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In recent years there have been a number of microar-
ray expression studies in which different types of
tumors were classified by identifying a panel of dif-
ferentially expressed genes. Immunohistochemistry is a
practical and robust method for extending gene expres-
sion data to common pathological specimens with the
advantage of being applicable to paraffin-embedded tis-
sues. However, the number of assays required for suc-
cessful immunohistochemical classification remains
unclear. We propose a simulation-based method for as-
sessing sample size for an immunohistochemistry in-
vestigation after a promising gene expression study of
human tumors. The goals of such an immunohisto-
chemistry study would be to develop and validate a
marker panel that yields improved prognostic classifi-
cation of cancer patients. We demonstrate how the pre-
liminary gene expression data, coupled with certain
realistic assumptions, can be used to estimate the num-
ber of immunohistochemical assays required for devel-
opment. These assumptions are more tenable than al-
ternative assumptions that would be required for crude
analytic sample size calculations and that may yield
underpowered and inefficient studies. We applied our
methods to the design of an immunohistochemistry
study for glioma classification and estimated the num-
ber of assays required to ensure satisfactory technical
and prognostic validation. Simulation approaches for
computing power and sample size that are based on
existing gene expression data provide a powerful tool
for efficient design of follow-up genomic studies. (J
Mol Diagn 2005, 7:276–282)

Although gene expression profiling has proven to be
useful as a discovery tool in cancer, and has been used
to classify tumor types by identifying a panel of differen-
tially expressed genes, immunohistochemistry will be
useful as a validation and implementation tool. Immuno-
histochemistry, particularly on tissue microarrays, has

been cited as “an excellent means” for evaluating large
numbers of tissue samples after gene expression profil-
ing, and has been used as the primary means of validat-
ing microarray data in more than 50 publications as of
late 2002.1 In the long run, immunohistochemistry is also
a highly practical approach because it is used in pathol-
ogy laboratories worldwide and it does not typically re-
quire frozen tissue. An essential component of study
design for immunohistochemistry panel development is
that of sample size; how many assays should be devel-
oped to accurately differentiate among classes initially
defined by the gene expression data?

Appropriate and well-planned study designs are essen-
tial to ensure optimal use of scarce resources, to avoid
obvious biases, and to answer the scientific questions of
interest. Once a design is selected, the details of the design
must be determined. Perhaps most important among these
details is the required sample size. Sample size typically
refers to the number of participants in a study, but could
also refer to the number of variables to be measured in the
study, such as genes or immunohistochemical assays. An-
alytic sample size calculations for study designs in which
there are only a few outcomes for each patient and in which
the distribution of the outcomes is known appear frequently
in the statistics literature. Many of these calculations have
been incorporated into statistical software packages for
easy implementation (eg, STATA, PASS, EaST). They are
typically based on assumptions regarding the general form
of the distribution of the data, coupled with specific param-
eter estimates that define the relevant version of the distri-
bution for application to the data at hand. Under these kinds
of assumptions, in addition to a determination of the mag-
nitude of the effect size (eg, treatment difference) of interest,
sample size, and power calculations have been derived
even for complicated study designs and analysis plans.

In some experimental settings, however, such as that
of genetic analyses involving thousands of genes, simple
methods for study design are not available. Discussions
on study design for gene expression experiments2–4
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have focused on the considerations involved in the se-
lection of design features that most efficiently satisfy the
scientific objectives. Sample size calculations for gene
expression experiments have been addressed by only a
few authors.2,3 These calculations are difficult for a num-
ber of reasons:2 the levels of variability in expression are
unknown and differ for each gene, the magnitudes of
effects of interest (eg, important differences in gene ex-
pression levels) are unknown and differ for each gene,
and there is dependence among expression levels
across genes.

Importantly, sample size concerns persist after the
initial gene expression studies, because validation by
follow-up studies, such as immunohistochemistry, are re-
quired. As for gene expression data, simple distributional
assumptions and corresponding sample size calcula-
tions are not available. However, the gene expression
data from the initial study serve as an extremely useful
resource for this purpose. These data allow for the use of
more realistic assumptions in the evaluation of sample
size than would otherwise be possible.

To assess the number of immunohistochemistry as-
says that must be developed, we propose simulation
studies for each component of the planned study design
that are based on the expression data from the originally
profiled tumors. These simulations relate the number of
assays required to measures of technical and prognostic
validation. Thus, the smallest number of assays neces-
sary to meet the goals for validation can be determined.
To conduct these studies, a few key assumptions are
required to link the existing gene expression data to the,
as yet, unobserved immunohistochemistry data and to
link the patients for whom there is gene expression data
to the future patients to whom the immunohistochemistry
assays will be applied. The inputs to these assumptions
(eg, specific probabilities used in probability models)
should be based on external sources of data and the
experience of the laboratory. The simulation studies
should be used to further evaluate the sensitivity of the
calculations to the inputs about which there is uncer-
tainty. For illustration, we apply our methods to the design
of a future study for immunohistochemistry panel devel-
opment for the classification of gliomas.

Materials and Methods

Existing Data

Two data sets were available to us for the sample size
calculation for the planned immunohistochemistry study.
The first was from our gene expression study,5 in which
we used the Affymetrix system to assay �12,000 genes
in 50 adult gliomas (28 glioblastomas and 22 anaplastic
oligodendrogliomas). Among these, 21 had classic text-
book histology (14 glioblastomas and 7 anaplastic oligo-
dendrogliomas) and 29 had nonclassic histology (14 gli-
oblastomas and 15 anaplastic oligodendrogliomas). We
refer to these cases as the Nutt et al cases. The second
data set was from a detailed clinical database of all
glioma patients seen at the Brain Tumor Center at Mas-

sachusetts General Hospital (MGH). The relevant data
that are currently available from this source are times to
death or last follow-up for 308 glioblastomas and 51
oligodendrogliomas. We refer to these cases as the MGH
cases. For future analyses, we expect to have available
from MGH 135 classic glioblastomas, 23 classic oligo-
dendrogliomas, and similar numbers of nonclassic
cases, all with sufficient amounts of tissue and follow-up.

Design of Future Immunohistochemistry Study
(Figure 1)

The design of the future immunohistochemistry study is
based on the availability of glioma samples and the need
to logically link the immunohistochemistry study to the
completed gene expression study. In the immunohisto-
chemistry study, immunohistochemical markers will be
developed for the smallest number of expressed proteins
capable of distinguishing the classic oligodendrogliomas
from the classic glioblastomas. Although the current best
model5 is based on 20 features/19 genes from our gene
expression study, it is likely that more features/genes
will initially require consideration to obtain enough immu-
nohistochemical markers for accurate classification. This
will be done by initially considering a larger number of
genes that displayed the largest differential expression
between the classic oligodendrogliomas and glioblas-
tomas. The first step will be to apply this candidate im-
munohistochemical marker panel to the classic cases in
the Nutt et al data set in the same way that the differen-
tially expressed genes were applied to those cases to
build a classification model in our original gene expres-

Figure 1. Schematic of study design using original Nutt et al data and new
MGH data. Locations in the design where the assumptions are invoked are
indicated.
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sion analysis.5 The supervised learning technique of k-
nearest neighbors (k-NN),6 coupled with leave-one-out
cross-validation techniques,7 will be used to build a gli-
oma classification scheme based on the marker panel.
This will serve to validate that the immunohistochemical
panel is recognizing the classic molecular signature.
Such validation is necessary because there may not be a
simple relationship between overexpression at the RNA
and protein levels and because there may be differences
in sensitivity between the detection approaches. The
measure of technical validation that will be derived from
this analysis is the cross-validation error rate.

Next, the future study will use the candidate panel to
build a classification rule through the same techniques of
supervised learning for the classic MGH cases. This will
serve to validate that the immunohistochemical panel that
was selected on the basis of the gene expression data
from the Nutt et al classic cases is able to recognize the
classic molecular signature among the MGH cases for
which we do not have gene expression data. The MGH
cases will serve as an independent test set on which to
assess the prediction error rate of the panel (the originally
profiled cases do not comprise an independent set as
they directed the choice of genes for which the panel was
developed). Again, the measure of technical validation
that will be derived from this analysis is the cross-valida-
tion error rate.

After testing the ability of the immunohistochemical
panel to identify classic glioblastomas and classic oligo-
dendrogliomas in these two sets, we will apply the de-
rived classification scheme to the nonclassic MGH
cases. The measures of prognostic validation that will be
derived from this analysis are the estimated hazard ratio
for the marker panel-based oligodendrogliomas versus
the marker panel-based glioblastomas, after adjusting for
pathological classification and the power to detect a
hazard ratio that is significantly different from one (indi-
cating added predictive power of the marker panel). A
schematic of this design is displayed in Figure 1.

Simulation Studies for Sample Size Calculation

To assess the number of immunohistochemistry assays
that we will need to develop in the planned study, we
conducted simulation studies of each component of the
planned study. We conducted our simulations in the
freely available statistical programming language, R
(http://www.r-project.org), and used 5000 repetitions.
The simulation program is available for downloading at
http://www.biostat.harvard.edu/�betensky/papers.html.

Assumptions

To conduct the simulation studies, we were required to
make a few key assumptions to link our existing gene
expression data to the, immunohistochemistry data (to be
generated) and to link the patients for whom we have
gene expression data to the patients to whom we will be
applying the immunohistochemistry assays. These as-
sumptions (explained below and summarized in Table 1)

are based on external sources and the past experience
of our group. In our view, they are good approximations
to the truth, and are far preferable to the alternative
assumptions of normally distributed gene expression val-
ues, independence of gene expression values across
genes, and homogeneous parameter values for the un-
derlying distributions, for example, which are required by
other proposed methods. The actual numerical inputs to
these assumptions can and should be varied in multiple
runs of the simulation study, especially where there is
uncertainty as to their values. We have indicated these
inputs in bold typeface.

Assumption 1 (Selection of Genes)

There is most likely not a simple one-to-one relation-
ship between mRNA expression as detected by the Af-
fymetrix system and immunohistochemistry to detect in-
dividual proteins. For one, there may be complex
relationships between mRNA and protein levels due to
posttranscription cellular regulation and turnover of pro-
teins. Two, biological levels may not always be repre-
sented equivalently by the assays because there may be
sensitivity differences between the Affymetrix system and
immunohistochemistry. In this regard, recent informal es-
timates have suggested gross concordance of changes
in mRNA and protein expression only �50% of the time.4

We assume that a gene that was differentially expressed
among the classic oligodendrogliomas versus the classic
glioblastomas will likewise exhibit differential protein ex-
pression with 50% probability.

Table 1. Assumptions

1. Selection of genes:

A gene whose mRNA was differentially expressed will
exhibit differential protein expression with 50%
probability.

2. Optimization of antibodies:

We will have 75% success rate optimizing commercially
available antibodies for immunohistochemical assays
on formalin-fixed paraffin-embedded tissues.

3. Individual assay outcomes:

For a given gene and subject and mRNA expression
level, probabilities of immunohistochemistry
outcomes relative to the median expression level for
that gene are:

IHC
outcome

mRNA �125%
of median

mRNA
�75% of
median

MRNA
within 25%
of median

0 0% 75% 0%
1� 5% 15% 25%
2� 5% 5% 50%
3� 15% 5% 25%
4� 75% 0% 0%

4. Comparability of subjects:

The subjects for whom there is mRNA expression data
are comparable to the subjects for whom there will be
immunohistochemistry data.

Boldfaced numbers are also assumptions and can be varied.
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Assumption 2 (Optimization of Antibodies)

For selected highly differentially expressed transcripts,
we would optimize appropriate antibodies for immunohis-
tochemistry. Given our experience throughout the past
decade,8–13 and given the wide variety of tissue diges-
tion (eg, different soaps and proteases) and antigen re-
trieval (eg, microwaving in different buffers and for differ-
ent times) approaches currently available, we anticipate
a high rate of success. We assume that we will have an
�75% success rate optimizing commercially available
antibodies for immunohistochemical assays on formalin-
fixed, paraffin-embedded tissues. Issues of quality con-
trol are critical for any planned immunohistochemistry
study, and our premise is that these have been well
established by the laboratory. These include the use of
proper controls and the interpretation of immunohisto-
chemical intensities.

Assumption 3 (Individual Assay Outcomes)

We need to simulate immunohistochemistry data, for
example a set of immunopositivity scores on a 0 to 4�
scale, for each patient for whom we have gene expres-
sion data. To do this, we need to posit a probability model
that links the two kinds of data. We roughly estimate the
inputs of this model using unpublished supplementary
data from Shipp and colleagues14 and from a small sub-
set of our samples (six cases). We assume that: 1) if a
patient’s gene expression value is at least 25% greater
than the median level for that gene, their corresponding
immunohistochemical assay outcome will be scored as
4� with 75% probability, 3� with 15% probability, 2�
with 5% probability, 1� with 2.5% probability, and 0 with
0% probability; 2) if a patient’s gene expression value is
at least 25% less than the median level for that gene, their
corresponding immunohistochemical assay outcome will
be scored as 4� with 0% probability, 3� with 2.5%
probability, 2� with 5% probability, 1� with 15% proba-
bility, and 0 with 75% probability; and 3) if a patient’s
gene expression value is within 25% of the median level
for that gene, their corresponding immunohistochemical
assay outcome will be scored as 4� with 0% probability,
3� with 25% probability, 2� with 50% probability, 1�
with 25% probability, and 0 with 0% probability. Alterna-
tively, if the actual intensity of expression were of interest
for analysis, the probability model could be revised to
handle a continuous outcome. For example, immunohis-
tochemical expression and gene expression, or some
transformation of them, could be assumed to be corre-
lated normal variables.

Assumption 4 (Comparability of Patients)

Assumption 3 provides us with a link between the
existing gene expression data of Nutt et al and the
planned immunohistochemistry data for those same pa-
tients. It does not, however, provide us with a way of
generating immunohistochemistry data for the MGH pa-
tients (for whom we do not have gene expression data). If

the MGH cases are sufficiently similar to the Nutt et al
cases, we will be able to use the gene expression data
from the Nutt et al cases to infer gene expression data for
the MGH cases. We are able to partially test this hypoth-
esis with respect to the survival distributions because we
currently do have available the pathological diagnoses
and survival data for the current MGH cases, as well as
for the Nutt et al cases. In fact, the survival distribution of
the Nutt et al oligodendroglioma cases was not signifi-
cantly different from that of the MGH oligodendroglioma
cases (log rank, P value � 0.43) and similarly the survival
distribution of the Nutt et al glioblastoma cases was not
significantly different from that of the MGH glioblastoma
cases (P � 0.70). We assume that the original Nutt et al
set of 21 classic cases are comparable to the classic
MGH cases and that the original Nutt et al set of 29
nonclassic cases are comparable to the nonclassic MGH
cases.

Results and Discussion

The current histopathological classification and grading
systems for malignant gliomas fall short of their ultimate
goals of estimating prognosis and guiding therapy.
Through gene expression profiling, our group recently
identified highly significant genetic markers that could be
used to distinguish glioblastomas and anaplastic oligo-
dendrogliomas with classic textbook histology.5 Further,
we found that genetic classification of the nonclassic
cases provided stronger outcome prediction than did
classification based on standard pathology. In future
work, we will use the initial mRNA profiles to develop
practical protein-based, immunohistochemistry marker
panels for the subgroups. To find the optimal number of
assays that we will need to develop (N), we designed and
conducted a simulation study that implemented our fu-
ture study. Through the simulations, we evaluated the
planned technical and prognostic validations for several
candidate immunohistochemistry panels, in conjunction
with our assumptions.

Simulation Study Design

Initial Selection of Genes Based on Differential
Expression and Assumptions 1 and 2

We initially aimed to select those genes for possible
immunohistochemistry assay development that had the
highest likelihood of displaying differential protein ex-
pression. For a given number of initially considered
genes (N), we selected the half (N/2) that were most
differentially expressed in the classic glioblastomas and
the half (N/2) that were most differentially expressed in
the classic oligodendrogliomas. For further consider-
ation, based on assumption 1 (Table 1), we randomly
selected 50% of these N genes as having correspond-
ingly differential protein expression. For further consider-
ation, based on assumption 2 (Table 1), we also ran-
domly selected 75% or 50% or 25% of these N/2 genes
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as those for which we expect to be successful at opti-
mizing antibodies.

Technical Validation Using the Original Classic
Cases, Incorporating Assumption 3

Given that we had selected the genes for consider-
ation, we next needed to validate that the immunohisto-
chemical panel is able to recognize the classic molecular
signature, as we know the gene expression panel is able
to do. For each of the immunohistochemistry assays ulti-
mately developed (ie, 75% � N/2 or 50% � N/2 or 25% �
N/2 assays) and for each of the original 21 classic cases,
we randomly assigned the immunohistochemistry out-
come (ie, 0, 1�, 2�, 3�, 4�) according to the probability
model given in assumption 3. Although this is a univariate
model, for each gene separately, correlation among the
assay outcomes across genes is naturally induced by the
correlation among the expression values across genes.
Using this simulated set of immunohistochemistry assay
outcomes for the Nutt et al 21 classic cases, we built
k-nearest neighbor classification models, with k � 3, and
calculated the classification error rate (ie, the proportion
of classic cases that were misclassified through use of
the k-NN derived classification rule).

Technical Validation Using the Simulated MGH
Classic Cases, Incorporating Assumption 4

The next step is to validate that the immunohistochem-
ical panel that was selected on the basis of the gene
expression data from original Nutt et al cases is able to
recognize the classic molecular signature among the
MGH cases. To generate the MGH classic gene expres-
sion data, we randomly sampled 135 classic glioblas-
toma cases, and their corresponding collection of gene
expression values, with replacement (see below), from
among the 14 Nutt et al classic glioblastoma cases and
23 classic oligodendroglioma cases, and their corre-
sponding collection of gene expression values, with re-
placement (see below), from among the 7 Nutt et al
classic oligodendroglioma cases. Under sampling with
replacement, each case always has the same probability
of being sampled, regardless of whether it has already
been sampled. This resampling approach amounts to
generating gene expression data for the MGH cases from
the unknown and complicated distribution that generated
the gene expression data for the original cases. It is
justified by assumption 4 and exemplifies the use of
bootstrap methods for power and sample size calcula-
tions.15 We further simulated immunohistochemistry as-
say data for the simulated MGH cases according to the
probability model posited in assumption 3. This induces
variability among even the replicated cases (present due
to the sampling with replacement). Using this simulated
set of immunohistochemistry assay outcomes for the
MGH classic cases, we built k-nearest neighbor classifi-
cation models, with k � 3, and calculated the classifica-
tion error rate.

Prognostic Validation Using the Simulated MGH
Nonclassic Cases

Lastly, we will evaluate the prognostic power of the
immunohistochemical panel, beyond what is afforded by
pathological classification, with regard to patient survival.
To generate the MGH nonclassic gene expression data,
we randomly sampled 158 cases, and their accompany-
ing gene expression values, from the 29 Nutt et al non-
classic cases. We simulated the immunohistochemistry
assay data according to the probability model posited in
assumption 3. We applied the k-NN model derived for the
classic cases to these nonclassic cases to achieve an
immunohistochemistry panel based classification. We fit
a Cox proportional hazards model, with the model-based
classification and the pathological diagnosis as the two
covariates. We recorded whether or not the P value for
the log hazard ratio for the marker panel classification
was less than 0.05.

We repeated the above steps 5000 times. We then av-
eraged the classification error rates and summed the num-
ber of significant P values recorded to estimate the power
for detecting a significant association between the marker
classification and survival, after adjusting for pathological
diagnosis. We repeated all of these steps for a range of
values of N to observe the impact of the number of assays
initially considered on the validation measures of interest. In
addition, we varied the assumed success rate of antibody
optimization (assumption 2). We ran the simulation under
three scenarios: 75% success rate, 50% success rate, and
25% success rate. We could have varied other inputs that
appear in our assumptions, as well. These include the prob-
ability that a gene whose DNA was differentially expressed
will likewise exhibit differential protein expression (assump-
tion 1) and the probabilities associated with the model that
links the gene expression values with the immunohisto-
chemistry assay outcomes (assumption 3). Varying these
inputs would allow for sensitivity analyses of the results with
respect to these underlying assumptions and would be
appropriate if there were uncertainty about the particular
values used in these assumptions.

Simulation Study Results

Table 2 lists the estimated classification error rates,
power, and hazard rates based on simulations with
5000 repetitions each, for a range of values of N, the
number of assays considered for development (de-
pending on assumption 2, the antibody optimization
success rate). We included the minimum N’s possible
for each optimization rate; smaller values did not pro-
duce stable simulation results. Our results indicate that
if our model linking gene expression data to immuno-
histochemistry outcomes is approximately correct and
if we are successful optimizing antibodies 75% of the
time, initial consideration of 30 immunohistochemistry
assays for development, and thus successful develop-
ment of �11 assays, is sufficient to ensure satisfactory
technical and prognostic validation of the panel. If we
achieve only a 25% success rate, and if we initially
consider 90 immunohistochemistry assays for develop-
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ment, also with successful development of �11 as-
says, we will achieve slightly less satisfactory levels of
validation (eg, lower prognostic power of 75% versus
90% in the above example). The reason for this dis-
crepancy in power based on the same number of
assays ultimately developed is that the second sce-
nario of 25% optimization success requires consider-
ation of many more genes for assay development than
the first scenario of 75% optimization success. Be-
cause the genes are ordered with respect to their
differential expression, the first 30 genes considered
will display higher differential expression than the first
90, and thus the 11 assays ultimately selected in each
scenario are not equivalent. That is, those assays se-
lected through initial consideration of the first 30 genes
will likewise display higher differential protein expres-
sion than will those selected through initial consider-
ation of the first 90 genes. More generally, this explains
why the power is not increasing with N; there is a
plateau due to the ordering of the genes.

Conclusions

We have demonstrated, through an example of designing
an immunohistochemistry study for gliomas, a simulation-
based method for assessing the required number of as-
says for development to ensure adequate technical and
prognostic validation. Our simulation study suggests that
we need to consider between 30 and 90 of the most
differentially expressed genes from our earlier gene ex-
pression study for immunohistochemistry assay develop-
ment. This wide range reflects the influence of the as-
sumption of the success rate of antibody optimization.
Based on our laboratory’s experience, we feel comfort-

able with the assumption of a 75% success rate and thus
will consider development of 30 immunohistochemistry
assays. Furthermore, given this assumption, our simula-
tion results indicate that consideration of more genes will
not add any prognostic power to our ultimate goal of
developing a robust method for diagnosis of gliomas that
improves on current pathological classification. Comple-
tion of the planned immunohistochemistry study will fur-
ther help us evaluate the plausibility of these assumptions
for future designs.
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