to 87.5% of
cases. The classifications provided by all of the differ-
ent models were compared with kappa statistics,
yielding kappa values ranging from 0.25 to 1.0. We

conclude that ANN models based on DNA methylation
profiles can objectively classify SCLC and NSCLC cells
lines with substantial to perfect concordance, while
LDA models based on DNA methylation profiles provide
poor to substantial concordance. Our work supports
the promise of ANN analysis of DNA methylation data as
a powerful approach for the development of automated
methods for lung cancer classification. (J Mol Diagn
2004, 6:28–36)

There is an increasing interest in the use of molecular
data from human neoplasms for diagnostic and prognos-
tic purposes.1 A prodigious amount of data regarding the
molecular composition of a variety of neoplasms is being
collected from tissue samples. To our knowledge, it is not
yet clear how to analyze and interpret molecular data to
yield diagnostic and prognostic information that will com-
plement or replace the experience acquired over many
years from the study of neoplasms with microscopy and
other morphology-based methods. This problem is not
entirely new to pathologists, as similar questions were
faced in the past after the development of computerized
image analysis systems that could process a large num-
ber of spatial and photometric features from neoplastic
cells.2–4 Various algorithms have been developed to ac-
curately classify tumors based on morphometric and cy-
tometric features.2,3,5–10 Although most of these methods
are not used in current pathology practice, as they are
time consuming and difficult to standardize, they have
led to the development of analytical instruments that are
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currently approved by the Food and Drug Administration
for the routine screening of gynecologic smears.11–13

The World Health Organization and the International
Association for the Study of Lung Cancer (World Health
Organization/IASLC) recognize a large variety of malig-
nant epithelial neoplasms of the lung.14 The histopatho-
logical classification of some of these tumors is subject to
considerable inter-observer variability. Indeed, inter-ob-
server variability can be as high as 50% among expert
pathologists classifying poorly differentiated lung neo-
plasms.15 Malignant lung neoplasms are currently clus-
tered in practice into two groups with distinct clinico-
pathological features: small cell carcinoma (SCLC) and
non-small cell carcinoma (NSCLC). The classification of
lung neoplasms into these two major groups is reproduc-
ible in approximately 90% of cases but the distinction
between SCLC and NSCLC can be difficult when limited
diagnostic material is available (eg, from a fine needle
aspirate).16 Diagnostic problems include the differential
diagnosis between SCLC and the small cell variant of
squamous cell carcinoma, atypical carcinoid tumors, and
large cell neuroendocrine carcinoma.17,18 Because of
these problems, molecular markers specific for the vari-
ous types of lung cancer would be very valuable. Molec-
ular markers based on DNA have the advantage of al-
lowing signal amplification by polymerase chain reaction
(PCR), so that only limited material is required.19 A very
promising alteration of DNA that is commonly found in
cancer is DNA methylation.20–22

DNA methylation is an epigenetic modification of DNA
occurring in most living organisms.23–25 In mammals, it
consists of the addition of a methyl group to the carbon-5
position of cytosine and occurs primarily in palindromic
CpG dinucleotides. DNA methylation is essential for
mammalian development and plays a significant role in
genomic imprinting, modulation of chromatin structure,
and X-chromosome inactivation. CpG dinucleotides are
frequently found in clusters called CpG islands in the
promoter regions of genes, and these CpG islands are
usually not methylated in normal cells. The unmethylated
state of promoter CpG islands is associated with tran-
scriptional activity. However, in cancer cells, certain pro-
moter CpG islands exhibit increased methylation (hyper-
methylation). This local hypermethylation is associated
with gene silencing, and can contribute to carcinogene-
sis when it occurs in the promoter regions of genes that
regulate cell growth or other cellular functions associated
with cell survival.25–28 DNA methylation profiles can vary
between cancers from different organs, suggesting that
such profiles could be useful diagnostic tools.24,29–31

Hypermethylation of a variety of genes in lung neoplasms
has been reported (reviewed in22). APC, CDKN2A/
p16INK4A, CDH13, RARB, and RASSF1A have been found
to be frequently hypermethylated in lung cancer by at
least two independent studies (reviewed in22). In con-
trast, certain genes commonly methylated in other types
of cancer, such as ARF and CDKN2B, are infrequently
hypermethylated in lung neoplasms (reviewed in22).

Besides showing differences between cancers from
different organs, methylation profiles are also thought to
be distinct in different histological subtypes of cancer

from the same organ. This is supported by our recent
analysis of the methylation status of 23 loci in 47 NSCLC
and 44 SCLC cell lines.20 The methylation levels of 7 of 23
genes analyzed (PTGS2, CALCA, MTHFR, ESR1, MGMT,
MYOD1, and APC) differed significantly between SCLC
and NSCLC cell lines, supporting the idea that it may be
possible to accurately distinguish SCLC from NSCLC
using DNA methylation profiles.

To our knowledge, there is no current consensus on
how to analyze multivariate molecular data for the iden-
tification of specific tumor cell types. Multiple studies
done during the past four decades have developed ob-
jective diagnostic methods based on multivariate analy-
sis of morphometric and densitometric data from neo-
plastic cells.2–9,32–38 Such classificatory methods can be
based on supervised or non-supervised paradigms.4

“Unsupervised” methods attempt to explore or “mine” the
data to detect relationships without any a priori informa-
tion regarding the classification of the data. They identify
groups of data elements that are highly correlated with
each other and are more frequent in a particular group of
a data set. These groups are subsequently compared
with the diagnoses to explore whether a significant sub-
set of variables correlates with a particular group of neo-
plasms. Studies of molecular data collected with high-
throughput systems have mostly applied unsupervised
methods such as hierarchical cluster analysis.20 We pre-
viously used hierarchical clustering to analyze the data
set used in the current study; this approach was able to
correctly group SCLC with a specificity and sensitivity of
78%.20 This percentage it is not sufficiently high to justify
use of the tested DNA methylation markers in the clinical
setting. However, the method used (hierarchical cluster-
ing) may not be optimal for the analysis of DNA methyl-
ation data, which is not normally distributed. We therefore
undertook an exploration of alternative methods of clas-
sification.

In contrast to unsupervised methods, “supervised”
methods are trained using data that is labeled with the
correct answer. The trained models are thereafter tested
with data that were not used during training. Most studies
of morphometric and photometric data of neoplastic cells
have used supervised methods, such as ad-hoc algo-
rithms, linear discriminant analysis (LDA), logistic regres-
sion, artificial neural networks (ANN), rule-based expert
systems, Bayesian belief networks, and others.4 One of
the important strengths of the “supervised” approach is
that the trained function can be applied to classify un-
known cases, as would occur when making a diagnosis
of a new sample.5–7,10,32 ANN trained with molecular
data have been recently used by Khan and associates39

in a study of classification of small round blue-cell tumors.
These models classified correctly all their test cases into
four diagnostic categories. Here we explore how super-
vised classification methods might be applied to lung
cancer diagnosis based on DNA methylation profiles,
using the previously obtained methylation data from 87
lung cancer cell lines as a model system. We compare
the utility of linear discriminant analysis and artificial neu-
ral networks as classificatory tools of DNA methylation
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profiles, in an effort to develop diagnostic models that
could distinguish SCLC from NSCLC.

Materials and Methods

Detection and Quantitation of CpG Island DNA
Hypermethylation Profiles in SCLC and NSCLC
Cell Lines

The tumor cell lines used in this study have been well
characterized and were initiated by Gazdar and co-work-
ers20,40 at the National Cancer Institute and Hamon Can-
cer Center. DNA from 47 NSCLC and 44 SCLC cell lines
was subjected to bisulfite conversion, which embeds
methylation data into the DNA sequence by converting
unmethylated Cs to U.41 Methylation analysis was per-
formed for 23 loci using the fluorescence-based, real-
time PCR assay MethyLight, which utilizes primers and
probes specifically designed to hybridize to fully methyl-
ated sequences.42,43 The percentage methylated refer-
ence (PMR) for each locus was calculated by dividing the
GENE:reference ratio of a sample by the GENE:reference
ratio of highly methylated SssI-treated human sperm DNA
and multiplying by 100.42,43 GENE methylation levels
were normalized independently using each of the two
reference reactions [one with �-actin (ACTB) and one
with type 2 collagen (COL2A1)], and the mean of the
resulting PMR was used as the final PMR value. The
analysis resulted in over 2200 data points, representing
DNA methylation levels at the 23 loci in the cell lines.
These data, sorted into selected classes, was previously
used for a study of hierarchical cluster analysis, which
allowed classification of the cell lines into SCLC and
NSCLC with 78% sensitivity and specificity.20 For this
study, loci that were uniformly negative (a PMR value of
0.00000) were removed from the data set, leaving 20 loci
(TYMS, TGFBR2, THBS1, CDKN2B, TIMP3, PTGS2,
CALCA, MGMT E/I, MTHFR, ESR2, CDH1, HIC1, GSTP1,
PGR, AR1, APC, MGMTPRO, MYOD1, CDKN2A, and
ESR1). Cell lines for which methylation information was
incomplete were also excluded, leaving 87 cell lines (Ta-
ble 1).

Selection of Significant Variables and
Establishment of Data Sets

The PMR data from 20 loci was subjected to backward
step-wise analysis to eliminate the variables that did not
contribute to classification. Using automated step-wise
backward elimination, a model with five independent vari-
ables (ESR1, MTHFR, PTGS2, CDKN2A, and CALCA) was
selected. The data were next sorted randomly by cell line
into 10 different data sets (numbered 1 to 10), each with
training and testing subsets composed of 71 and 16 of
the cases, respectively. SCLC and NSCLC cell lines were
distributed in training and test sets at �80% and �20%,
respectively.

Analysis with Artificial Neural Networks and
Cross-Validation of Results

Artificial neural networks (ANN) are computerized math-
ematical models designed to emulate the architecture of
the brain.44 Data are divided into processing units or
neurons. Neurons are organized in parallel layers: input,
hidden (single or multiple), and output. Each neuron con-
nects to all neurons of another layer but not to those in the
same layer. Neurons process the data using a variety of
mathematical functions; a probabilistic function with ge-
netic algorithms was selected for this study, as previously
reported.5,32–34 All values are normalized to numbers
ranging from 0 to 1. ANN were designed according to the
number of variables being analyzed, with either 20 or five
input neurons. Each input neuron processes the data
from a DNA methylation locus. The hidden layer con-
tained 89 neurons, the default value selected automati-
cally by the software. The output layer consisted of two
output neurons, one to classify the SCLC category and
the other for the NSCLC category. The neurons in the
input layer process the normalized values of each vari-
able using a function. The values generated by each
input neuron are “transmitted” to each hidden layer neu-
ron. Each hidden layer neuron receives the numerical
input from each of the input layer neurons and calculates
two outputs. Each of the two output neurons “receives”
one of the two outputs generated by each hidden layer
neurons and calculates output values ranging from 0 to 1.
If the value generated by an output neuron is larger than
0.5, the neuron is “activated” to yield its classification.
Only one of the output neurons is “activated” during each
training or testing cycle, resulting in the classification of a
sample as NSCLC or SCLC.

The 10 training/testing sets were analyzed with ANN
(NeuroShell2, Ward Systems, Frederick, MD). The ANN
were trained using each of the 10 data sets, in an effort to
emulate at a cross-validation procedure.5,34,35 The test
data were not used during ANN training. Five ANN mod-
els used all 20 variables as input neurons. The other five
ANN used PTGS2, CALCA, MTHFR, ESR1, and CDKN2A
as input neurons.

Analysis of the Data with Linear Discriminant
Analysis

The data were analyzed with multivariate linear discrimi-
nant analysis (LDA) (Systat 10.0 SPSS, Chicago, IL) using
the cell type (SCLC and NSCLC) as the dependent vari-
able and the methylation levels as independent vari-
ables.45 Prior probabilities were 0.50 for each group. The
same 10 data sets used for ANN were used for the LDA.
To address possible problems with non-linearity of the
methylation data (loci can be very highly methylated in
some cell lines, and unmethylated in others), the PMR
values for the same 10 sets described above were also
transformed logarithmically, using the formula
log(1�variable), and analyzed with LDA. Linear discrimi-
nant functions were derived. A classification matrix in-
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Table 1. PMR Values* for 20 Methylation Loci† in 87 Lung Cancer Cell Lines

Sample‡ Cell type TYMS TGFBR2 THBS1 CDKN2B TIMP3 PTGS2 CALCA MGMT E/I MTHFR

H1770 NSCLC 0 0 0 4.66 0 2.80 0.62 10.96 71.16
H2170 NSCLC 0 0 0 0 0 0.01 0 11.71 106.74
H1755 NSCLC 0 0 0 0 0 71.13 0 0 156.72
H1693 NSCLC 0 0 0 0 0 0.22 2.76 0.02 2.83
H2087 NSCLC 0 0 0 0 0 1.20 2.17 0.47 30.48
H0522 NSCLC 0 0 1.41 0 0 5.97 10.73 5.19 10.27
H2347 NSCLC 0 0 0 0 77.40 13.55 65.38 1.76 0.36
H0023 NSCLC 0 0 0 0 0 0.01 20.98 9.10 115.43
HCC366 NSCLC 0 0 0 0 0.66 0.60 12.98 9.50 81.17
H1793 NSCLC 0 0 0 0 0 0.10 12.27 4.31 56.39
H1155 NSCLC 0 0 0 0 0 5.23 8.43 0 125.79
H0358 NSCLC 0 0 0 0 106.53 0.01 0 1.20 6.17
H0820 NSCLC 0 0 0 0 0 11.50 93.87 17.66 0
H1355 NSCLC 0 0 0 0 0.49 0.06 7.00 0.36 67.99
H0647 NSCLC 0 0 0 4.42 7.69 0.02 0.01 0.12 4.56
H0441 NSCLC 0 0 0 0 98.89 0 53.04 3.80 37.85
H0460 NSCLC 0 0 0 0 0 1.15 29.24 2.31 83.63
H2122 NSCLC 0 0 0 0 0 5.40 74.65 0 76.37
H1437 NSCLC 0 0 0 0 0.05 0.20 46.46 3.11 76.50
H1703 NSCLC 0 0 0 0 0 71.87 71.61 0.02 82.78
H2073 NSCLC 0 0 0 0 0.57 4.74 49.15 0.95 11.56
HCC044 NSCLC 0 0 0 0 0.28 0 0 0.05 35.12
H0322 NSCLC 0 0 0 0 108.43 6.53 87.90 16.98 90.29
H1435 NSCLC 0 0 0 0 0 4.07 5.19 2.31 39.73
H0838 NSCLC 0 0 0 0 0 1.81 50.47 0.21 15.59
H2077 NSCLC 0 0 0 0 0 2.37 169.41 7.48 157.47
H0125 NSCLC 0 0 0 0 0 0.34 17.97 1.37 34.04
H1792 NSCLC 0 0 0 2.29 0 0 5.78 3.50 107.85
H1395 NSCLC 0 0 0 0 59.23 0 3.23 34.95 2.25
H0720 NSCLC 0 0 0 57.47 167.04 120.10 150.61 38.91 178.23
H1993 NSCLC 0 0 0 0 0 0 29.95 22.57 110.01
H0920 NSCLC 0 0 0 0 0 0.32 6.56 0 103.74
HCC461 NSCLC 0 0 0 0 0 0 19.69 0 112.49
H2009 NSCLC 0 0 0 0 125.76 0.31 65.81 5.68 22.68
HCC015 NSCLC 0 0 0 0 0 1.88 11.40 0.05 75.30
H1944 NSCLC 0 0 0 0 0 0.01 11.08 3.55 12.48
H1264 NSCLC 0 0 0 0 0 0 0 0 31.52
H0157 NSCLC 0 0 0 0 0 0 0 6.69 114.68
HCC515 NSCLC 0 0 0 0 0 0 86.48 0 45.79
H1573 NSCLC 0 0 0 7.09 0 0.06 0 0 39.24
H2106 NSCLC 0 0 0 0 0 0 0 0.16 134.55
H1334 NSCLC 0 0 0 0 131.88 0.54 76.36 15.02 65.95
H0727 NSCLC 0 0 0 0 0 0.98 0 1.09 178.11
H0661 NSCLC 0 0 0 0 0 4.19 4.39 10.30 112.06
H1648 NSCLC 0 0 0 0 0 0.20 0 8.10 158.77
H1299 NSCLC 0 0 0 0 0 94.33 1.97 9.36 109.00
H0211 SCLC 0 0 0 0.01 0.18 0.23 3.27 5.99 46.09
H1618 SCLC 0 3.30 0 55.72 98.35 105.34 128.95 25.68 230.40
H1339 SCLC 0 0 0 1.72 12.57 113.11 166.74 55.89 260.75
H1284 SCLC 0 0 0 0 30.77 0 129.19 0 30.60
H0209 SCLC 0 0 0 0.62 0 152.96 0 8.37 62.63
H1994 SCLC 0 0 0 0.01 3.86 37.63 0 24.06 134.98
H0220 SCLC 0 0 0 0 19.09 23.66 19.33 0 70.63
H2107 SCLC 0 0 0 0 0 13.52 59.22 4.97 368.61
H1963 SCLC 0 0 0 0 67.04 136.70 87.56 19.67 107.52
H0146 SCLC 0 0 0 0 0 99.16 4.83 7.51 119.05
H0524 SCLC 0 0 0 0 0 0 0 19.24 169.26
H0510 SCLC 0 0 0 0 1.14 13.70 2.98 0.19 129.04
H1048 SCLC 0 0 0 0 0.02 44.74 154.24 8.25 119.77
H1417 SCLC 0 0 0 0 73.41 5.38 116.78 16.88 90.20
HCC970 SCLC 0 0 0 0 0 39.32 12.72 6.37 118.25
H0711 SCLC 0 0 0 0 80.96 38.25 111.65 26.22 96.68
H1607 SCLC 0 0 0 0 0 0.12 0 0.08 106.74
H1926 SCLC 0 0 0 0 45.44 106.79 104.60 2.63 153.47
H0069 SCLC 0 0 0 0 0 0.41 28.93 0.99 63.16
H1930 SCLC 0 0 0 42.49 114.33 4.11 181.11 5.57 101.06
H1284 SCLC 0 0 0 0 7.06 55.65 69.30 32.51 114.87
H0249 SCLC 0 0 0 0 0 0.86 70.31 3.98 82.94
H1514 SCLC 0.10 0 0 0 0 37.77 120.88 0.04 122.76
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Table 1. Continued

ESR2 CDH1 HIC1 GSTP1 PGR AR1 APC MGMT PRO MYOD1 CDKN2A ESR1

0.1 5.76 0 0 18.11 0 0 0 0 0.10 0
0.02 0 68.47 0 140.30 0 0 0 0.99 0 0
0 0 23.91 0 37.08 0 0 0 0 0 0.12
0.07 0 68.65 0 72.74 0 73.45 0 0.18 30.46 86.47
1.72 0.44 124.43 17.50 19.02 36.34 153.78 0 63.89 0.65 48.89
20.62 0 53.50 0 4.67 0 87.83 0 0.56 0 1.24
0 0 49.53 4.88 2.17 101.70 0.25 0 135.70 38.14 2.45
20.23 1.57 117.10 0 9.39 0 109.70 0 21.60 32.10 24.54
0 0 108.95 89.49 178.72 3.64 91.98 0 83.81 44.07 29.15
0 0 100.91 0 0 0 72.54 0 0 0.12 0
0 5.90 101.07 180.06 0 0 129.30 0 0 0 61.14
132.50 0 43.11 169.04 85.04 7.44 67.22 0 67.14 93.57 137.93
0 0 265.06 0 0 8.36 238.82 0 0 0 0
6.75 0 130.11 291.83 0.64 0.42 76.11 0 0.38 48.52 2.72
0.12 0 161.95 17.37 0.56 0 148.23 0 0 0 1.16
69.07 0 87.97 112.26 83.06 48.58 73.46 20.03 70.78 46.06 95.45
15.77 80.69 89.77 0 14.82 0 90.13 0 0 0 45.77
2.62 0 98.22 0 35.05 0 84.23 0 0 0 98.74
1.74 16.28 89.13 82.01 14.61 1.31 83.20 0 8.85 23.79 78.18
59.09 1.74 143.12 0 1.19 0.04 0 0 20.02 0 94.23
0 1.65 30.37 0 0.91 78.72 0 0 10.06 0 104.12
0 0 11.74 0 1.76 0 18.42 0 0 0 0.51
109.47 0 111.71 388.92 123.42 67.23 121.83 135.26 69.95 0 56.52
13.43 8.24 36.69 0 0 1.16 68.51 2.47 0.46 36.70 0.59
0.02 0.55 162.24 0 12.31 0.01 70.29 0 0 0 35.15
0 11.69 62.52 0 0 0 86.86 0 71.31 102.00 0
1.40 0 144.69 0 5.32 0 99.46 0 6.15 0.07 21.49
0 0 114.95 6.19 31.41 0 0 0 5.14 0 28.49
0 0 54.27 240.43 14.52 0 4.02 0 0 0 0
0 13.49 100.58 196.99 169.67 0 0 0 0 99.37 3.98
19.21 0 89.60 215.02 13.54 47.05 135.01 247.22 21.43 0.07 79.29
0 0 76.76 0 4.69 0 0.32 0 14.27 0 0
4.81 0 117.15 0 0 0 0 0 53.32 77.01 93.44
0.04 0 51.56 76.53 1.05 0.01 15.62 0.91 79.25 0.02 0.63
2.49 0 87.12 0 5.23 0 3.07 0 7.97 0 21.78
4.32 0 125.78 0 3.10 0.16 0 0 0.12 0 0.02
0 0 43.35 0 0.20 0 145.50 0 0 0.44 0
0 0 178.39 0 102.44 0 60.01 95.77 0 0 0
0 0 36.00 0 0 49.38 72.04 0 9.83 0 0
0.04 0 223.52 86.48 0 0 65.08 0 0.74 26.41 48.91
1.56 0 88.51 254.08 0.26 0 0 0 0 0 0
30.98 0 101.81 90.42 104.56 24.39 96.85 10.15 27.52 0 50.27
0 0 108.55 241.67 12.00 0 0 43.13 0.13 40.30 52.97
19.35 0 89.94 0 7.44 0 0 0 0 0 0.18
0.13 0 66.18 0 2.71 0 0 0 0.17 0 0
3.46 42.08 89.53 0 193.71 1.26 291.97 0 51.77 96.95 265.16
19.11 35.63 111.98 0 42.91 0 97.55 0 0 0 25.65
0 85.58 83.33 267.30 167.77 0 1.15 0 1.48 66.32 16.09
91.80 9.63 137.29 13.41 8.38 3.67 217.04 0 0 8.21 0
0 0 74.01 37.24 0 0 35.71 0 0 65.58 88.13
0 0 57.21 0 0.10 0 0 0 0 0 0
0.41 0 78.05 31.23 0.19 0.03 35.96 0 0 0.02 0.07
0.08 0 209.35 0 10.75 49.44 103.71 0 4.03 3.84 48.47
0 0 104.34 0 21.95 2.43 2.81 0 6.89 0 0
0 0 116.24 198.31 0.27 40.11 68.96 0 0 0 60.16
0 0 99.24 0 0.72 0 0 0 0 0 0.73
0 0 82.15 10.72 0 0 0 0 0 0 0
0 0 71.09 2.74 1.40 0 0 3.65 0 0 0
23.30 0 112.08 0 2.90 21.90 113.55 0 6.37 0 0.02
0.20 0 78.04 0 0.32 1.94 0 0 0 0 1.29
1.97 0 108.96 0 61.35 56.75 0 0 8.21 0 5.15
58.51 0 42.01 239.14 0 0 0 0 0 0 0.53
0 0 181.80 0 0.39 0 44.17 0 0 0 0
0.40 0 41.33 0 4.77 0 0.97 0 0 0 0
0 0.94 53.18 10.74 2.33 0.04 4.06 3.11 25.71 1.14 5.55
0 0 101.45 0 46.79 0 101.86 0 0 0 1.08
0.41 0 89.70 31.42 1.00 14.15 0 0 0 0 0
0 15.17 94.25 191.69 0.01 0 110.25 0 0.48 0 77.05
0.35 0 67.07 0 143.71 0.14 0.33 0 0 0.60 0

(Table continues)
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cluding the percentage of cases correctly classified by
the models was generated.

Comparison of the Classifications Obtained by
the 30 Classificatory Models: Kappa Statistics

The analysis of the test cases by the 10 ANN models and
the 20 LDA models resulted in 30 test case classifica-
tions. The classifications provided by each model were
compared with the true classification of cell type (known
from the well-characterized cell lines) using kappa sta-
tistics.46,47 This is a method that has been widely used for
assessing intra-observer and inter-observer agreement
for diagnoses provided by various observers. The kappa
values allow for classification of agreements as: poor (�
0.41), moderate (0.41 to 0.6), substantial (0.6 to 0.8), and
almost perfect (0.81 to 1.00).

Results and Discussion

Table 1 shows the DNA methylation analysis data, given
as the percentage methylated reference (PMR) values for
20 loci in 87 cell lines (three uniformly negative loci and
cell lines for which methylation data were incomplete
were excluded from the original data set20). Using these
20 variables, a step-wise backward procedure selected a
five significant-variable model with PTGS2, CALCA,
MTHFR, ESR1, and CDKN2A. In the previously published
hierarchical clustering study,20 all 91 cell lines and all loci
(even those with incomplete methylation data) were used
to determine the significant variables. The four most sig-
nificant loci found in the previous analysis (P � 0.003)
were identical to four of the five loci selected here
(PTGS2, CALCA, MTHFR, and ESR1). The difference in
the other variable (CDKN2A) likely lies in the data set
used, and in the fact that all of the loci were evaluated
individually for statistically significant differences in meth-

ylation levels in the previous analysis, whereas they were
evaluated en bloc here.

The data were next sorted randomly by cell line into 10
different data sets (numbered 1 to 10), each with training
and testing subsets composed of 71 and 16 of the cases,
respectively. SCLC and NSCLC cell lines were equally
represented in training and test sets. The 10 training/
testing models were analyzed with ANN, resulting in the
classifications shown in Table 2. Models 1 to 5 used all 20
variables, while models 6 to 10 used the five variables
selected by statistical analysis. In the latter five ANN
models, two SCLC cell lines (NCI-H0069 and NCI-H0249)
were classified incorrectly as NSCLC by some of the
ANN. The results, summarized in Table 2, indicate that
ANN can be trained to correctly classify up to 100% of the
cell lines, based on the current methylation data set.
Comparison of the 10 ANN models using kappa statistics
indicates that the ANN using all variables was more ac-
curate than the ANN using the five significant variables.

Next, LDA was used to analyze the same 10 data sets,
using regular or log-transformed PMR values (see meth-
ods). The results of these analyses, with the kappa coef-
ficients, are given in Table 2. Correct classification rates
provided by the LDA models were variable and less
accurate than those provided by ANN, ranging from
62.5% to 87.5%. Considerable variability based on the
choice of training set was evident in the LDA using five
genes. Indeed, four of the 10 LDA classificatory models
yielded only poor kappa values. The comparison shown
in Table 2 emphasizes the importance of performing
cross-validation studies to analyze the accuracy of vari-
ous supervised classificatory methods.

Our analyses demonstrate that it is possible to classify
individual lung cancer cell lines into SCLC and NSCLC
based on the analysis of DNA methylation markers using
multivariate ANN. The ANN models using five genes cor-
rectly classified 87% or more of all test cases, while the
ANN models using 20 input neurons were able to cor-

Table 1. Continued

Sample‡ Cell type TYMS TGFBR2 THBS1 CDKN2B TIMP3 PTGS2 CALCA MGMT E/I MTHFR

HCC033 SCLC 0 0 0 0 9.57 9.07 67.51 6.76 44.84
H0748 SCLC 0 0 0 0 0 0.03 106.55 34.52 94.65
H1304 SCLC 0 0 0 0 0 0.01 31.32 21.42 119.37
H0889 SCLC 0 0 0 194.64 77.17 0.25 188.82 4.48 425.90
H2171 SCLC 0 0 20.29 0 197.82 0.43 48.71 8.01 151.86
H0740 SCLC 0 0 0 0 104.43 1.51 92.15 16.69 116.50
H1045 SCLC 0 0 0 0 616.64 17.49 146.67 0.60 276.87
H1184 SCLC 0 0 0 1.49 0 11.57 103.60 2.35 88.96
H2227 SCLC 0 0 0 0 0 33.71 86.55 2.01 83.75
H2196 SCLC 0 0 0 0 0 67.81 48.93 0 123.45
H2141 SCLC 0 0 0 0 11.99 0.07 107.91 12.39 107.82
H1105 SCLC 0 0.22 0 0 0 1.57 142.43 26.49 121.69
H0082 SCLC 0 0 0 0 0 11.41 0 17.00 173.18
H0526 SCLC 0 0 0 0 0 68.50 0 2.66 68.21
H1870 SCLC 0 0 0 0 0 111.91 365.60 0.31 138.99
H2029 SCLC 0 0 0 0 0 49.09 392.84 0 109.37
H2195 SCLC 0 0.03 0 0 0 49.49 1.56 0.62 58.69
H0060 SCLC 0 0 0 0 35.20 63.09 75.92 11.78 466.19

*PMR: Percentage Methylated Reference, values �0.02 and �0.00001 are listed as 0.01.
†Loci are designated by their Human Genome Organization (HUGO) name.
‡NCI-derived cell lines, designated as NCI-Hxxxx are listed without the NCI prefix. Cell lines derived from the Hamon Cancer Center are designated

HCCxxx.
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rectly classify all test cases. This is a substantial improve-
ment over the 78% correct classification observed using
hierarchical clustering, and is also markedly better than
the results obtained using LDA analysis (only 62 to 87%
correct classifications, and substantial variability be-
tween models). The LDA models described in this study
were developed using multivariate data from only 87 cell
lines. When these data are randomly subdivided into
training and testing sets, certain models are more likely to
use cell lines that could not be classified with LDA as test
subjects, while others may include them as part of the
training set, resulting in variable correct classification
rates for the test cases. Some of the variability may also
be related to non-normality of the data in multivariate
space, as the logarithmic transformation of the data
slightly improved the accuracy of the LDA models using
20 variables. ANN models appear to handle these clas-
sification problems with less variability and misclassified
only two cell lines. These two cell lines (H0069 and
H0249) were also misclassified by most of the LDA mod-

els and by the previously carried out hierarchical cluster-
ing.20

Our results were attained with a modest set of methyl-
ation loci: 20 of the �12,000 CpG islands present in the
human genome. They compare favorably with studies of
clinical inter-observer variability for the diagnosis of
SCLC in biopsy materials and cytologic samples, where
concordance rates of approximately 90% have been re-
ported.16 While it will be critical to verify our observations
using human lung cancer tissue, the recent finding that
methylation profiles in cell lines specifically resemble
those found in tumors derived from the same organ sug-
gests that analyses of lung tumor material will yield similar
results.48 Our recent comparison of lung adenocarci-
noma and malignant mesothelioma cell lines and tumors
indicates that methylation profiles in cell lines strongly
resemble those in the corresponding tumors (Tsou JA,
Shen LYC, Siegmund KP, Long TJ, Laird PW, Seneviratne
CK, Koss MN, Pass HI, Laird-Offringa IA, manuscript
submitted for publication). Future studies using a larger

Table 2. Classification of Test Cases (n � 16; 8 SCLC and 8 NSCLC) by Linear Discriminant Models and Artificial Neural
Networks

Model
training cell
lines n � 71

(33 SCLC
and 38
NSCLC)

Artificial neural network Linear discriminant analysis
LDA after logarithmic

transformation of the data

Number of
correctly classified

cell lines
Kappa

coefficient

Number of
correctly classified

cell lines
Kappa

coefficient

Number of
correctly classified

cell lines
Kappa

coefficient

Models trained with all variables
1 16 (100%) 1 12 (75%) 0.5 12 (75%) 0.5
2 16 (100%) 1 10 (62%) 0.25 12 (75%) 0.5
3 16 (100%) 1 12 (75%) 0.50 14 (87%) 0.75
4 16 (100%) 1 10 (62%) 0.25 11 (69%) 0.35
5 16 (100%) 1 10 (62%) 0.25 13 (81%) 0.65

Models trained with 5 variables (PTGS2, CALCA, MTHFR, ESR1, CDKN2A)
6 16 (100%) 1 13 (81%) 0.62 13 (81%) 0.62
7 14 (87%) 0.75 10 (62%) 0.25 10 (62%) 0.25
8 14 (87%) 0.75 14 (87%) 0.75 13 (81%) 0.62
9 14 (87%) 0.75 13 (81%) 0.62 13 (81%) 0.62
10 15 (98%) 0.88 13 (81%) 0.62 13 (81%) 0.62

Table 1. Continued

ESR2 CDH1 HIC1 GSTP1 PGR AR1 APC MGMT PRO MYOD1 CDKN2A ESR1

0.12 0 100.55 4.24 0.31 0 0.43 0 0 0.01 0
0 0 171.31 233.74 0.10 0.01 0 0 0 0.26 0
0 0 128.46 13.19 0.12 53.95 0 0 2.39 0 0
0 0 114.62 99.18 25.67 0 4.09 0 0 0.03 0.03
18.91 0 163.11 131.76 0.07 0 0 0 0.67 0 6.71
1.13 0 65.45 106.85 0.55 0.01 30.28 0 0.30 0 0
155.13 0 310.47 0 0 0 255.28 84.17 0 3.94 0
0 0 101.16 16.19 2.48 0 0 52.28 0 0.11 6.91
124.55 6.34 79.68 0 73.21 0.01 117.82 0 3.49 92.37 20.93
67.79 2.62 99.25 11.03 20.64 5.66 0 5.05 0.50 0 0.07
0 0 80.04 0 47.49 0 0 0 0 0 0.16
0 0 92.49 222.94 8.70 0 0.14 136.79 0 0 0
0 0 119.62 0 0 0 192.82 0 124.35 0 0
0 0 63.26 0 1.02 0 0.57 0 0.21 0 0.40
39.40 0 97.22 187.56 51.52 0.18 0 1.68 0.29 0.11 1.40
0 0 79.20 55.85 0.81 0 88.47 0 0 0 0
1.10 0.17 47.09 0 193.27 6.78 0 66.64 33.52 0 0.62
44.09 0 53.19 112.63 1.13 0 0 0 0 0 0
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set of methylation markers, in combination with human
lung cancer tissue samples, will be important to validate
and extend our observations. The availability of high-
throughput methods such as MethyLight, which allows
the rapid processing of hundreds of samples,42,43 will
stimulate rapid progress in this area. Once optimal ac-
curacy in diagnosis using tumor material is achieved, the
same approaches can be used to develop non-invasive
methods to detect lung cancer, such as the analysis of
methylation profiles in the serum or sputum of subjects at
risk for lung cancer.22 The development of methods,
such as those described here, to process complex mo-
lecular data and translate it into clinically meaningful
information is crucial to realize the potential of DNA meth-
ylation analysis as a powerful molecular diagnostic tool.

References

1. Sullivan Pepe M, Etzioni R, Feng Z, Potter JD, Thompson MD, Thorn-
quist M, Winget M, Yasui Y: Phases of biomarker development for
early detection of cancer. J Natl Cancer Inst 2001, 93:1054–1061

2. Marchevsky AM, Gil J, Jeanty H: Computerized interactive morphom-
etry in pathology: current instrumentation and methods. Hum Pathol
1987, 18:320–331

3. Marchevsky AM, Hauptman E, Gil J, Watson C: Computerized inter-
active morphometry as an aid in the diagnosis of pleural effusions.
Acta Cytol 1987, 31:131–136

4. Bartels PH, Thompson D, Weber JE: Image Analysis: A Primer for
Pathologists. New York, Raven Press, 1994, pp 2

5. An CS, Petrovic LM, Reyter I, Tolmachoff T, Ferrell LD, Thung SN,
Geller SA, Marchevsky AM: The application of image analysis and
neural network technology to the study of large-cell liver-cell dyspla-
sia and hepatocellular carcinoma. Hepatology 1997, 26:1224–1231

6. Walts AE, Morimoto R, Marchevsky AM: Computerized interactive
morphometry and the diagnosis of lymphoid-rich effusions. Am J Clin
Pathol 1993, 99:570–575

7. Walts AE, Marchevsky AM: Computerized interactive morphometry:
an expert system for the diagnosis of lymphoid-rich effusions. Am J
Clin Pathol 1989, 92:765–772

8. Marchevsky AM, Klapper E, Gil J: Computerized classification of
nuclear profiles in non-Hodgkin’s lymphomas. Am J Clin Pathol 1987,
87:561–568

9. Marchevsky AM, Gil J: Applications of computerized interactive mor-
phometry in pathology: II. a model for computer-generated diagnosis.
Lab Invest 1986, 54:708–716

10. Marchevsky A, Gil J, Silage D: Computerized interactive morphome-
try as a potentially useful tool for the classification of non-Hodgkin’s
lymphomas. Cancer 1986, 57:1544–1549

11. Cenci M, Nagar C, Vecchione A: PAPNET-assisted primary screening
of conventional cervical smears. Anticancer Res 2000, 20:3887–3889

12. Mango LJ, Radensky PW: Re-screening of cervical Papanicolaou
smears using PAPNET. JAMA 1998, 279:1786–1787

13. Troni GM, Cipparrone I, Cariaggi MP, Ciatto S, Miccinesi G, Zappa M,
Confortini M: Detection of false-negative Pap smears using the PAP-
NET system. Tumori 2000, 86:455–457

14. Travis WD, Colby TV, Corrin B, Shimosato Y: Histological Typing of
Lung and Pleural Tumours. Berlin, Springer Verlag 1999, pp 7–9

15. Marchevsky AM: Surgical Pathology of Lung Neoplasms. New York,
Marcel Dekker, Inc, 1990, pp 77–211

16. Marchevsky AM, Gal AA, Shah S, Koss MN: Morphometry confirms
the presence of considerable nuclear size overlap between “small
cells” and “large cells” in high-grade pulmonary neuroendocrine
neoplasms. Am J Clin Pathol 2001, 116:466–472

17. Travis WD, Rush W, Flieder DB, Falk R, Fleming MV, Gal AA, Koss
MN: Survival analysis of 200 pulmonary neuroendocrine tumors with
clarification of criteria for atypical carcinoid and its separation from
typical carcinoid. Am J Surg Pathol 1998, 22:934–944

18. Travis WD, Gal AA, Colby TV, Klimstra DS, Falk R, Koss MN: Repro-

ducibility of neuroendocrine lung tumor classification. Hum Pathol
1998, 29:272–279

19. Sozzi G: Molecular biology of lung cancer. Eur J Cancer 2001,
37(Suppl 7):S63–S73

20. Virmani AK, Tsou JA, Siegmund KD, Shen LY, Long TI, Laird PW,
Gazdar AF, Laird-Offringa IA: Hierarchical clustering of lung cancer
cell lines using DNA methylation markers. Cancer Epidemiol Biomar-
kers Prev 2002, 11:291–297

21. Holliday R: The significance of DNA methylation in cellular aging.
Basic Life Sci 1985, 35:269–283

22. Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA: DNA methyl-
ation analysis: a powerful new tool for lung cancer diagnosis. Onco-
gene, 2002, 21:5450–5461

23. Bird A: DNA methylation patterns and epigenetic memory. Genes
Dev 2002, 16:6–21

24. Costello JC, Plass C: Methylation matters. J Med Genet 2001, 38:
285–303

25. Robertson KD: DNA methylation, methyltransferases, and cancer.
Oncogene 2001, 20:3139–3155

26. Wade PA: Methyl CpG binding proteins: coupling chromatin archi-
tecture to gene regulation. Oncogene 2001, 20:3166–3173

27. Baylin SB, Esteller M, Rountree MR, Bachman KE:, Schuebel K,
Herman JG: Aberrant patterns of DNA methylation, chromatin forma-
tion, and gene expression in cancer. Hum Mol Genet 2001, 10:687–
692

28. Jones PA, Laird PW: Cancer epigenetics coming of age. Nat Genet
1999, 21:163–167

29. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB,
Herman JG: Detection of aberrant promoter hypermethylation of tu-
mor suppressor genes in serum DNA from non-small cell lung cancer
patients. Cancer Res 1999, 59:67–70

30. Costello JC, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP,
Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE,
Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Huang JJS,
Petrelli NJ, Zhang X, O’Dorisio MS, Held WA, Cavenee WK, Plass C:
Aberrant CpG-island methylation has non-random and tumor-type-
specific patterns. Nat Genet 2000, 25:132–138

31. Esteller M, Corn PG, Baylin SB, Herman JG: A gene hypermethylation
profile of human cancer. Cancer Res 2001, 61:3225–3229

32. Marchevsky AM, Shah S, Patel S: Reasoning with uncertainty in
pathology: artificial neural networks and logistic regression as tools
for prediction of lymph node status in breast cancer patients. Mod
Pathol 1999, 12:505–513

33. Singson RP, Alsabeh R, Geller SA, Marchevsky A: Estimation of tumor
stage and lymph node status in patients with colorectal adenocarci-
noma using probabilistic neural networks and logistic regression.
Mod Pathol 1999, 12:479–484

34. Marchevsky AM, Patel S, Wiley KJ, Stephenson MA, Gondo M, Brown
RW, Yi ES, Benedict WF, Anton RC, Cagle PT: Artificial neural net-
works and logistic regression as tools for prediction of survival in
patients with stages I and II non-small cell lung cancer. Mod Pathol
1998, 11:618–625

35. Bellotti M, Elsner B, Paez DL, Esteva H, Marchevsky AM: Neural
networks as a prognostic tool for patients with non-small cell carci-
noma of the lung. Mod Pathol 1997, 10:1221–1227

36. Marchevsky AM, Truong H, Tolmachoff T: A rule-based expert system
for the automatic classification of DNA “ploidy” histograms measured
by the CAS 200 image analysis system. Cytometry 1997, 30:39–46

37. Marchevsky AM, Coons G: Expert systems as an aid for the pathol-
ogist’s role of clinical consultant: CANCER-STAGE. Mod Pathol 1993,
6:265–269

38. Marchevsky AM: Expert systems for efficient handling of medical
information: I. lung cancer. Anal Quant Cytol Histol 1991, 13:89–92

39. Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F,
Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS: Clas-
sification and diagnostic prediction of cancers using gene expression
profiling and artificial neural networks. Nat Med 2001, 7:673–679

40. Phelps RM, Johnson BE, Ihde DC, Gazdar AF, Carbone DP, Mc-
Clintock PR, Linnoila RI, Matthews MJ, Bunn Jr PA, Carney D, Minna
JD, Mulshine JL: NCI-Navy Medical Oncology Branch cell line data
base. J Cell Biochem Suppl 1996, 24:32–91

41. Olek A, Oswald J, Walter J: A modified and improved method for
bisulphite-based cytosine methylation analysis. Nuclei Acids Res
1996, 24:5064–5066

Lung Cancer Classification Using ANN 35
JMD February 2004, Vol. 6, No. 1



42. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D,
Danenberg PV, Laird PW: MethyLight: a high-throughput assay to
measure DNA methylation. Nucleic Acids Res 2000, 28:E32

43. Trinh BN, Long TI, Laird PW: DNA methylation analysis by MethyLight
technology. Methods 2001, 25:456–462

44. Rolston DW: Principles of Artificial Intelligence and Expert System
Development. New York, McGraw-Hill Book Company, 1988

45. Afifi AA, Clark V: Computer-aided multivariate analysis. New York,
Chapman & Hall/CRC, 1999, pp 243–280

46. Fleiss JL, Cuzick J: The reliability of dichotomous judgements: un-

equal numbers of judgements per subject: applied psychological
measurement. Applied Psychol Meas 2003, 27:537–542

47. Marchevsky AM, Nelson V, Martin SE, Greaves TS, Raza AS, Zeineh
J, Cobb CJ: Telecytology of fine needle aspiration biopsies of the
pancreas: a study of well-differentiated adenocarcinoma and chronic
pancreatitis with atypical epithelial repair changes. Diagn Cytopathol
2003, 28:147–152

48. Paz MF, Fraga MF, Avila S, Guo M, Pollan M, Herman JG, Esteller M:
A systematic profile of DNA methylation in human cancer cell lines.
Cancer Res 2003, 63:1114–1121

36 Marchevsky et al
JMD February 2004, Vol. 6, No. 1


