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Pharmacogenomics aims to identify the inherited basis
for interindividual differences in drug response, and
translate this to molecular diagnostics that can be used
to individualise drug therapy. This review uses a number
of published examples of inherited differences in drug
metabolising enzymes, drug transporters, and drug
targets (for example, receptors) to illustrate the potential
importance of inheritance in determining the efficacy
and toxicity of medications in humans. It seems that this
field is at the early stages of developing a powerful set
of molecular diagnostics that will have profound utility in
optimising drug therapy for individual patients.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pharmacogenomics is a rapidly emerging field

that aims to elucidate the genetic basis for

interindividual differences in drug response,

using genome wide approaches to identify

genetic polymorphisms that govern an individu-

al’s response to specific drugs.1–4 As described in

the initial reports from the human genome

project,5 there are over 1.4 million single nucle-

otide polymorphisms (SNPs) in the human

genome, with over 60 000 of these residing in the

coding region of human genes, and the number

of SNPs will grow as more humans are studied.

Some of these SNPs have already been associated

with significant changes in the metabolism or

effects of commonly used drugs and are begin-

ning to make their way into clinical medicine

as molecular diagnostics.2–4 For some genetic

polymorphisms (for example, thiopurine

S-methyltransferase (TPMT), cytochrome

P4502D6), monogenic traits have a marked effect

on drug disposition (for example, pharmacoki-

netic changes attributable to aberrant drug

metabolism), and people who inherit the enzyme

deficiency must be treated with substantially

different doses of some affected drugs (for

example, 5%–10% of the standard mercaptopu-

rine or azathioprine dose in patients inheriting

two mutant TPMT alleles).6–8 Likewise, polymor-

phisms in drug targets (for example, β2 adreno-

ceptor, 5-lipoxygenase) have been shown to

change the sensitivity of patients to treatment

with medications that interact with these targets

(for example, β agonists, zileuton), changing the

pharmacodynamics of drug response.9 10 Because

most drug effects are determined by the interplay

of several gene products that govern the pharma-

cokinetics and pharmacodynamics of medica-

tions, pharmacogenomics is increasingly focused

on elucidating polygenic determinants of drug
effects (fig 1).

The potential importance of pharmacogenetics
has been recognised for many years; clinical
observations of inherited differences in drug
effects were first reported in the 1950s11–14 giving
rise to the field of “pharmacogenetics”, which has
now been embraced by a broader spectrum of
academia and industry, giving birth to “pharma-
cogenomics”. The two terms are commonly used
interchangeably to describe genetic determinants
of drug disposition and response. There are now
numerous examples establishing that interindi-
vidual differences can be attributed, at least in
part, to polymorphisms in genes encoding drug
metabolising enzymes, drug transporters and/or
drug targets (for example, receptors, enzymes).1–4

While it is clear that many non-genetic factors
influence the effects of medications, including a
person’s age, race, sex, organ function, concomi-
tant therapy, disease severity, and drug interac-
tions, inherited determinants of drug disposition
and effects remain stable for a person’s lifetime
and can have marked effects, independent of the
non-genetic factors.

The human genes involved in many pharmaco-
genetic traits have now been isolated, their
molecular mechanisms elucidated, and their
clinical importance more clearly defined (re-
viewed in references1–4). This review provides a
number of examples of genetic polymorphisms
that determine a person’s response to drugs, and
how this can be translated to clinical practice via
molecular diagnostics (genotyping) to guide the
selection of medications and drug doses that are
optimal for the individual patient.

POLYMORPHISMS IN GENES
INFLUENCING DRUG DISPOSITION
While pharmacogenetics began with a focus on

drug metabolism, it has now been extended to all

aspects of drug disposition, including a growing

list of drug transporters that influence drug

absorption, distribution, and excretion (table 1).1–4

Drug metabolising enzymes
There are over 30 families of drug metabolising

enzymes in humans,1 and essentially all have

genetic variants, many of which cause functional

changes in the proteins encoded, and thereby

change the metabolism of drugs.

Thiopurine methyltransferase (TPMT) and
azathioprine, mercaptopurine, or
thioguanine therapy
The genetic polymorphism of TPMT is one of the

most well developed examples of clinical pharma-

cogenomics. TPMT catalyses the S-methylation of

. . . . . . . . . . . . . . . . . . . . . . .

Correspondence to:
Dr W E Evans, St Jude
Children’s Research
Hospital, 332 N
Lauderdale, Memphis, TN
38101–0318, USA;
william.evans@stjude.org
. . . . . . . . . . . . . . . . . . . . . . .

ii10

www.gutjnl.com

http://gut.bmj.com


the thiopurine agents azathioprine, mercaptopurine and

thioguanine.15 16 These agents are commonly used for a diverse

range of medical indications, including leukaemia, rheumatic

diseases, inflammatory bowel disease, and solid organ

transplantation. The principal cytotoxic mechanism of these

agents is generally considered to be mediated via the incorpo-

ration of thioguanine nucleotides (TGN) into DNA. Thus, thi-

opurines are inactive prodrugs that require metabolism to

TGN to exert cytotoxicity. This activation is catalysed by a

multi-enzyme pathway, the first of which is hypoxanthine

phosphoribosyltransferase (HPRT). Alternatively, these agents

can be inactivated via oxidation by xanthine oxidase or methy-

lation by TPMT. In haematopoietic tissues, xanthine oxidase is

negligible, leaving TPMT as the only inactivation pathway.

TPMT activity is highly variable and polymorphic in all large

populations studied to date; about 90% of individuals have

high activity, 10% have immediate activity, and 0.3% have low

or undetectable enzyme activity.17 18 Numerous studies have

shown that TPMT deficiency patients are at high risk for

severe, and sometimes fatal, haematological toxicity.6–8

The molecular basis for polymorphic TPMT activity has now
been defined for most patients. While eight TPMT alleles have
been identified, three alleles (TPMT*2, TPMT*3A, TPMT*3C)
account for about 95% of intermediate or low enzyme activity
cases (fig 2).16–20 All three alleles are associated with lower
enzyme activity, because of increased rates of proteolysis of the
mutant proteins.21 22 The presence of TPMT*2, TPMT*3A, or
TPMT*3C is predictive of phenotype; patients with one wild
type allele and one of these variant alleles (that, heterozygous)
have intermediate activity and patients inheriting two variant
alleles are TPMT deficient.17 18 While most studies have used
erythrocytes as a surrogate tissue for measuring TPMT activ-
ity, studies have also shown that TPMT genotype determines
TPMT activity in leukaemia cells, as would be expected for
germline mutations.23 By using allele specific PCR or
PCR-RFLP to detect the three signature mutations in these
alleles, a rapid and comparatively inexpensive assay is
available to identify >90% of all mutant alleles.17 In white
populations, TPMT*3A is the most common mutant TPMT
allele (3.2%–5.7% of TPMT alleles), while TPMT*3C has an
allele frequency of 0.2%–0.8% and TPMT*2 represents
0.2%–0.5% of TPMT alleles.16 17 Studies in white, African, and

Asian populations have demonstrated the broad utility of this
approach,24–27 while revealing that the frequency of these
mutant TPMT alleles differs among various ethnic popula-
tions. For example, East and West African populations have a
frequency of mutant alleles similar to white populations, but
all mutant alleles in the African populations are TPMT*3C.25

Among African-Americans, TPMT*3C is the most prevalent
allele, but TPMT*2 and TPMT*3A are also found, reflecting the
integration of white and African-American genes in the US
population.24 In Asian populations, TPMT*3C is the predomi-
nant mutant allele (100% of mutant alleles in published stud-
ies to date).16 27

Interest in TPMT pharmacogenetics has been fuelled by the
finding that TPMT genotype identifies patients who are at risk
of toxicity from mercaptopurine or azathioprine. Patients with
a homozygous mutant or compound heterozygous genotype
are at very high risk of developing severe haematopoietic tox-
icity, if treated with conventional doses of thiopurines.8 28 More
recent studies have now shown that patients who are hetero-
zygous at the TPMT gene locus are at intermediate risk of dose
limiting toxicity.6 7 In a study of azathioprine for rheumatic
disease, patients with wild type TPMT received treatment for a
median 39 weeks without complications compared with a
median of two weeks in patients heterozygous for one mutant
TPMT allele and one wild type allele.6 A second study in Japa-
nese rheumatic disease patients receiving azathioprine re-
cently confirmed the importance of a heterozygous TPMT
genotype for predicting systemic toxicity.29 A more quantita-
tive analysis of mercaptopurine for childhood ALL found that
TPMT deficient patients tolerated full doses of mercaptopu-
rine for only 7% of weeks, whereas heterozygous and
homozygous wild type patients tolerated full doses for 65%
and 84% of scheduled weeks of treatment over the 2.5 years of
treatment, respectively.6 The percentage of weeks in which
mercaptopurine dose had to be decreased to prevent toxicity
was 2%, 16%, and 76% in wild type, heterozygous, and homo-
zygous mutant individuals.6 Collectively, the above studies
show that the influence of TPMT genotype on haematopoietic
toxicity is most dramatic for homozygous mutant patients, but
is also of clinical relevance for heterozygous individuals, which
represent about 10% of patients treated with these drugs.

Prospective determination of functional TPMT status is of
clinical utility to prevent mercaptopurine and azathioprine

Figure 1 Polygenetic determinants
of drug response (reproduced with
the publisher’s permission, from Evans
and Johnson, Annu Rev Genomics
Hum Genet 2001;2:9–39).
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toxicity. TPMT genotyping is now available as a molecular

diagnostic from reference laboratories, representing the first

CLIA certified pharmacogenomics test for individualising

drug treatment based on a patient’s genotype. Patients with a

“low methylator” status (homozygous mutant or compound

heterozygote) may tolerate standard doses, but are at signifi-

cantly greater risk of toxicity, often necessitating a lower dose

of these drugs (50%–80% of standard doses).6 8

Cytochrome P450 enzymes
The cytochrome P450 enzymes represent a large family of

drug metabolising enzymes,1 catalysing the metabolism of

more medications than any other family of enzymes. Debriso-

quin hydroxylase (CYP2D6) is probably the most well charac-

terised genetic polymorphism in cytochrome P450 enzymes,

representing the first human polymorphic drug metabolising

enzyme to be cloned and characterised at the molecular

level.30 As was common in the pre-genomics era, its discovery

was in part serendipitous, facilitated by the principal investi-

gator’s development of marked hypotension during participa-

tion in a pharmacokinetic study of debrisoquine, an

antihypertensive.31 Family studies subsequently showed that

he had inherited a deficiency in debrisoquin metabolism, an

enzyme deficiency discovered independently with sparteine.32

Many drugs (>30) were subsequently found to be substrates

for CYP2D6, and this genetic polymorphism was documented

in most populations worldwide, with pronounced racial

differences in mutant allele frequencies. A large number of

CYP2D6 SNPs, gene deletions and gene duplications have now

been discovered, and concordance between genotype and

phenotype has been well established for many drug

substrates.33 CYP2D6 deficiency can result in either exagger-

ated drug effects when CYP2D6 is the major inactivation

pathway (for example, tricyclic antidepressants, fluoxetine) or

diminished effects when CYP2D6 is required for activation

(for example, codeine).34 35 Moreover, gene duplication of

CYP2D6 leads to inheritance of an “ultrarapid metaboliser”

phenotype, which has been linked to treatment failure for

some antidepressant and antipsychotic drugs.36 37

Genetic polymorphisms do not always translate into

distinct phenotypic differences in drug metabolism in popula-

tion studies, exemplified by a common polymorphism in the

P450 enzyme CYP3A5.38 The CYP3A5 protein is expressed in

only about half of African-Americans and about 20% of the

white population, and those people who express both CYP3A5

and CYP3A4 have higher total CYP3A enzyme activity, which

translates to higher rates of drug clearance when medications

are metabolised by both CYP3A4 and CYP3A5 as the major

route of elimination. Recently, the genetic basis for polymor-

phic CYP3A5 expression was discovered; a SNP located over

>1600 bp into intron 3 of CYP3A5 (and more than 200 nucle-

otides 5’ of wild-type exon 4 splice site), leading to insertion of

>130 nucleotides of intron 3 sequence into the mRNA. This

additional mRNA sequence introduces an early stop codon

that encodes a truncated non-functional CYP3A5 protein. For

drugs that are equally metabolised by both, the net rate of

metabolism is the sum of CYP3A4 and CYP3A5, partially

masking the genetic polymorphism of CYP3A5 (fig 3). The

CYP3A pathway of drug elimination is also influenced by SNPs

in the CYP3A4 gene, which changes the activity of this enzyme

for some substrates but not others.39 Discovery of the genetic

basis for CYP3A5 deficiency,38 makes it possible to easily iden-

tify those patients who express CYP3A5 based on their geno-

type, but the clinical importance of these CYP3A genetic poly-

morphisms has not been fully elucidated to date.

Glutathione S-transferases
Glutathione is conjugated to many electrophiles, including

several medications and their potentially damaging oxidative
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metabolites.40 41 Conjugation with glutathione generally inac-

tivates these reactive moieties,42 although this is not always

the case. These conjugation reactions are catalysed by a family

of human glutathione S-transferases (GST), and the human

genes encoding these enzymes are highly polymorphic, with

about 50% and 25% of most populations having a complete

deletion of GST-M1 and GST-T1, respectively, rendering them

void of these enzyme activities. As is typical for many gene

polymorphisms, there are important racial and ethnic

differences in the frequencies of gene deletions in different

human populations. Other GSTs, (that is, GST-P1 and GST-A),

are also subject to genetic polymorphisms, and these have

been implicated in resistance to several anti-anticancer

agents.41 43 44

Several studies have reported associations between GST
polymorphisms and the efficacy and/or toxicity of cancer
chemotherapy. High GST activity has been associated with
resistance to anticancer agents, consistent with the associ-
ation of inherited GST deficiencies with a decreased risk of
haematological relapse45 47 and central nervous system
relapse46 48 and to improved prednisone response47 49 in
children treated with combination chemotherapy for acute
lymphoblastic leukaemia. Similarly, inheriting a GST-P1 allele
coding for the Ile105Val amino acid substitution has been asso-
ciated with improved overall breast cancer survival, compared
with patients who had at least one wild type GST-P1 allele.48 50

In breast cancer patients, deletion of either GST-M1 or GST-T1
was associated with improved survival, with further improve-
ment in outcome if both genes were deleted.49 51 In contrast, in
patients with acute myeloid leukaemia treated with high
doses of combination chemotherapy, the homozygous GST-T1
deletion was associated with a higher risk of toxic death dur-
ing remission,50 most probably because such patients could not
tolerate intensive chemotherapy due to the absence of detoxi-
fying GST enzymes. Together, these studies in breast cancer
and AML patients illustrate that the importance of a genetic
polymorphism in drug metabolism may differ based on the
nature and intensity of the treatment regimen being
prescribed. When treatment intensity is comparatively mod-
est, leading to potential under treatment of some patients,
then inheriting an enzyme deficiency can increase the
exposure to drugs that are substrates, and thereby increase
their efficacy. Conversely, when drugs are being dosed at levels
that are near those that produce toxicity (common in AML),

then inheritance of an enzyme deficiency can lead to a worse

outcome because of greater toxicity.

Drug transport proteins
Transport proteins play an important part in human physiol-

ogy and pharmacology, providing protective functions (for

example, blood-brain barrier), contributing to critical cellular

processes (for example, biliary excretion), and influencing the

absorption of drugs and other compounds from the small

intestine. The ATP binding cassette (ABC) family of mem-

brane transporters,51 comprise an extensively studied group of

transporters influencing drug disposition and effects.

P-glycoprotein (PGP), a member of the ABC family, is involved

in the energy dependent efflux of substrates, including

bilirubin, several anticancer drugs, cardiac glycosides, immu-

nosuppressive agents, glucocorticoids, HIV-1 protease inhibi-

tors, and many other drugs.51–55 Expression of the PGP gene

(ABCB1, also names MDR1) in normal tissue suggests that it is

involved in excreting drugs and their metabolites into urine,

bile, and the intestinal lumen.54–58 At the blood-brain barrier,

PGP in the choroids plexus limits brain accumulation of many

drugs, including cyclosporin A, dexamethasone, digoxin,

domperidone, loperamide, and vinblastine (table 2).55 57

PGP expression differs markedly among individuals,58 60 the

molecular basis of which has not been fully elucidated.

Recently, a synonymous SNP in exon 26 (3435C>T), was

reported to be associated with duodenal PGP protein

expression; patients homozygous for the T allele had more

than twofold lower duodenal PGP expression compared with

patients with CC genotypes.58 60 Clinical pharmacokinetic

studies of digoxin, a PGP substrate, demonstrated significantly

higher bioavailability in patients with the CC genotype.59 As is

common for most genetic traits, there are considerable ethnic

differences in the frequency of the 3435C>T SNP; the TT

genotype was found in 0%–6% of black African and

African-Americans, 20–47% of Asians, and 24%–36% of the

white population.60–62 However, the 3435C>T SNP is in linkage

disequilibrium with a non-synonymous SNP in exon 21

(1236C>T, Ala893Ser) that has been shown to change PGP

function,63 so it is unclear whether the 3435C>T SNP is of

functional importance or just in linkage with the functionally

important SNP in ABCB1.

Figure 2 Genetic polymorphism of
thiopurine methyltransferase and its
importance in determining response
to thiopurine medications
(azathioprine, mercaptopurine, and
thioguanine) (reproduced with
publisher’s permission, from Krynetski
and Evans Am J Hum Genet
1998;63:11–16).
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In a recent study, the ABCB1 3435C>T polymorphism was

found to be associated with significant differences in nelfina-

vir and efavirenz pharmacokinetics in HIV infected patients,

and recovery of CD4 count was significantly greater and more

rapid in patients with the TT genotype than patients with

either CT or CC genotypes. Of all variables evaluated, only

ABCB1 genotype and baseline HIV RNA copy number were

significant predictors of CD4 recovery.64 Unfortunately, these

investigators did not genotype for the ABCB1 1236C>T SNP,

so it remains unclear whether the 3435C>T is causative or in

linkage with the causative SNP. This is the first evidence that

a host genetic marker can predict immune recovery after ini-

tiation of antiretroviral treatment, suggesting a potential

strategy to individualise HIV therapy, if these findings can be

independently verified.

GENETIC POLYMORPHISM OF DRUG RECEPTORS
AND OTHER TARGETS
Genetic variation in drug targets (for example, receptors) can

have a profound effect on drug effects, with over 25 examples

already identified, including the β2 adrenoceptor and response

to β2 agonists,9 65 66 68 angiotensin converting enzyme and

renoprotective effects of ACE inhibitors,66 apolipoprotein E

and response to HMG-Co reductase inhibitors (“statins”)67

and more than 20 other examples (reviewed in references1–3).

The potential importance of these genetic polymorphisms is

exemplified in this review by the β2 adrenoceptor.

Genetic polymorphism of the β2 adrenoceptor exemplifies a

well characterised and clinically relevant polymorphism in a

drug target.65 The β2 adrenoreceptor is a G protein coupled

receptor that interacts with various medications and endog-

enous catecholamines. These receptors are widely expressed in

humans and play an important part in regulating cardiac, vas-

cular, pulmonary, and metabolic functions.9 65 Studies of such

physiological functions of the human β2 adrenoceptor have

revealed substantial interpatient differences in receptor func-

tion and responsiveness to stimulation. In the heart, activation

of β2 adrenoceptor results in an increased rate and force of

cardiac muscle, whereas β2 adrenoceptor stimulation in the

lungs acts to relax airway smooth muscle. Effects on lipolysis

in subcutaneous fat have also been reported, mediated

putatively through regulation of lipid mobilisation, energy

expenditure, and glycogenolysis. Insights to the molecular

basis for inherited differences in the β2 adrenoceptor have

been illuminated by the discovery of several SNPs in the B2AR
gene, and their association with altered expression, down

regulation, or coupling of the receptor.65 Single nucleotide

polymorphisms resulting in an Arg to Gly amino acid change

at codon 16 and a Gln to Glu change at codon 27 are compara-

tively common (allele frequency = 0.4–0.65) and are being

extensively investigated for their clinical importance. Studies

of agonist mediated vasodilatation and desensitisation have

begun to dissect the relative contribution of the codon 16 and

codon 27 mutations.9 Subjects who were homozygous for

Arg16 had nearly complete desensitisation after continuous

infusion of isoproterenol, with venodilatation decreasing from

44% at baseline to 8% at 90 minutes. Homozygous Gly16

patients had no significant change in venodilatation, regard-

less of their codon 27 sequence. Polymorphism at codon 27

was also of functional relevance, as patients homozygous for

Glu27 had higher maximal venodilatation in response to iso-

proterenol (86%) than observed in subjects with the codon 27

Gln genotype, regardless of codon 16 sequence.9

These results are consistent with the reported effects of

B2AR genotype on pulmonary response to acute or chronic β
agonist therapy. The FEV1 response to a single dose of oral

albuterol was more that sixfold higher in patients with an

Arg/Arg genotype at codon 16 compared with Gly/Gly

patients, even though similar plasma drug concentrations

were achieved.68 Interestingly, the influence of this genotype

changed when long term inhaled β agonist therapy was used.

An Arg/Arg genotype in patients on regularly scheduled β
agonist therapy resulted in a gradual decline in morning peak

expiratory flow (AM PEF) over the 16 weeks of evaluation,

while no change in this parameter was observed in patients

with a Gly/Gly genotype.69 In addition, AM PEF deteriorated

substantially after cessation of treatment in the Arg/Arg

patients receiving regularly scheduled inhaled β agonist

therapy, but not in patients with a Gly/Gly genotype.69 There

was no evidence that the codon 27 polymorphism influenced

AM PEF in these patients. These data suggest that patients

with a B2AR Arg/Arg16 genotype may be at risk for

Figure 3 The cytochromes P450 CYP3A4 and CYP3A5 genetic
polymorphism. The top panel depicts the distribution of CYP3A4
activity in the white population, assuming that 100% of individuals
express CYP3A4, with a 10-fold range of activity in the population.
The middle panel depicts CYP3A5 expression, assuming that 25% of
the white population express 3A5, with a 10-fold range of activity.
The bottom panel depicts the CYP3A4 and CYP3A5 distributions
(dashed lines) and the composite distribution for drugs metabolised
equally well by both enzymes.
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deleterious or non-beneficial effects of regularly scheduled

inhaled β agonist therapy and may be candidates for alterna-

tive treatment or dosing schedules and/or earlier initiation of

anti-inflammatory drugs. These results are consistent with the

data described above for desensitisation of the β2 adrenocep-

tor in patients with a codon 16 Arg/Arg genotype.9 Although

the codon 27 polymorphism does not seem to have a

significant effect on inhaled β agonist therapy, an association

between the codon 16 Gln/Gln genotype and an increased

incidence of obesity has been observed. This relation seemed

to be more prominent in men and could be overcome with

exercise.

These B2AR SNPs are not the only SNPs found in the β2

adrenoceptor, with at least 13 distinct SNPs identified to date,

leading to evaluation of B2AR haplotype structure compared

with individual SNPs in determining receptor function and

pharmacological response.70 While over 8000 B2AR haplotypes

are theoretically possible, only 12 distinct haplotypes were

observed among 77 subjects of various ethnic origin.70 Impor-

tantly, clinical evaluation of β agonist therapy in asthma

patients revealed a better association of B2AR haplotype and

bronchodilator response, than observed with any B2AR SNP

alone.70 This is not surprising, as haplotype structure is often a

better predictor of phenotypic consequences, which has led to

the development of various methods to determine haplotype

structure, some of which are comparatively simple to

perform.71 It is likely that as more pharmacogenomic studies

are conducted, haplotype structure will commonly emerge as

the most informative genetic determinant of drug response.

MOLECULAR DIAGNOSTICS FOR OPTIMISING DRUG
THERAPY
There is clearly great potential for pharmacogenomics to yield

important new molecular diagnostics that will become routine

clinical laboratory tests, by which physicians and pharmacists

select drugs and doses for individual patients. Instead of using

empirical treatment algorithms, pharmacogenomics can

provide patient specific diagnostics to optimise drug treat-

ment. Using the amount of DNA that can be isolated from a

few millilitres of blood, it is possible to determine thousands

of genotypes, and methodology is improving so rapidly that it

will soon be straightforward to perform these tests in high

throughput, automated systems, screening for thousands of

SNPs in one test. This will be necessary, because most drug

effects are polygenic in nature1 72 so treatment decisions will be

based on a panel of SNPs. These genotyping results will not be

reported as a list of SNPs, rather they will be interpreted for

the clinician according to the patient’s diagnosis and

treatment options. These new tests will not replace the more

conventional biochemical tests that are currently used to

assess organ function and disease status, rather they will pro-

vide additional tools for individualising and optimising drug

therapy. Obviously, genotyping will not eliminate the need for

follow up assessment of response, compliance with treatment,

and other variables that influence treatment outcome.

However, pharmacogenomics will make it increasingly possi-

ble to select the medications and doses that are optimal for

each person, thereby improving efficacy and reducing

toxicity.1 73 74 In this regard, it has been recently reported73 that

among 27 drugs for which adverse events are frequently

reported, a significantly higher percentage are metabolised by

a polymorphic enzyme (59%) compared with randomly

selected drugs (7%–22%). A substantial amount of work

remains to be done, before the full clinical utility of pharma-

cogenomics can be fully appreciated and realised. While there

are currently numerous examples that illustrate the potential,

we are in the early days of deciphering the importance of

genetic polymorphisms in determining drug response. Critical

issues going forward include the fact that most drug effects

are polygenic in nature, that haplotype structure is often more

Ta
b

le
2

Ex
am

pl
es

of
dr

ug
ta

rg
et

ph
ar

m
ac

og
en

et
ic

s

G
en

e/
ge

ne
pr

od
uc

t
D

ru
g

D
ru

g
ef

fe
ct

as
so

ci
at

ed
w

ith
po

ly
m

or
ph

is
m

Re
fe

re
nc

e

A
C

E
A

C
E

in
hi

bi
to

rs
(e

g,
en

al
ap

ril
)

Re
no

pr
ot

ec
tiv

e
ef

fe
ct

s,
BP

re
du

ct
io

n,
le

ft
ve

nt
ric

ul
ar

m
as

s
re

du
ct

io
n,

en
do

th
el

ia
lf

un
ct

io
n

im
pr

ov
em

en
t,

A
C

E
in

hi
bi

to
ri

nd
uc

ed
co

ug
h.

(6
6,

11
7–

12
5)

Fl
uv

as
ta

tin
Lip

id
ch

an
ge

s
(e

g,
re

du
ct

io
ns

in
to

ta
lL

D
L-c

ho
le

ste
ro

la
nd

ap
ol

ip
op

ro
te

in
B)

;p
ro

gr
es

si
on

/r
eg

re
ss

io
n

of
at

he
ro

sc
le

ro
tic

le
si

on
s.

β 2
ad

re
ne

rg
ic

re
ce

pt
or

β 2
ag

on
is

ts
(e

g,
al

bu
te

ro
l,

te
rb

ut
al

in
e)

Br
on

ch
od

ila
ta

tio
n,

su
sc

ep
tib

ili
ty

to
ag

on
is

ti
nd

uc
ed

de
se

ns
iti

sa
tio

n,
ca

rd
io

va
sc

ul
ar

ef
fe

ct
s

(e
g,

in
cr

ea
se

d
he

ar
tr

at
e,

ca
rd

ia
c

in
de

x,
pe

rip
he

ra
lv

as
od

ila
ta

tio
n)

.
(9

,6
8–

70
,

12
6–

13
0)

G
s

pr
ot

ei
n

α
β

bl
oc

ke
rs

(e
g,

m
et

op
ro

lo
l)

A
nt

ih
yp

er
te

ns
iv

e
ef

fe
ct

(1
31

)
Pl

at
el

et
FC

re
ce

pt
or

(F
C

RI
I)

H
ep

ar
in

H
ep

ar
in

in
du

ce
d

th
ro

m
bo

cy
to

pe
ni

a.
(1

32
)

A
LO

X5
Le

uk
ot

rie
ne

bi
os

yn
th

es
is

in
hi

bi
to

rs
(e

g,
A

BT
-7

61
-z

ile
ut

on
de

riv
at

iv
e)

Im
pr

ov
em

en
ti

n
FE

V 1
(1

0)
O

es
tro

ge
n

re
ce

pt
or

C
on

ju
ga

te
d

oe
str

og
en

s
Bo

ne
m

in
er

al
de

ns
ity

in
cr

ea
se

s.
(1

33
)

Su
lfo

ny
lu

re
a

re
ce

pt
or

Su
lfo

ny
lu

re
as

(e
g,

to
lb

ut
am

id
e)

Su
lfo

ny
lu

re
a

in
du

ce
d

in
su

lin
re

le
as

e.
(1

34
)

D
op

am
in

e
re

ce
pt

or
s

(D
2,

D
3,

D
4)

A
nt

ip
sy

ch
ot

ic
s

(e
g,

ha
lo

pe
rid

ol
,c

lo
za

pi
ne

,t
hi

or
id

az
in

e
ne

m
or

ap
rid

e)
A

nt
ip

sy
ch

ot
ic

re
sp

on
se

(D
2,

D
3,

D
4)

,a
nt

ip
sy

ch
ot

ic
in

du
ce

d
ta

rd
iv

e
dy

sk
in

si
a

(D
3)

,a
nt

ip
sy

ch
ot

ic
in

du
ce

d
ac

ut
e

ak
at

hi
si

a
(D

3)
,h

yp
er

pr
ol

ac
tin

ae
m

ia
in

w
om

en
(D

2)
(7

3,
13

5–
14

1)

5H
T2

A
,5

H
T6

A
nt

ip
sy

ch
ot

ic
s

(e
g,

cl
oz

ap
in

e,
ty

pi
ca

la
nt

ip
sy

ch
ot

ic
s

C
lo

za
pi

ne
re

sp
on

se
(5

H
T2

A
,5

H
T6

),
ty

pi
ca

la
nt

ip
sy

ch
ot

ic
re

sp
on

se
an

d
lo

ng
te

rm
ou

tc
om

es
(5

H
T2

A
).

(1
42

–1
44

)

G
pr

ot
ei

n
β3

A
nt

id
ep

re
ss

an
ts

(v
ar

io
us

)
Re

sp
on

se
to

an
tid

ep
re

ss
an

tt
he

ra
py

.
(1

45
)

Se
ro

to
ni

n
tra

ns
po

rte
r(

5-
H

TT
)

A
nt

id
ep

re
ss

an
ts

(e
g,

cl
om

ip
ra

m
in

e,
flu

ox
et

in
e,

pa
ro

xe
tin

e,
flu

vo
xa

m
in

e)
C

lo
za

pi
ne

ef
fe

ct
s,

5-
H

T
ne

ur
ot

ra
ns

m
is

si
on

,a
nt

id
ep

re
ss

an
tr

es
po

ns
e.

(7
3,

14
6–

14
8)

Ry
an

od
in

e
re

ce
pt

or
A

na
es

th
et

ic
s

(e
g,

ha
lo

th
an

e)
M

al
ig

na
nt

hy
pe

rth
er

m
ia

(1
49

)

Pharmacogenomics ii15

www.gutjnl.com

http://gut.bmj.com


informative than individual SNPs, and that functionally

important polymorphisms can reside outside the coding or

regulatory regions of genes. It is also important to recognise

that clearly defined and objectively measured end points (that

is, phenotypes) are essential to elucidate genotype-phenotype

relations. In this regard, prospective clinical trials represent

the ideal context within which pharmacogenomics of drug

response are most likely to be elucidated. If done properly,

ongoing research will change the practice of medicine and

pharmacy, such that using genotype to individualise drug

therapy will become the norm.
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