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Abstract
Heat shock proteins exert their beneficial effects via basically two modes of action depending on
their relative location within the host. Intracellular heat shock proteins found within cells serve a
cytoprotective role by chaperoning naïve, misfolded and/or denatured proteins in response to stressful
stimuli by a process known as the stress response. However, stressful stimuli also induce the release
of intracellular heat shock proteins into the extracellular milieu and circulation. The extracellular
heat shock protein proteins serve a cytostimulatory role by initiating immune responses designed to
fend off microbial infection and destroy neoplastic transformed cells. This review will briefly cover
recent advances into elucidating the mechanism(s) by which stress induces the release of heat shock
proteins into the circulation, how it initiates immune responses and suggest the possible biological
significance of circulating Hsp to the host.
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INTRODUCTION
Heat shock proteins (Hsp) were originally described for their role as chaperones induced by
temperature shock as well as various other kinds of stress including environmental (U.V.
radiation, heat shock, heavy metals and amino acids), pathological (bacterial, parasitic
infections or fever, inflammation, malignancy or autoimmunity) or physiological stresses
(growth factors, cell differentiation, hormonal stimulation or tissue development), that induced
a marked increase in intracellular Hsp synthesis known as the stress response [1]. This is
achieved by activating the trimerization and nuclear translocation of cytoplasmic heat shock
factor-1 (HSF-1) to the heat shock element (HSE) within the nucleus and consequent
transcription of Hsp. By binding unfolded, misfolded or mutated peptides or proteins and
transporting them to the endoplasmic reticulum (ER), Hsp prevent potential aggregation and/
or death. Within the ER the peptides are released in an ATP-dependent fashion and refolded
[2]. Recently an additional role has been ascribed to Hsp as danger signals produced and
released when cells are under stress and as activators of the immune system (Fig. 1). This
review will focus mainly on the Hsp70 family, which constitutes the most conserved and best
studied class of all heat shock proteins. The human Hsp70 family consists of at least 12
members (for review see [3]). The best known Hsp70 family members are the constitutively
expressed Hsp70 (Hsc70 or Hsp73; molecular weight of 73 kDa), the stress inducible Hsp70
(Hsp70 or Hsp72; molecular weight of 72 kDa), the mitochondrial Hsp70 (Hsp75; molecular
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weight of 75 kDa), and the endoplasmic reticulum Hsp70 (Grp78; molecular weight of 78 kDa).
This review will briefly delve recent advances in our understanding of how stress induces the
release of Hsp72 into the circulation. We will also discuss the steps required for the initiation
of an immune response and its biological significance in the context of host defense.

MECHANISMS OF Hsp RELEASE: PASSIVE RELEASE HYPOTHESIS
Gallucci and colleagues initially demonstrated that dendritic cells (DC) are stimulated by
endogenous signals received from stressed, viral-infected or necrosis-induced cells, but not by
healthy cells or cells undergoing apoptosis [4]. In a series of elegantly performed experiments,
Basu and co-workers later reported that heat shock proteins including gp96, calreticulin, Hsp90
and Hsp72 are released from cells by necrotic but not apoptotic cells [5]. These authors
demonstrated that necrosis induced by freeze thaw, but not apoptosis induced by irradiation
resulted in the release of Hsp into the culture supernatant, respectively [5-8]. During apoptotic
cell death, the contents of the cell are not released into the external milieu but are packaged
neatly into apoptotic bodies which are efficiently scavenged by neighboring professional
phagocytes. However, necrotic cell death results in the discharge of intracellular contents into
the extracellular milieu thereby liberating heat shock proteins (for review see [6,9]). These
results make the necrosis hypothesis an attractive explanation for the mechanism by which
heat shock proteins are released into the circulation (Fig. 1).

A condition in which necrotic cell death clearly contributes to the release of Hsp72 from cells
is after severe trauma. In a study by Pittet and colleagues a significant upregulation in
circulating serum Hsp72 can be measured in severely traumatized patients as early as 30
minutes after injury [10]. Increased circulating serum Hsp72 has also been measured in patients
after coronary artery bypass grafting [11,12]. Importantly, circulating serum Hsp72 has been
suggested as a marker of myocardial damage, and reported to have a role in the inflammatory
response after acute myocardial infarction (AMI) [13]. Other conditions in which elevated
levels of circulating serum Hsp72 has been demonstrated is in renal disease [14], hypertension
[15], atherosclerosis [16], aging [17], and sickle cell disease [18]. However, in these conditions
although necrosis is proposed as the mechanism of release, conclusive experimental data is
still lacking.

A more conclusive study was designed in which in situ killing of tumor cells using suicide
gene transfer to generate death by a non-apoptotic pathway was shown to be associated with
high immunogenicity and induction of Hsp [19]. The most conclusive reports to demonstrate
that necrosis accounts for Hsp release is found following infection with lytic viruses. In a study
by Moehler and coworkers, it was demonstrated that parvovirus-mediated cell killing enhances
tumor immunogenicity by Hsp72 release and contributes to the anti-tumor effect of
parvoviruses [20]. Although these authors did not directly demonstrate that H1-induced cell
killing and its associated Hsp72 release, promotes the loading and maturation of antigen
presenting cells and by extension triggers tumor specific immune responses. One can speculate
that the release of Hsp72 that could facilitate priming of T cells specific for viral antigens.

Taken together, the passive release hypothesis clearly is an important mechanism by which
Hsp72 is released into the circulation. However, is it the only mechanism? An additional
mechanism for Hsp release is now proposed as being of equal importance in the release of
Hsp72 into the circulation.

MECHANISM OF Hsp RELEASE: ACTIVE RELEASE HYPOTHESIS
The active release hypothesis has been proposed as an additional mechanism to the passive
release hypothesis. Three lines of evidence strongly support this hypothesis. First, as early as
1998 Pockley and coworkers demonstrated the presence of soluble Hsp72 and antibodies
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against Hsp72 in the peripheral circulation of normal individuals [21]. Second, Guzhova and
colleagues demonstrated that Hsp72 is released by glia cells in the absence of necrotic cell
death [22]. Third, and extremely compelling, psychological stress induced by exposure of a
Sprague Dawley rat to a cat results in the release of Hsp72 into the circulation [23]. In this
study, a rat was put in glass cage and a cat placed on top of the cage. This form of psychological
stress induced a marked increase in circulating Hsp72, as judged by the classical Hsp72
sandwich ELISA. The terrified rat did not run around the cage thereby negating the possibility
that damage to the muscles played a part in increased Hsp72 release. Subsequent studies have
demonstrated that Hsp72 is released by B cells [24] and peripheral blood mononuclear cells
[25] under non necrotic conditions.

Using conditions that will not induce significant cell death, our group showed that IFN-γ and
IL-10 induce the active release of constitutively expressed Hsp70 also designed, Hsc70 or
Hsp73 from tumors [26]. However, these initial studies did not address the mechanism
underlying Hsp72 release. Recently, our group [27,28] and others [29] have begun to elucidate
the mechanism of active release of iHsp72 from viable cells (Fig. 1). In our study, we
demonstrated that certain pro-inflammatory cytokines normally found in high concentrations
within inflammatory foci including IFN-γ, IL-10 but not the anti-inflammatory cytokine TGF-
β1, mediate the active release of Hsp72. We further showed that whereas some eHsp72 could
be found as free Hsp72, a proportion of eHsp72 was released within exosomes [27]. Exosomes
are internal vesicles of multivesicular bodies (MVB) released into the extracellular milieu upon
fusion of multivesicular bodies MVB with the cell surface [30-32]. In addition to containing
Hsp72 [27,28], exosomes are highly packed with immunostimulatory mediators including
MHC class I and II [30-32] and costimulatory molecules [33]. Additionally, we demonstrated
that Hsp72 is released by a non classical protein transport pathway and that intact surface
membrane lipid rafts are required for efficient stress-induced Hsp72 release [27,28]. These
studies were recently confirmed in B cells [24]. Studies by Lancaster & Febbraio recently
demonstrate that exosomes provide the major pathway for secretory vesicular release of Hsp72
[29]. However, using methyl-β-cyclodextrin (the cholesterol depleting agent) to disrupt lipid
raft function, these authors were unable to confirm a role for lipid rafts in stress-induced Hsp72
release from human peripheral blood mononuclear cells PBMC [29]. In order to address the
cellular location of Hsp72 after stress, a recent study demonstrated that newly synthesized
Hsp72 protein localizes within the Golgi region of HeLa cells and also concentrates on the
surface of the plasma membrane and in the ruffled zone of migrating cells [34].

Taken together, these studies suggest that the active release hypothesis is an important
mechanism by which Hsp72 is released into the circulation. However, studies remain to be
performed that conclusively demonstrate that T cell responses are primed in response to active
release of Hsp72 especially in the case of psychological stress or exercise.

Hsp70 RECEPTOR
The prerequisite for the initiation of an immune response is that eHsp72 must bind to specific
receptors on the surface of specialized cells and stimulate a cascade of signals that eventually
induces the production and release of immune modifiers which in turn changes the immune
status of the cell and by extension the host. However, not all cells bind heat shock proteins.
eHsp72 has been shown to bind selectively and with high specificity and affinity to a number
of cells including natural killer (NK) cells [35-37], dendritic cells (DC) [38,39], macrophages,
peripheral blood monocytes [40-42], and B cells [43]. In contrast, T lymphocytes do not bind
Hsp72 [43].

The number of receptors known to bind eHsp72 is increasing. Our group was the first to
demonstrate that the Toll-like receptors 2 and 4 with their cofactor CD14 is a receptor for
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Hsp72 [39]. These results were independently corroborated by others [44]. Presently, the list
of putative Hsp72 receptors now includes the scavenger receptor, CD36 [45,46], the co-
stimulatory molecule, CD40 [47], the low-density lipoprotein receptor-related protein CD91
[48-51], Lox-1 [45,52] and SR-A, another member of the scavenger superfamily [53,54].

Hsp70 SIGNALING AND ANTIGEN PRESENTATION
Once eHsp72 is bound to its specific surface receptor, two interrelated events occur. First,
signal transduction cascades are activated. Second, the eHsp72 is endocytosed and the
chaperoned peptides are presented to the antigen presentation pathway.

Our group was first to demonstrate that 10 seconds after eHsp72 binds to human monocytes
there is a rapid intracellular Ca2+ ([Ca2+]i) flux [41]. This is an important signaling step that
distinguishes Hsp72- from LPS-induced signaling, since treatment of APC with LPS does not
result in [Ca2+]i flux [55]. Thirty-minutes after [Ca2+]i flux there is evidence of I-κBα
phosphorylation [41]. Activation of NF-κB is regulated by its cytoplasmic inhibitor, I-κBα
via phosphorylation at Serine 32 (Ser-32) and 36 (Ser-36) which targets it for degradation by
the proteosome and releases NF-κB to migrate to the nucleus and activate the promoter of target
genes [56]. As early as 30 minutes post exposure to eHsp72, I-κBα is phosphorylated at Serine
32 (Ser-32) and 36 (Ser-36) resulting in the release and nuclear translocation of NF-κB [41].
We performed in vitro studies using the HEK293 model system and revealed that Hsp72-
induced NF-κB promoter activity is MyD88-dependant, CD14-dependant and is transduced
via both TLR2 and TLR4 [39]. Further, the presence of both TLR2 and TLR4 synergistically
stimulates Hsp72-induced cytokine production [39]. In addition, we demonstrated a synergistic
activation of the NF-κB promoter by co-expression of both TLR2 and TLR4 is MyD88-
independent, suggesting an alterative pathway by which eHsp72 stimulates cells of the immune
system. Independent studies by Vabulas and colleagues, corroborated these findings [44].

Following receptor-mediated endocytosis heat shock proteins carrying their peptide load is
transported via clathrin-coated pits to endosomes where it colocalizes with both MHCI and
MHCII [57]. The exact mechanism by which cross-presentation occurs has not been completely
elucidated. However, eHsp72 may traffic through various intracellular compartments, which
results in peptide release into the cytoplasm and re-presentation on the cell surface associated
with MHC proteins (for review see [58]). eHsp72 has been shown to deliver peptides to MHC
class I molecules through the cross-presentation pathway [59]. Following internalization of
eHsp72, chaperoned peptides maybe released into the cytoplasm and processed by the classical
antigen representation pathways. However, cross-presentation may proceed through a recently
described alternative route which involves a specialized MHC class I structure known as the
ER/phagosome fusion compartment, which is highly sufficient in inducing antigen cross-
presentation [60].

CHAPEROKINE ACTIVITY OF eHsp72
Chaperokine, is a term recently coined to better describe the unique function of eHsp72 as both
chaperone and cytokine (for review, see Refs. [61,62]). The consequence of binding and
signaling is the stimulation of a potent and long lasting immune response. eHsp72 induces a
plethora of immune responses and the list continues to grow. Table 1 lists some immune
effector functions that are attributed to various sources of Hsp70 including recombinant
bacterial, viral and parasitic sources, Hsp70 from human, mouse and non-human primate tissue
and their targets (Table 1). Briefly, as early as 2-4 hours post exposure of APC to eHsp72, there
is significant release of cytokines including TNF-α, IL-1β, IL-6 and IL-12 [39,41] and GM-
CSF [63]; nitric oxide, a potent apotogenic mediator [64]; chemokines including MIP-1,
MCP-1 and RANTES [64,65]. This part of the immune response does not require peptide, since
both peptide-bearing and non peptide-bearing eHsp72 is capable of inducing pro-inflammatory
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cytokine production by APCs [66]. However, peptide is required for specific CD8+ CTL
responses [67-69]. eHsp72 induces the DC maturation by augmenting the surface expression
of CD40, CD83, CD86 and MHC class II molecules on DC [5,39,70,71] and migration of DC
[72] and NK cells [28] (Fig. 1).

CIRCULATING eHsp72: BIOLOGICAL SIGNIFICANCE
Whether Hsp72 enters the circulation via an active or passive release mechanism – what is the
role of eHsp72 in circulation? The danger theory postulates that immune activation involves
danger/non-danger molecular recognition schemas and suggests that innate immune cells are
activated by danger signals that are derived from stressed or damaged self-proteins [73,74]. It
is now widely accepted that eHsp72 fit this criteria. The hypothesis is further reinforced by
studies showing that circulating eHsp72 is increased and upregulated in diseased conditions
including renal disease [14], hypertension [15], atherosclerosis [16] and sickle cell disease
[18]. However, intriguing questions still remain as to the role of increased circulating eHsp72
during psychological stress like that demonstrated when a Sprague Dawley rat is exposed to a
cat [23]. Or studies demonstrating that the human brain is able to release eHsp72 into the
circulation in response to exercise [75] (Fig. 1).

In these situations, is it possible that circulating eHsp72 is priming the immune system to real
or perceived danger? These are important questions, the answers to which will provide a keen
insight into numerous psychological and pathophysiological conditions. However, extensive
studies and a concerted effort that brings together Hsp researchers from such disparate fields
as immunology, molecular biology, cell biology, neurophysiology and psychology utilizing
new breakthrough technologies including the recently deciphered human genome and
proteomics is required before conclusive answers can be given.
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Fig. (1).
Model system for stress-induced release of Hsp72. Depending on the intensity and kind of
stressful stimuli the following down stream effects can occur. 1) Non physiological stress (e.g.,
trauma or infection with lytic virus) will activate the cellular death pathway and result in
intracellular (iHsp72) release into the circulation, refereed to as the passive release hypothesis.
2) Physiological, environmental, pathological (except infection with lytic virus) stress activates
the stress response by triggering the trimerization and nuclear translocation of cytoplasmic
HSF-1 and subsequent transcription of intracellular Hsp72 (iHsp72; red rod). The increased
iHsp72 protects the cell from cell death under certain conditions. iHsp72 chaperones peptides
(green triangle) and is expressed on the cell surface and released into the extracellular milieu
within exosomes and free Hsp72. 3) Exercise stress or 4) Psychological stress stimulates the
release of Hsp72 into the circulation via a still unknown tissue and/or organ. The released
extracellular Hsp72 (eHsp72) make their way into the circulation where it acts as an
endogenous danger signal. Antigen presenting cells (monocytes, macrophages, B cells,
dendritic cells, langerhans cells) bind eHsp72 to specific receptors and stimulates a signal
transduction cascade that results in the initiation of an immune response characterized by the
upregulation of pro-inflammatory cytokines, chemokines, nitric oxide and costimulatory
molecules. The eHsp72 is internalized by APC and the chaperoned peptide is processed and
presented in the context of MHC class I to cytotoxic T lymphocytes (CTL), which lyse peptide
bearing cells. Circulating eHsp72 induces NK cells migration and the expression of Hsp72 on
the surface of stressed cells activates NK lytic functions. As an endogenous danger signal,
circulating eHsp72 found in high concentrations is a good indicator of acute or chronic
conditions, low eHsp72 concentrations have been linked to exceptional longevity.
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Table 1
Immune Effect of Hsp70

Source of Hsp70 Target Immune Function Ref.

Rec human and mouse

human monocyte
human monocytes and monocyte-

derived DC
human DC
human DC
mouse DC

cytokine release
CC chemokines

co-stimulatory molecules
maturation signal

antigen presentation, cytokine release

[39,41]
[76]
[39]
[39]

[66,77]

Rec mycobacterium tuberculosis
Hsp70-p24 fusion protein mouse immunization humoral and cellular immune response [78-80]

Rec DNA vaccine murine encephalitis protective immunity [81]
Hyperthermia mouse measles virus protective immunity [82]
Adenovirus murine tumors protective immunity [83]

Plasmodium falciparum mouse immunization serum Ab, cytokine release [84]

Rec MSP1 fused to Hsc70 plasmodium yoelii sporozoite-infected
mice protective immunity [85]

Mouse liver & kidney
mouse DC
mouse PEC
CD8+ CTL

nitric oxide release, migration
cross presentation

protective immunity

[64,72]
[86]

[87-89]
Mouse and recombinant

Non-human primates
melanoma
CD8+CTL

cross-presentation
beta chemokines

[90-92]
[65]

Non-human primates rec Hsp70-
CCR5 fusion HIV protective immunity [93,94]

Human tumors human DC cross presentation [69,70]

Human exosomes human DC
human NK cells

cytokine release, co-stimulatory
molecules,

maturation signal
migration

[27,28]
[28]

Human tumors cancer tumor regression [67,68,95,96]
CCR, chemokine receptor; CTL, Cytotoxic T Lymphocytes; DC; Dendritic Cells; HIV, Human Immunodeficiency Virus; MSP, Merozoite Surface Protein;
NK, Natural Killer; PEC, Peritoneal Exudates Cells; Rec, Recombinant.
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