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Abstract
Background: Melanoma tumors are known to express antigens that usually induce weak immune
responses of short duration. Expression of both tumor-associated antigens p53 and TRP2 by
melanoma cells raises the possibility of simultaneously targeting more than one antigen in a
therapeutic vaccine. In this report, we show that VacciMax® (VM), a novel liposome-based vaccine
delivery platform, can increase the immunogenicity of melanoma associated antigens, resulting in
tumor elimination.

Methods: C57BL/6 mice bearing B16-F10 melanoma tumors were vaccinated subcutaneously 6
days post tumor implantation with a mixture of synthetic peptides (modified p53: 232–240, TRP-2:
181–188 and PADRE) and CpG. Tumor growth was monitored and antigen-specific splenocyte
responses were assayed by ELISPOT.

Results: Vaccine formulated in VM increased the number of both TRP2- and p53-specific IFN-γ
producing splenocytes following a single vaccination. Vaccine formulated without VM resulted only
in enhanced IFN-γ producing splenocytes to one CTL epitopes (TRP2:180–188), suggesting that VM
overcomes antigen dominance and enhances immunogenicity of multiple epitopes. Vaccination of
mice bearing 6-day old B16-F10 tumors with both TRP2 and p53-peptides formulated in VM
successfully eradicated tumors in all mice. A control vaccine which contained all ingredients except
liposomes resulted in eradication of tumors in no more than 20% of mice.

Conclusion: A single administration of VM is capable of inducing an effective CTL response to
multiple tumor-associated antigens. The responses generated were able to reject 6-day old B16-
F10 tumors.
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Background
Previous studies using two mouse models have demon-
strated that peptide-based vaccines delivered using Vacci-
Max® (VM) can eradicate human papillomavirus (HPV) 16
induced tumors [1,2]. The aim of the present study is to
use VM in a therapeutic vaccine to treat C57BL/6 mice
bearing B16-F10 melanoma tumors. Eradication of both
HPV 16 and B16-F10 melanoma tumors would suggest
that VM could enhance various therapeutic cancer vac-
cines. The identification of tumor-associated antigens that
are recognized by CD8+ cytotoxic T lymphocytes (CTL)
has led to the development of specific anti-tumor immu-
notherapies. Vaccine approaches for the treatment of can-
cer rely on the expansion and differentiation of tumor-
specific CTL's, with the objective of rejecting established
tumor. Peptide vaccines elicit a poor immune response
and often require the use of potent adjuvants. Previous
studies in our laboratory have shown that formulation of
peptides in a vaccine enhancing platform, VM, can greatly
enhance peptide-specific immune responses. VM is a lipo-
some-based antigen delivery platform which we have
shown to be effective in both preventing and eradicating
established HPV 16-induced tumors in mouse models
[1,2]. The strong and specific CTL responses generated by
VM against a variety of peptide antigens suggest that VM
can be used to develop therapeutic vaccines against a vari-
ety of cancers. This report examines the use of VM in a
melanoma mouse model.

A number of melanoma-associated antigens (MAA) have
been identified as potential targets but most induce weak
immune responses of limited duration. MAAs, expressed
by both normal and malignant melanocytes, are self anti-
gens that are difficult to target in a vaccine. MAAs include
melanoma-specific antigens such as MART-1, gp100 and
TRP2 [3], as well as antigens such as mutated p53 found
in a variety of cancers [4-11]. The melanoma tumor cell
line B16-F10 used in this study expresses two MAAs of
interest, namely TRP-2 and mutated p53.

In this study, VM containing TRP2 and p53 CTL epitopes
was used as a therapeutic vaccine to treat C57BL/6 mice
bearing B16-F10 melanoma tumors. TRP2 was selected
because clinical tumor regression has been associated
with TRP2-specific T cells [12-17]. p53, on the other hand,
was selected because it is expressed in a variety of cancers
including melanoma [5,18-23], and the ability to induce
effective immune responses against p53 in a melanoma
model may have implications for the treatment of other
cancers.

Methods
Mice and cell lines
Pathogen-free C57BL/6 female mice, 6–8 weeks of age,
were obtained from Charles River Laboratories (Wilming-

ton, MA) and were housed under filter top conditions
with water and food ad libitum. The B16-F10 melanoma
cell line was obtained from American Type Culture Col-
lection (ATCC, Manassas, VA). The melanoma cell line
was cultured in Dulbecco's Modified Dulbecco's Medium
(DMDM, Sigma, St. Louis, MO) supplemented with 10%
heat-inactivated fetal calf serum (Hyclone), 2 mM L-
glutamine (Gibco), 5 mM 2-mercaptoethanol (Gibco),
penicillin and streptomycin (100 μg/ml;Gibco). Cells
were incubated at 37°C/5% CO2.

Peptides and oligonucleotide (ODN)
The tyrosinase-related protein peptides TRP2: 180–188
(SVYDFFVWL) and TRP2: 181–188 (VYDFFVWL), as well
as the modified p53 peptide (p53: 232–240; KYICNS-
SCM) fused to PADRE (AKXVAAWTLKAAA, where X is
cyclohexylalanine) were purchased from Dalton Chemi-
cal Laboratories Inc. (Toronto, ON, Canada). These pep-
tides are presented by murine MHC-class I H-2K. The
TRP2 and p53 peptides were stored as a 1 mg/ml stock
solution containing DMSO to maintain solubility. Further
dilutions for vaccine production were made using PBS.

All formulations of the vaccines contained either PADRE
(AKXVAAWTLKAAA-OH; 25 μg/dose) and CpG ODN
1826 (5'-TCCATGACGTTCCTGACGTT-3'; Coley Pharma-
ceutical, Wellesley, MA; 50 μg/dose). The amino acid
sequence of the irrelevant peptide used in ELISPOT was
EGSRNQDWL (Dalton Chemical Laboratories Inc.).

Tumor challenge
B16-F10 cells (104 cells/mouse) were implanted subcuta-
neously in the left flank of C57BL/6 mice which were 6–8
weeks of age at time of challenge. Tumor were measured
with calipers every 2–5 days. Data was reported as a per-
centage of tumor-bearing mice.

Therapeutic immunization
Four to six days after implantation of melanoma cells,
mice (5 mice/group) received a single subcutaneous (s.c.)
injection of VM containing TRP2: 180–188, TRP2: 181–
188, or modified p53: 232–240 (25 μg of peptide/
mouse). In addition, mice were injected with vaccine con-
taining mixtures of two peptides (25 μg of each peptide/
mouse). The mixtures contained either TRP2:180–188
and modified p53 or TRP2 181–188 and modified p53.
VM formulations contained PADRE (25 μg/mouse) and
CpG (50 μg/mouse) as adjuvants. The peptides and adju-
vants were encapsulated in VM as previously described
[1]. In brief, lecithin and cholesterol in a ratio of 10:1 (0.2
g lecithin and 0.02 g cholesterol/dose) were dissolved in
chloroform/methanol (1:1;v/v) and the solution was fil-
ter-sterilized using a PTFE 0.2 μm filter. Chloroform and
methanol were removed under reduced pressure using a
rotary evaporator and traces of the solvents were removed
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from the resulting thin lipid layer in vacuo. For liposome
encapsulation, peptides with CpG and PADRE were dis-
solved in sterile PBS and the resulting solution added to
the thin lipid layer with mixing to form liposomes. The
resulting suspension of liposomes was emulsified in Mon-
tanide ISA51 (Seppic, France) by adding the liposome/
PBS suspension to ISA51 to form a water-in-oil emulsion
(PBS:ISA51; 1:1, v/v; 100 μl/dose). Control mice were
injected with either vaccines that contained all compo-
nents of test vaccines except liposomes or phosphate buff-
ered saline (PBS, 100 μL/injection).

Ex vivo analysis of antigen-specific T cells by ELISPOT
Activated antigen-specific splenocytes harvested from
immunized C57BL/6 mice were detected using the BD
ELISPOT kit following the manufacturer's instructions
(BD Bioscience, San Diego, CA). Briefly, on day 8 post-
immunization, a 96-well nitrocellulose plate was coated
overnight at 4°C with capture antibody (anti-mouse IFN-
γ) and then blocked with complete media. Splenocytes
were added to wells at an initial concentration of 1 mil-
lion cells/well in a volume of 100 μl. Cells in a dilution
series were either non-stimulated or stimulated with rele-
vant or irrelevant peptides (10 μg/ml).

PMA (5 ng/ml, Sigma) and ionomycin (500 ng/ml,
Sigma), served as positive controls and irrelevant peptide
and media alone served as negative controls. The plate
was incubated overnight at 37°C/5% CO2. The plate was
then incubated with detection antibody (a biotinylated
anti-mouse IFN-γ antibody), for 2 hours at room temper-
ature. Unbound detection antibody was removed by
washing and the enzyme conjugate (Streptavidin-HRP)
was added. Following 1 hour incubation at room temper-
ature, unbound enzyme conjugate was removed by wash-
ing and the plate was stained with an AEC substrate
solution for 20 minutes. The plate was washed, allowed to
air dry overnight, and foci of staining were counted using
a magnifying lens.

CD4+ T cell responses to PADRE
The CD4+ T-cell helper response to PADRE was measured
by ELISPOT. Eight days post-immunization, splenocytes
were recovered from immunized mice and stimulated
with PADRE (10 μg/ml). Production of IFN-γ was meas-
ured as described above.

Statistical analysis
Data are expressed as the mean ± SD and statistical signif-
icance was determined using paired two-tailed Student t-
test (p < 0.05).

Results
Eradication of B16-F10 melanoma tumors
The B16-F10 melanoma model was used to demonstrate
the therapeutic value of VM formulated with tumor-asso-
ciated self antigens. Based on our observations that eradi-
cation of HPV TC1/A2 tumors was more effective when
more than one CTL epitope-containing peptide was incor-
porated in VM [2], a mixture of 2 peptides formulated in
a vaccine enhancement platform was used to eradicate
B16-F10 melanoma tumors. All mice immunized against
a mixture of TRP2:181–188 and modified p53: 232–240
were tumor-free by 21 days post-immunization (Fig. 1).
Mice remained tumor-free until day 30–35, after which
tumors regenerated in a number of mice. In this represent-
ative experiment, vaccinated mice remained tumor-free
until day 33. Thereafter, tumors regenerated in two mice
by day 35, in a third mouse by day 42 and in a fourth
mouse by day 50 post-immunization. In two similar tri-
als, immunization against a mixture of TRP2:180–188
and modified p53:232–240 in VM resulted in tumor rejec-
tion in 60–80% of treated mice within 26–32 days post-
immunization, (data not shown) and these mice
remained tumor-free at the end of the trial (day 40 post-
immunization). In contrast, when TRP2 and p53 epitopes
were combined with CpG and ISA51 (control vaccination,
no liposomes), no more than 20% of mice remained
tumor-free mice until day 25–30 and tumors regenerated
in all vaccinated mice (data not shown).

Immunization against TRP2:180–188 alone plus CpG in
VM eradicated tumors in 40% of the mice by 16 days post-
immunization. These mice remained tumor-free for the
entire monitoring period. Immunization against
TRP2:181–188 alone also suppressed tumors in 40% of
mice by 16 days post-immunization, but tumors regener-
ated in these mice by day 30 post-immunization (data not
shown).

Immunization of mice against modified p53:232–240
alone delayed tumor development in one mouse but by
day 21 post-immunization all mice were bearing tumors.
Twenty percent of mice became tumor-free in the interval
between day 25 and 27 post-immunization. All control
mice injected with PBS developed tumors by day 14 post-
immunization.

Induction of cytotoxic T cells
Previous reports have suggested that TRP2, and in partic-
ular TRP2 epitope 180–188, are poorly immunogenic
[3,24-34]. In these studies, immunization against
TRP2:180–188 required multiple administrations with
CpG ODN to induce CTL responses. Even when comple-
mented by PADRE and in IFA, this composition did not
result in protection against B16-F10 tumor growth
[25,28]. To assess the ability of VM to enhance the
Page 3 of 8
(page number not for citation purposes)



Journal of Translational Medicine 2007, 5:20 http://www.translational-medicine.com/content/5/1/20
immune response to TRP2:180–188, mice (3–5/group)
were immunized against these peptides or an irrelevant
peptide in VM. Splenocytes from individual mice were
harvested 8 days post-immunization and stimulated in
vitro for 12 hours with TRP2:180–188. The number of
TRP2:180–188-activated IFN-γ-producing T cells was
determined by ELISPOT assay. A significant increase in the
number of TRP2:180–188-specific IFN-γ-producing cells
occurred by 8 days post-immunization (Fig. 2). This
experiment indicated that VM without adjuvant could
induce a CTL response against TRP2:180–188. The pres-
ence of CpG ODN in VM increased the CTL response
against the epitope by approximately two-fold.
TRP2:180–188 alone produced a background CTL
response as did immunization against an irrelevant pep-
tide. Similar results were obtained using splenocytes from
mice vaccinated with TRP2:181–188 instead of
TRP2:180–188 (data not shown). The CTL response to
TRP2:181–188 with CpG ODN but without VM was
approximately 20% of the CTL response to TRP2:181–188
with CpG ODN in VM. These results indicate that VM
stimulates a robust CTL response to TRP2:180–188 and
TRP2:181–188.

To assess the ability of VM to enhance the immune
response to modified p53:232–240, mice (3–5/group)
were immunized against modified p53:232–240 in VM,
in VM without CpG, without VM liposomes, or against an
irrelevant peptide in VM. Splenocytes from individual
mice were harvested 8 days post-immunization and stim-
ulated in vitro with modified p53:232–240. A significant
increase in the number of modified p53:232–240-specific
IFN-γ-producing cells was observed in mice immunized
against modified p53:232–240 in VM by 8 days post-
immunization (Fig. 3). This vaccine formulation without
CpG produced background numbers of modified
p53:232–240-specific splenocytes as did formulations
that lacked the liposome component of VM (modified
p53:232–240-PADRE-CpG and modified p53:232–240-
PADRE). Immunization against an irrelevant peptide also
produced similar background numbers of modified
p53:232–240-specific splenocytes.

Melanoma cells express more than one tumor-associated
protein simultaneously. TRP2 is a tumor-associated pro-
tein limited to melanoma, whereas, p53 is over-expressed
in a wide variety of cancers. For example, the p53 gene is
commonly mutated in lung, colon, and breast cancers.
The observation that immunization against a mixture of
peptides derived from TRP2 and p53 was more effective in
eradicating B16-F10 melanoma tumors than immuniza-
tion against each of these peptides alone suggests that use
of VM induces a CTL response against more than one CTL
epitope simultaneously. To evaluate the ability of VM to
raise a simultaneous immune response against two tar-
gets, mice (3/group) were immunized once against a mix-
ture of TRP2:180–188 and modified p53:232–240
peptides, with and without VM, or with and without CpG
ODN (Fig. 4). All vaccine formulations contained water-
in-oil emulsions. Formulations without VM contained all
vaccine ingredients except liposomes. Spleens were col-
lected 8 days post-immunization and the number of IFN-
γ producing cells was measured by ELISPOT assay. A sin-
gle immunization with VM containing both TRP2:180–
188 and modified p53:232–240 antigens stimulated a
robust IFN-γ response against both antigens simultane-
ously. Spleens from mice immunized with VM contained
similar numbers of TRP2:180–188-specific and modified
p53:232–240-specific IFN-γ producing cells. In contrast,
spleens from mice immunized by a single vaccination of
a mixture of TRP2:180–188 and modified p53:232–240
without VM produced a robust TRP2:180–188-specific
response but a weak modified p53:232–240-specific
response. Vaccination against a mixture of TRP2:180–188
and modified p53:232–240 without CpG resulted in a
poor TRP2:180–188-specific IFN-γ response and a slightly
better modified p53:232–240-specific response. Without
VM, both TRP2:180–188- and modified p53:232–240-
specific IFN-γ responses were poor.

All mice that received PBS (crosses) developed tumors by day 14 post-immunizationFigure 1
All mice that received PBS (crosses) developed tumors by 
day 14 post-immunization. A single immunization against a 
mixture of TRP2:181–188 and modified p53:232–240 in VM 
(triangles) rendered all mice tumor-free by 21 days post-
immunization. A single administration of TRP2:181–188 
alone alone (diamonds) in VM rendered 2/5 mice tumor-free 
by day 16 post-immunization. A single administration of mod-
ified p53:232–240 in VM (squares) delayed tumor develop-
ment in one mouse, but by day 21 post-immunization, all 
mice in this group were tumor bearing. In the interval 
between 25 and 27 days post-immunization, two mice in this 
group became tumor-free.
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CD4+ T cell responses to PADRE
CD4+ T-cell help is essential for the differentiation and
expansion of CTLs [35], as well as their maturation into
functional memory CTLs [36]. To achieve CD4+ T-cell
help, a universal T helper epitope, PADRE was used in VM
[37]. A strong PADRE-specific CD4+ T cell help was
induced in mice immunized against TRP2:180–188 with
and without VM (Fig. 5). These results along with figures
1 and 2 show the simultaneous induction of immune
responses to multiple MHC class I and II peptides when
encapsulated in VM.

Discussion
There is an unmet need for new vaccines that are cost
effective, safe and yet mount robust, effective and durable
immune responses [38]. Liposomes have been described
as safe vaccine adjuvants but their use has been limited to
aqueous carriers, such as saline, phosphate buffered saline
or oil-in-water emulsions. In contrast, liposomes stabi-
lized to remain intact in hydrophobic carriers or water-in-
oil emulsions (VM) significantly enhance both humoral
and CTL immune responses [1,2,39]. To enhance immu-
nity, the VM platform requires both liposomes and a
hydrophobic carrier. This combination allows excellent
antigen delivery and presentation to the immune system
resulting in a durable immune response following a single
vaccination. Most vaccines studied using the same mouse

model as employed in our studies, are only useful as pro-
phylactic vaccines. Clearance of established tumors by
immunization against peptide antigens using VM have
also been demonstrated in two independent HPV-cervical
cancer models [1,2]. This strategy is particularly effective
when treating virally induced cancers. Self-antigens are
tightly guarded by tolerance mechanisms and conse-
quently, tumors presenting "self" antigens are more diffi-
cult to treat. Therefore, an effective therapeutic cancer
vaccine platform with widespread applications must have
the ability to induce immune responses against tumor-
associated self antigens. Consequently, a therapeutic vac-
cine against melanoma must activate and expand T cell
clonotypes that have escaped thymus clonal deletion but
nevertheless are capable of targeting self epitopes on the
surface of tumors.

The B16-F10 melanoma tumor model in C57BL/6 mice
has been used in many pre-clinical melanoma studies
[3,24-34]. Consequently, this model was chosen to test
VM-based melanoma vaccines that employ "self" antigens
such as TRP2 and p53. Although p53 is rarely used as anti-
gen for melanoma immunotherapy, an increased content
of p53 in melanoma cell lines and induction of p53-spe-
cific CTL responses have been reported by others
[4,5,10,20,23]. Cell-mediated immune responses to TRP
epitopes correlated positively with tumor regression
[12,16,40,41]. Immune responses against these antigens
are difficult to achieve because of immune tolerance
mechanisms [42]. Various approaches have been adopted
for the generation of CTL responses against B16, including
the use of antigen-pulsed DCs or transfection of B16 cells
with the gene for GM-CSF [40,43,44]. Recently, Jerome
and colleagues demonstrated high levels of CTL responses
upon vaccination with TRP2 and CpG in liposome [3].

Surprisingly, preliminary studies employing VM detected
an ex vivo CTL response against TRP2:180–188 in the
absence of adjuvants (Fig. 2). Addition of CpG adjuvant
however significantly increased the number of TRP2:180–
188-specific IFN-γ producing splenocytes. To increase the
number of IFN-γ producing splenocytes that were specific
for modified p53:232–240, the presence of both PADRE
and CpG were required. Since studies aimed at developing
a therapeutic HPV vaccine demonstrated that multiple
peptide antigens result in a better outcome than a single
peptide antigen [2], a mixture of TRP2:180–188 and mod-
ified p53:232–240 in VM was evaluated to determine if T
cell activation would be directed against one or both pep-
tides. The TRP2:180–188-, modified p53:232–240- and
PADRE-specific IFN-γ producing splenocytes were
expanded in mice immunized with the mixture of three
epitopes in VM (Figs 4 and 5). Without VM, only the
number of TRP2:180–188-specific IFN-γ producing splen-
ocytes was above background suggesting immuno-domi-

Ex-vivo detection of modified TRP2:180–188-specific IFN-γ producing splenocytes (spot forming cells, SFC) in mice 8 days following a single immunization against TRP2:180–188 in VMFigure 2
Ex-vivo detection of modified TRP2:180–188-specific IFN-γ 
producing splenocytes (spot forming cells, SFC) in mice 8 
days following a single immunization against TRP2:180–188 in 
VM. Mice immunized against TRP2:180–188 in VM with CpG 
adjuvant produced the largest number of cytotoxic T cells. 
Omission of CpG from the vaccine produced approximately 
one-half as many SFC. TRP2:180–188 alone and an irrelevant 
peptide with CpG in VM produced background numbers of 
SFC.
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nancy favoring TRP2-specific responses. Although a T
helper response was mounted when all three epitopes
plus CpG were used without VM, such helper response
only supported CTL responses to one of the peptides
(TRP2:180–188) and resulted in tumor suppression until
day 25–30 in 20–40% of treated mice.

As a realistic model for melanoma immunotherapy, we
used peptide antigens derived from the naturally
expressed tumor-associated antigens TRP2 and p53 in the
B16-F10 melanoma model. Poor immunogenicity of pep-
tides and the fact that B16-F10 cells express very low
amounts of MHC class 1 molecules make the B16-F10
model a challenging model for T-cell based immuno-
therapy [45]. Immunization with liposome-encapsulated
TRP2 peptide which were then mixed with CpG ODN
caused complete tumor rejection in only 20% of vacci-
nated mice [3]; VM, on the other hand, caused tumor
rejection in all treated mice when two antigens were tar-
geted. The ability to co-deliver antigens and CpG adjuvant
by encapsulation in liposomes is a significant advantage
for the VM platform; co-encapsulation of antigen and
adjuvant within the same liposome is superior to encap-
sulation of each in separate liposomes [46]. Our study
demonstrates that co-encapsulation of adjuvant with pep-
tide antigens derived from two tumor-associated antigens
in VM is superior to use of a single peptide antigen. For

example, TRP2:180–188 and modified p53:232–240
encapsulated in VM with PADRE and CpG ODN adju-
vants caused complete tumor eradication in 100% of vac-
cinated mice. The same treatment with only one CTL
epitope (TRP2:180–188) caused complete tumor suppres-
sion for at least 20 days in 60% of vaccinated mice. VM-
based vaccines containing more than two peptide anti-
gens may improve the outcome of therapeutic melanoma
vaccines as a result of VM's ability to overcome immuno-
dominancy.

In summary, the VM vaccine platform simultaneously
induces a robust CTL response to more than one peptide
antigen contained therein. Immunization against two CTL
epitopes in VM formulated with a T helper peptide and
CpG adjuvant eradicated tumors in all treated mice.
Although regeneration of melanoma tumors occurred in a
significant number of mice that had been rendered tumor-
free by vaccination, the strong CTL responses to multiple
peptides from self-antigens by a single immunization and
the rejection of aggressive 6-day old B16-F10 tumors to
our knowledge have never been reported. Targeting more
than 2 tumor-associated antigens in VM may improve the

Spleens from mice immunized against a mixture of TRP2:180–188 and modified p53:232–240 in VM contained high numbers of TRP2:180–188-specific (right bar) and modi-fied p53:232–240-specific (left bar) IFN-γ producing cellsFigure 4
Spleens from mice immunized against a mixture of 
TRP2:180–188 and modified p53:232–240 in VM contained 
high numbers of TRP2:180–188-specific (right bar) and modi-
fied p53:232–240-specific (left bar) IFN-γ producing cells. In 
contrast, spleens from mice immunized against a mixture of 
TRP2:180–188 and modified p53:232–240 without VM con-
tained high numbers of TRP2:180–188-specific IFN-γ produc-
ing cells but low numbers of modified p53:232–240-specific 
IFN-γ producing cells. The spleens of mice immunized with 
VM-formulated vaccine without CpG ODN had low num-
bers of both TRP2:180–188- and modified p53:232–240-spe-
cific IFN-γ producing cells as did the spleens of mice from 
mice immunized without VM.

Ex-vivo detection of modified p53:232–240-specific IFN-γ producing splenocytes (spot forming cells, SFC) in mice 8 days following a single immunization against modified p53:232–240 in VMFigure 3
Ex-vivo detection of modified p53:232–240-specific IFN-γ 
producing splenocytes (spot forming cells, SFC) in mice 8 
days following a single immunization against modified 
p53:232–240 in VM. Mice immunized against modified 
p53:232–240 peptide in VM with CpG and PADRE adjuvants 
produced the largest number of cytotoxic T cells. Without 
VM or omission of CpG from the VM formulation produced 
low numbers of modified p53:232–240-specific IFN-γ pro-
ducing splenocytes. Vaccination against an irrelevant peptide 
(IrrPep) also produced low numbers of IFN-γ producing 
splenocytes.
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efficacy of the vaccine and reduce melanoma tumor regen-
eration.

Conclusion
VacciMax®, a liposome/Water-in-oil based vaccine deliv-
ery system, enhances the immunogenicity of melanoma-
associated CTL epitopes simultaneously. A single admin-
istration of such vaccine elevated specific CTL responses
and resulted in the rejection of 6-day old B16-F10 tumors.

Abbreviations
CTL, cytotoxic T lymphocyte; ELISPOT, enzyme-linked
immunosorbent spot; TRP-2, Tyrosinase-Related Protein-
2; PADRE, pan DR epitope; VM, VacciMax®.
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