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Oligonucleotide microarrays are a powerful tool for
profiling the expression levels of thousands of genes.
Different statistical methods for identifying differen-
tially expressed genes can yield different results. To
our knowledge, no experimental test has been per-
formed to decide which method best identifies genes
that are truly differentially expressed. We applied
three statistical methods (dChip, ¢-test on log-trans-
formed data, and Wilcoxon test) to identify differen-
tially expressed genes in previously untreated pa-
tients with chronic lymphocytic leukemia (CLL). We
used a training set of Affymetrix Hul33A microarray
data from 11 patients with unmutated immunoglobu-
lin (Ig) heavy chain variable region (V) genes and 8
patients with mutated Ig V. genes. Differential ex-
pression was validated using semiquantitative real-
time polymerase chain reaction assays and by validat-
ing models to predict the somatic mutation status of
an independent test set of nine CLL samples. The
methods identified 144 genes that were differentially
expressed between cases of CLL with unmutated com-
pared with mutated Ig V; genes. Eighty genes were
identified by Wilcoxon test, 60 by ¢-test, and 65 by
dChip, but only 11 were identified by all three meth-
ods. Greater agreement was found between the #-test
and the Wilcoxon test. Differential expression was
validated by semiquantitative real-time polymerase
chain reaction assays for 83% of individual genes,
regardless of the statistical method. However, the Wil-
coxon test gave the most accurate predictions on new
samples, and dChip, the least accurate. We found that
all three methods were equally good for finding dif-
ferentially expressed genes, but they found different
genes. The genes selected by the nonparametric Wil-

coxon test are the most robust for predicting the
status of new cases. A comprehensive list of all differ-
entially expressed genes can only be obtained by
combining the results of multiple statistical tests. (J
Mol Diagn 2005, 7:337-345)

Oligonucleotide microarrays are a powerful tool for pro-
filing the expression levels of thousands of genes simul-
taneously. Numerous papers have been written describ-
ing the applications of this technology. In the most
straightforward applications, one performs microarray
experiments on multiple samples representing two differ-
ent biologically interesting conditions and then produces
a list of the genes that are differentially expressed.

There are a number of plausible statistical strategies
for choosing this list of genes. For instance, the software
program dChip, which is often used to analyze Affymetrix
oligonucleotide array data, bases its identification of dif-
ferentially expressed genes on the construction of a con-
fidence interval for the fold change." The dChip statistical
model works on the original scale of the data, assuming
independent, identically distributed normal errors in the
estimates of expression levels. In contrast, researchers
using spotted cDNA microarrays have almost uniformly
concluded that expression values must be log-trans-
formed to achieve approximate normality of the error
distributions. Thus, they commonly perform two-sample
t-tests on the log-transformed data. It cannot be assumed
that the dChip analysis, performed on the original scale
data, yields the same or even a similar list of differentially
expressed genes as the t-test performed on log-trans-
formed data.

Both dChip and the t-test are examples of parametric
statistical methods; that is, they assume that the distribu-
tion of the data can be completely described by a small
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number of parameters, in the same way that a normal
distribution is determined by its mean and SD. Nonpara-
metric methods do not make the same kinds of distribu-
tional assumptions. The Wilcoxon test, for example,
works with the ranks instead of the measured intensities.
Thus, it gives the same answer on the original data and
on the log-transformed data. This test may not be as
sensitive as a test based on a parametric model that
correctly describes the true error structure, but it is also
less likely to be led astray than a test that uses an incor-
rect error model.

To our knowledge, no experimental test has been per-
formed to decide which of these three methods does the
best job of identifying genes that are truly differentially
expressed. In this paper, we apply all three methods to
experiments performed using Affymetrix Hu133A oligo-
nucleotide microarrays separated into a training set and
a blinded, independent test set. The microarrays were
hybridized with samples obtained from previously un-
treated patients with CLL. The training set included 8
cases with mutated V,, genes and 11 cases with unmu-
tated Vi, genes. The presence or absence of somatic
mutations in the Ig V,, genes separates patients into two
prognostic groups; patients with unmutated V,, genes
(about 40% of patients) have a median survival of 8 years
compared with 25 years for patients with mutated V,
genes (about 60% of patients).>® We found that the lists
of differentially expressed genes obtained using the dif-
ferent statistical methods showed substantial differences.
We selected a subset of differentially expressed genes
for validation experiments using semiquantitative real-
time polymerase chain reaction (QRT-PCR) assays. We
also used the gene lists to predict the mutation status in
a test set of nine additional patient samples, and the
predictions were validated by performing sequence anal-
ysis of the Vi, genes.

Materials and Methods
Sample Collection and RNA Preparation

CLL samples were collected from 28 untreated patients
after obtaining informed consent. Total RNA was pre-
pared from CD19-positive CLL cells as described
previously.?

Evaluation of Ig V,, Genes for Somatic
Hypermutation

The somatic mutation status of the Ig V,, genes was
determined as described previously.* Briefly, total RNA
was reverse transcribed using an oligo-d(T) primer and a
First-Strand cDNA Synthesis kit (Amersham Biosciences,
Piscataway, NJ). The cDNA was amplified in a PCR re-
action using a mixture of six 5" V,, leader primers that
amplify all seven V,, families, together with a 3’ constant
region primer (Cu) in the presence of reaction buffer,
dNTPs (2.5 mmol/L), and HotStar TagDNA polymerase
(Qiagen, Inc., Valencia, CA). After incubation at 94°C for
15 minutes, the cDNA was amplified for 30 cycles of 94°C

for 1 minute, 56°C for 1 minute, and 72°C for 1 minute. In
cases that failed to amplify using this strategy, we used a
mixture of V., Framework 1 primers (V BASE database;
http://www.mrc-cpe.cam.ac.uk/PRIMERS.php?menu=901)
and a 3’ J,; consensus primer (5'-AACTGAGGAGACGGT-
GACC-3'). We performed two independent PCR amplifica-
tion reactions for each sample. Amplified products were
separated by agarose gel electrophoresis and purified us-
ing the GeneClean Il kit (Qbiogene, Carlsbad, CA). The
PCR products were sequenced directly using the 3" PCR
primer and an ABI Prism 3700 or 3730 DNA Analyzer
(Applied Biosystems, Foster City, CA).

Target Preparation, Microarray Hybridization,
Image Quantification, and Normalization

Target preparation, microarray hybridization, image
quantification, and normalization were performed as de-
scribed previously.® Briefly, 5 ug of total RNA was re-
verse-transcribed in a 20-ul reaction with 200 U of Su-
perScript Il (Invitrogen Corporation, Carlsbad, CA) and
100 pmol of T7-(dT)24 primer (5'-GGCCAGTGAATTGTA-
ATACGACTCACTATAGGGAGGC GG-(dT)24-3’) in 1X
first-strand buffer (Invitrogen) at 42°C for 1 hour. The
second-strand synthesis was performed at 16°C for 2
hours, in the presence of Escherichia coli enzymes, DNA
Polymerase | (40 U), DNA ligase (10 U), RNase H (2 U),
and 1X second-strand buffer (Invitrogen). The double-
stranded cDNA was blunt-ended using 20 U of T4 DNA
polymerase, purified by phenol/chloroform extraction,
and transcribed in the presence of biotin labeled-ribo-
nucleotides, using the BioArray HighYield RNA transcript
labeling kit (Enzo Laboratories) according to the manu-
facturer’s instructions. The biotin-labeled cRNA was pu-
rified using an RNeasy minicolumn (RNeasy kit; Qiagen)
and fragmented at 94°C for 35 minutes in 1X fragmen-
tation buffer (40 mmol/L Tris-acetate, pH 8.0, 100 mmol/L
potassium acetate, and 30 mmol/L magnesium acetate).

The Affymetrix GeneChip system was used for hybrid-
ization, staining, and imaging of the arrays. Hybridization
cocktails (300 ul) containing 15 ug of cRNA and exoge-
nous hybridization controls were hybridized to Hu133A
GeneChips (Affymetrix, Santa Clara, CA) overnight at
42°C. Hybridized fragments were detected using strepta-
vidin linked to phycoerythrin (Molecular Probes, Eugene,
OR). The GeneChips were scanned and imaged using
Affymetrix Microarray Analysis Suite, version 5.0.

Data from all 28 microarrays were loaded into dChip
version 1.3 for normalization and quantification.® Normal-
ization was performed using the default settings in the
software. Expression values were quantified using the
PerfectMatch-only model. The expression levels esti-
mated by dChip were exported and loaded into S-Plus
(Insightful Corp., Seattle, WA) for further analysis. Esti-
mated values equal to O were replaced by the threshold
value 0.01; this modification only affected 17 measure-
ments in the entire data set.



QRT-PCR Assays

The QRT-PCR assays were performed using TagMan
technology and a PRISM 7000 Sequence Detector (Ap-
plied Biosystems). PCR was carried out in a 25-ul reac-
tion volume that contained 50 ng of cDNA, 1X TagMan
Universal PCR Master Mix without AmpErase UNG, unla-
beled gene-specific PCR primers, and a 6-carboxy fluo-
rescein-labeled TagMan MGB probe. The primer and
probe sets were specific for the following genes:
KIAA0892, AGPAT2, DDX27, NEU3, FSTL3, NOL5A,
TRAF4, TNFRSF1B, HLA-DQB1, SPTAN1, BTN3A2, and
APOD (Assays-on-Demand Gene Expression system;
Applied Biosystems). Amplification of 18S ribosomal RNA
(rBRNA) was performed in all cases to normalize the gene
expression values. The probe for 18S rRNA is labeled
with VIC (Pre-Developed TagMan Assay Reagents; Ap-
plied Biosystems). After an incubation at 95°C for 10
minutes, the cDNA was amplified for 40 cycles of dena-
turation at 95°C for 15 seconds and combined annealing/
extension at 60°C for 1 minute. Each sample was ana-
lyzed in duplicate. Standard curves for each gene and
18S rRNA were constructed using serially diluted cDNA
prepared from a Burkitt ymphoma cell line (GA-10). The
standards were analyzed in triplicate. Sequence detec-
tion software (SDS version 1.7; Applied Biosystems) was
used to analyze the fluorescence emission data after
PCR. The threshold cycle (Ct) values of each sample and
the standards were exported to Microsoft Excel for further
analysis. The Ct represents the cycle number at which
fluorescence passes a fixed threshold. Standard curves
were generated by plotting the Ct versus the amount of
target cDNA in each dilution. Gene expression levels in
test samples were expressed as the ratio of the gene of
interest to 18S rRNA expression.

Statistical Analysis of Microarray Data

Differential expression was assessed using three differ-
ent methods: dChip, t-test, and Wilcoxon rank-sum test.
First, dChip was used to compute 90% confidence inter-
vals around estimates of the fold change. Genes were
selected as differentially expressed if the lower bound of
fold change was greater than 1.2-fold and if the differ-
ence in mean expression levels was greater than 100.
Next, two-sample t-test statistics and their associated P
values were computed for each probe set on transformed
data after computing the base-two logarithm. To account
for multiple testing, we modeled the P values as a B-uni-
form mixture.” This model allowed us to estimate the false
discovery rate (FDR);® we selected genes as differentially
expressed by choosing a P-value cutoff that ensured that
FDR was <10%. Finally, we computed Wilcoxon rank-
sum statistics for each probe set. To account for multi-
plicities, we used an empirical Bayes method to estimate
the posterior probability of differential expression.® We
selected genes with a posterior probability of differential
expression of at least 80%, based on the most conser-
vative prior probability estimate that ensured that none of
the posterior probability estimates became negative.
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Figure 1. Histogram of the number of times a probe set was called present
in 19 microarray experiments. About one-fourth of the genes were never
present, and about one-fourth were present in all samples.

Models for predicting the mutation status of new cases
were built from the training data of 19 patient samples by
combining principal components analysis and linear dis-
criminant analysis (LDA). For each method, we first se-
lected the differentially expressed genes as described
above. We then performed principal components analy-
sis on the 19 samples using the selected genes. Next, we
performed LDA using the first k principal components to
construct predictors for different values of k. Test sam-
ples were projected into the principal component space,
and their mutation status was predicted using LDA and a
uniform prior.

Results

Identification of Differentially Expressed Genes
Using Three Different Statistical Methods:
dChip, t-Test, and Wilcoxon Test

Probe sets were filtered to remove any probe set that was
not called present at least once in the training set of 19
microarrays (Figure 1). This filtering step eliminated 5550
probe sets, leaving 16,733 probe sets for further analysis.
First, we used dChip to compute 90% confidence inter-
vals around estimates of fold change for each of the
16,733 probes set across the 19 training samples.™ ' We
selected genes as differentially expressed if the lower
bound of fold change was at least 1.2-fold and if the
difference in mean expression was at least 100. (These
parameters are the default settings for the software.)
Using these parameters, we found 65 differentially ex-
pressed genes. Of these genes, 49 were overexpressed
in unmutated samples, and 16 were overexpressed in
mutated samples.

Next, we performed individual two-sample t-tests on
the log-transformed expression values of 16,733 probe
sets. We computed P values for each probe set, and we
modeled the collection of P values as a B-uniform mix-
ture.® The B-uniform mixture model is based on the idea
that P values for genes that are not differentially ex-
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Figure 2. Analysis of the P values arising from 16,733 frtests as a B-uniform mixture. Top left: Histogram of the observed P values, with overlaid curves
representing the division into uniform and B contributions. Top right: Relationship between cutoff for Pvalues and the false discovery rate. Bottom left: Relation
between cutoff for P values and the posterior probability of differential expression. Bottom right: Receiver operating characteristics curve associated with

selecting different P value cutoffs.

pressed should be uniformly distributed, whereas P val-
ues for genes that are differentially expressed should be
strongly concentrated near zero (Figure 2). With this
model, one can estimate the FDR associated with each
possible cutoff on P values; we selected a cutoff by
setting the FDR <10%. This bound on the FDR yielded a
P-value cutoff of P < 0.00088, which corresponded
to setting t > 4.01. Using this method, we found 60
differentially expressed genes, with 39 overexpressed in
unmutated samples and 21 overexpressed in mutated
samples.

Finally, we computed Wilcoxon rank-sum statistics for
all 16,733 probe sets. With 8 mutated and 11 unmutated
samples, the possible rank-sum statistics range from 36
to 124, with a median of 80. We summarized the statistics
by preparing a histogram of the number of times each
rank sum was observed (Figure 3, top). The ratio of the
theoretical Wilcoxon distribution to the observed distribu-
tion was fit using Poisson regression.® Given a prior es-
timate, p,, of the number of genes that are not different
between the two groups of samples, we computed the
posterior probability that an observed rank-sum repre-

sented a differentially expressed gene (Figure 3, bottom).
We chose the smallest prior proportion (p, = 0.81) that
ensured that all estimates of posterior probability re-
mained non-negative. We selected genes as differentially
expressed if their posterior probability was at least 80%.
Using this criterion, we found 80 differentially expressed
genes. Of these, 56 were overexpressed in unmutated
samples, and 24 were overexpressed in mutated
samples.

Comparison between the Three Statistical
Methods

All three methods found more genes overexpressed in
the unmutated samples than in the mutated samples.
However, they identified different sets of differentially
expressed genes. We have summarized the agreement
between the three methods in a Venn diagram (Figure 4).
Taken together, the methods identified 144 different
probe sets as being differentially expressed, but only 11
of these probe sets were identified by all three methods.
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Figure 3. Analysis of the Wilcoxon rank-sum statistics of 16,733 probe sets
using an empirical Bayes method. Top: Histogram of the empirically ob-
served distribution of rank-sum statistics, with an overlaid curve representing
the theoretical distribution. Bottom: Posterior probability that an observed
rank sum represents a differentially expressed gene.

The 11 genes identified by all three statistical methods
are listed in Table 1. None of these 11 genes have been
reported previously to be differentially expressed in a
microarray study of CLL. The mRNA for the gene ETV5
has been reported to be elevated in CLL patients,’" and
the synthesis of GMP may be altered in CLL cells com-

T Test Wilcoxon

dChip

Figure 4. Venn diagram showing the level of agreement between three
different statistical methods for selecting differentially expressed genes from
the same data set.
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pared with normal peripheral blood lymphocytes.’®'3 A
complete list of all 144 genes is contained in Supplemen-
tary Table S1 at http://jmd.amjpathol.org/.

The best agreement between methods was between
the t-test and the Wilcoxon test, which identified 43 dif-
ferentially expressed genes in common. This overlap rep-
resents 72% of all 60 genes found by the t-test and 54%
of all 80 genes found by the Wilcoxon test. In contrast, 47
(72%) of the 65 genes identified using dChip were not
found by either of the other two methods.

We performed two-way hierarchical clustering on the
samples using each of the three sets of genes (Figure
5)." For this analysis, both the CLL samples and the
genes were clustered using average linkage and a dis-
tance metric based on the Pearson correlation coefficient
between the log-transformed intensities. For display pur-
poses only, we standardized the log-transformed inten-
sities for each gene by subtracting the mean across the
samples and dividing by the SD

Validation of Differentially Expressed Genes by
QRT-PCR Assays

We selected 12 genes identified as differentially ex-
pressed by the different statistical methods in the training
set of 19 cases for validation using QRT-PCR assays. To
get the best test of the reliability of the methods, we only
validated genes that were found by dChip but not by the
t-test or Wilcoxon test, or vice versa. Because the agree-
ment between the t-test and Wilcoxon test was so strong,
we combined their results when selecting genes for val-
idation. We investigated six genes selected by each test,
three overexpressed and three underexpressed in mu-
tated cases of CLL, in a randomly selected subset of the
samples that contained four mutated and four unmutated
CLL cases.

The results are summarized in Table 2. Ten of the 12
genes were successfully validated using QRT-PCR, that
is, 1) the log-transformed measurements of gene expres-
sion levels determined using the microarrays were posi-
tively correlated with the QRT-PCR measurements, and
2) the sign of the t statistic computed using the QRT-PCR
data agreed with the direction of expression change
found in the microarray data. Of the two genes that failed
to be validated by QRT-PCR, one (FSTL3) had been
identified by the t-test or Wilcoxon test, and one
(SPTAN1) had been identified by dChip.

Validation of Sets of Selected Genes by
Predicting Mutation Status in an Independent
Data Set

In addition to the 19 CLL samples in the training set, we
performed microarray experiments on nine additional
CLL samples whose Vi, mutation status was unknown at
the time the clustering analysis was performed. These
samples clustered in different ways depending on the set
of genes selected as differentially expressed (Figure 5).
We built models to predict the mutation status of the new
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Table 1. Genes Identified as Differentially Expressed between Mutated and Unmutated Cases of CLL by All Three Statistical
Methods
Probe set t Statistic* Gene Description
203348_s_at -5.52 ETV5 ets variant gene 5 (ets-related molecule)
205383_s_at —4.75 ZNF288 Zinc finger protein 288
202150_s_at —4.51 NEDD9 Neural precursor cell expressed, developmentally
down-regulated 9
209155_s_at 417 NT5C2 5’-Nucleotidase, cytosolic Il
209186_at 4.19 ATP2A2 ATPase, Ca?* transporting, cardiac muscle, slow
twitch 2
207668_x_at 4.20 TXNDC?7 Thioredoxin domain containing 7
212442 _s_at 4.78 LASS6 Longevity assurance homolog 6
203593_at 4.95 CD2AP CD2-associated protein
218029_at 513 FLJ13725 Hypothetical protein FLJ13725
201088 _at 5.24 KPNA2 Karyopherin a2 (RAG cohort 1, importin at)
212652_s_at 6.05 SNX4 Sorting nexin 4

*Negative t statistics identify genes that are overexpressed in mutated samples; positive t statistics identify genes that are overexpressed in

unmutated samples.

samples separately for each method of gene selection.
Then we performed sequence analysis to determine the
mutation status of these nine additional samples and to
validate the accuracy of the predictions. Sequence anal-
ysis demonstrated that seven were mutated and two were
unmutated.

To predict the status of new samples, we performed
LDA using the first few principal components derived
from each set of selected genes. For each method, we
chose the minimal number of principal components
needed to explain 80% of the variation. This rule required
four principal components for the t-test and Wilcoxon
test, and five principal components for dChip. The anal-
ysis correctly predicted the mutation status of seven of
nine samples (78%) using the Wilcoxon test, six of nine
samples (67%) using the t-test, and five of nine samples
(56%) using dChip. We also found that the number of
principal components that we used for the analysis max-
imized the prediction accuracy of each method. In sev-
eral cases, using fewer principal components caused the
method to incorrectly predict the status of 1 or 2 of the
training samples. In every case, using more principal
components reduced the prediction accuracy on the val-
idation set.

Validation of Differential Expression Using
Additional Microarrays

Finally, we looked at all 144 genes that were found to be
differentially expressed by at least one method using the
original training set of 19 CLL samples. Our goal was to
quantify the number of genes that still appeared to be
differentially expressed after incorporating the data from
the nine additional samples. We observed that many of
the genes showed some evidence of differential expres-
sion by all three methods, regardless of the method used
to select them. For example, for 136 genes, the unad-
justed P value for the t-test was P < 0.05, and 141 genes
had a lower bound of fold change >1. Based on this
observation, we determined the number of genes that
satisfied similar criteria for each method, both on the
training set and on the full data set (Table 3). When we

used stringent criteria for reproducibility, ie, a gene had
to satisfy the same criterion on the full data set that was
used to select it from the training set, the confirmation
rates were modest (41.7% for the t-test, 36.3% for the
Wilcoxon test, and 36.9% for dChip). When we used less
stringent criteria, the confirmation rates were high (85.5%
by the t-test, 86.8% by the Wilcoxon test, and 80.9% by
dChip). The latter confirmation rates are compatible with
the validation by QRT-PCR, which validated 10 of 12
selected genes (83.3%).

Discussion

We applied three different established statistical methods
to microarray data to identify differentially expressed
genes in a training set of 19 CLL samples, 11 with unmu-
tated Ig Vi, genes and 8 with mutated Ig V,, genes. Our
analysis demonstrated that the three methods (the statis-
tical model used by dChip, the t-test with correction for
multiple testing using a B-uniform mixture model, and the
Wilcoxon rank-sum test with correction for multiple testing
using an empirical Bayes model) produced very different
lists of differentially expressed genes. Of the 144 genes
that were identified as differentially expressed by at least
one method, only 11 were identified as differentially ex-
pressed by all three methods. Unsupervised clustering of
the samples using genes selected by the different meth-
ods displayed different structures, and predictions of the
mutation status on a blinded, independent set of nine
CLL samples gave different results.

There are two broad classes of statistical methods:
parametric and nonparametric. Parametric methods
model the data using distributions specified by a small
number of parameters. Nonparametric methods do not
make the same kinds of distributional assumptions. The
two parametric methods that we applied, dChip and t-
test, use different error models. The model used by dChip
to compute a confidence interval for estimates of fold
change assumes that the errors are normally distributed
on the original measurement scale. In contrast, the model
that underlies the application of the t-test after log trans-
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Figure 5. Results of two-way clustering of 28 samples using the genes found to be differentially expressed using three different statistical methods. The samples
include 8 mutated samples (blue), 11 unmutated samples (orange), and 9 samples whose status was unknown (gray). Each row contains standardized log
expression values for one gene.

formation assumes that the measurement errors are nor- test is a nonparametric method; it gives results that do not
mal on the transformed scale. It is unlikely that both depend on the choice of a measurement scale. On our
assumptions can be true simultaneously. The Wilcoxon data, the most accurate predictions were achieved using
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Table 2. Validation of Microarray Results by QRT-PCR
Probe set Gene Array t stat.* LBFC* UBFC* Subset t stat.* QRT-PCR t stat.* Correlation*
212505_s_at KIAA0892 4.07 1.06 1.24 212 0.87 0.17
210678_s_at AGPAT2 4.30 1.18 1.61 3.00 1.96 0.51
219108_x_at DDX27 4.76 1.07 1.28 3.64 1.44 0.42
206948 _at NEU3 —4.67 —1.07 —1.26 —-8.18 —2.88 0.79
203592_s_at FSTL3 —-3.93 —1.06 —-1.24 —2.59 1.80 -0.78
200874 _s_at NOL5A —3.63 —1.07 —-1.20 —2.61 —2.64 0.60
202871 _at TRAF4 2.37 1.21 1.90 2.71 1.51 0.12
203508 _at TNFRSF1B 2.39 1.24 2.47 2.73 2.53 0.85
212999 _x_at HLA— DQBH1 2.61 1.62 5.99 0.65 0.81 0.93
214925_s_at SPTAN1 —-3.11 —1.37 —3.85 —8.01 1.21 -0.25
209846_s_at BTN3A2 —2.90 —-1.21 —1.91 —2.48 —0.50 0.27
201525_at APOD —2.26 —-1.26 —4.28 —1.63 —-0.92 0.86

Array t stat., the t-statistic based on 19 training set microarray experiments; LBFC, the lower bound of the 90% confidence intervals of fold change
as estimated by dChip; UBFC, the upper bound of the 90% confidence intervals of fold change as estimated by dChip; Subset t stat.: the t statistic
based on the microarray data for the eight samples selected for QRT-PCR; PCR t stat.: the t statistic based on the QRT-PCR data; Correlation, the
Pearson correlation coefficient between the microarray and the QRT-PCR data.

*Negative t statistics identify genes that are overexpressed in mutated samples; positive t statistics identify genes that are overexpressed in

unmutated samples.

genes selected by the nonparametric Wilcoxon test. The
least accurate predictions were achieved using genes
selected by dChip. Genes selected by the f-test gave
intermediate accuracy, and this set of genes showed
substantial agreement with the list produced by the Wil-
coxon test. This finding suggests that neither parametric
model perfectly describes the data, but that the t-test
error model is closer to the truth than the dChip error
model.

The best models of microarray data may ultimately
include both additive errors (normal on the original scale)
and multiplicative errors (normal on the log scale). There
are, after all, numerous sources of variability in microar-
ray studies. One source arises from the technology: when
dChip quantifies gene expression using multiple probes
in a probe set on a single array, the method estimates the
technological variability. This technological variability
could well be normally distributed on the original scale.
However, a second and critically important source of
variability across multiple microarrays is biological. The
dChip model assumes that the biological variability is
also normal on the original scale. Models used in the

Table 3. Number of Genes (out of 144) Satistying Various
Criteria in the Training Set of 19 Samples and
Confirmed in the Full Data Set of All 28 Samples

Training Confirmed

Criterion samples (%)

t-test, P < 0.10 138 118 (85.5)
t-test, P < 0.05 136 111 (81.6)
t-test, P < 0.0009 60 25 (41.7)
Wilcoxon, P < 0.10 136 118 (86.8)
Wilcoxon, P < 0.05 129 101 (78.3)
Wilcoxon, P < 0.015 80 29 (36.3)
LBFC > 1.0 141 114 (80.9)
LBFC > 1.1 106 56 (52.8)
LBFC > 1.2 71 32 (45.1)
LBFC > 1.0 and D > 100 85 44 (51.8)
LBFC > 1.1 and D > 100 78 36 (46.2)
LBFC > 1.2 and D > 100 65 24 (36.9)

LBFC, lower bound of fold change based on dChip 90% confidence
interval; D, difference of mean expression between mutated and
unmutated samples.

analysis of spotted cDNA arrays, like the t-test applied in
this paper, have typically assumed that the biological
variability is normal on the log scale. The first model of
cDNA microarray data that explicitly incorporated both
additive and multiplicative error terms was constructed
by Rocke and Durbin.'® Their ideas were later extended
to develop variance-stabilizing transformations for mi-
croarray data.'®'” Related ideas have been developed
in a B-binomial model for microarray data with replica-
tions."® To our knowledge, no one has yet applied similar
ideas to the analysis of oligonucleotide array data.

Despite the differences in prediction accuracy, at-
tempts to validate the differential expression of individual
genes were equally successful regardless of the statisti-
cal method used to select the genes. Semiquantitative
real-time PCR assays confirmed the differential expres-
sion of five of six genes found only by dChip and five of
six genes found only by the t-test or Wilcoxon test. Vali-
dation by investigating the full set of 28 microarrays also
had similar success rates regardless of the method ap-
plied. This finding suggests that all three methods can
successfully identify individual genes that are differen-
tially expressed and that a comprehensive list of all dif-
ferentially expressed genes can only be obtained by
combining the results of multiple statistical tests.

The 11 genes that were identified by all three statistical
methods include several genes whose known functions
suggest that they may play an important role in the biol-
ogy of CLL. The genes overexpressed in unmutated
cases of CLL include Karyopherin a2 (KPNA2) and CD2-
associated protein (CD2AP). KPNA2 (also known as
RCH1) is a nuclear transport protein that binds to the
nuclear localization signal of several proteins and escorts
them into the nucleus. KPN2A has been shown to bind
RAG-1 and BSAP (Pax-5), proteins that are critical for
B-cell development.'®?° CD2AP is an adapter protein
that facilitates CD2 coupling to the actin cytoskeleton.?’
CD2, a T-cell antigen that is aberrantly expressed by a
subset of cases of CLL,?? is required for the molecular
segregation that occurs at the contact site between the
T-cell and the antigen-presenting cell and for full T-cell



activation.?’ The genes overexpressed in somatically

mutated cases of CLL include NEDD9 and ZNF288.
NEDD?9 (also known as HEF1) is believed to be an im-
portant component in the cytoskeleton-linked signaling
cascade. HEF1 is phosphorylated after ligation of B1
integrin or the B-cell receptor.?® ZNF288 (also known as
DPZF) is a zinc finger protein that is highly homologous to
BCL6 and is also located on the long arm of chromosome
3.2% Itis expressed by dendritic cells, monocytes, B cells,
T cells, and B-cell lymphoma cell lines.

The joint list of 144 differentially expressed genes is no-
table not only for what it includes, but for what it omits.
Neither CD38 nor ZAP70 was found to be differentially
expressed in the initial data set of 19 samples. Initial reports
suggested that CD38 was strongly associated with mutation
status in CLL patients,? but later reports suggested instead
that CD38 was an independent prognostic factor.®®> Our
findings support the latter interpretation. The t statistic for
CD38wast = —0.38 (P = 0.71) on the original 19 samples,
and dChip estimated the fold change (FC) to be FC =
—1.07 (90% CI = (—0.93, —1.22)). The results on the full set
of 28 samples were comparable. ZAP70 has also been
reported as strongly differentially expressed between mu-
tated and unmutated CLL samples.?%2” ZAP70 is a T-cell/
NK-cell signaling molecule that is expressed by the majority
of cases of CLL with unmutated VH genes. In the original set
of 19 samples, we found slight evidence of overexpression
in the unmutated cases (t = 2.15, P = 0.046; FC = 1.71,
90% CI = (1.16, 2.61)) that was inadequate to satisfy any of
our selection criteria. When we analyzed the full set of 28
microarrays, however, the evidence for differential expres-
sion of ZAP70 was much stronger (t = 3.33, P = 0.0027;
FC = 1.70, 90% CI = (1.30, 2.32)). Although this finding
supports the differential expression of ZAP70, it suggests
that the magnitude of differential expression may be smaller
or less consistent than previously reported.
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