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Abstract

Computational methods have been used in biology for sequence analysis (bioinformatics), all-atom
simulation (molecular dynamics and quantum calculations), and more recently for modeling
biological networks (systems biology). Of these three techniques, all-atom simulation is currently
the most computationally demanding, in terms of compute load, communication speed, and memory
load. Breakthroughs in electrostatic force calculation and dynamic load balancing have enabled
molecular dynamics simulations of large biomolecular complexes. Here, we report simulation results
for the ribosome, using approximately 2.64 million atoms, the largest all-atom biomolecular
simulation published to date. Several other nanoscale systems with different numbers of atoms were
studied to measure the performance of the NAMD molecular dynamics simulation program on the
Los Alamos National Laboratory Q Machine. We demonstrate that multimillion atom systems
represent a 'sweet spot' for the NAMD code on large supercomputers. NAMD displays an
unprecedented 85% parallel scaling efficiency for the ribosome system on 1024 CPUs. We also
review recent targeted molecular dynamics simulations of the ribosome that prove useful for studying
conformational changes of this large biomolecular complex in atomic detail.
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1. Introduction

With the explosive growth of computational power in recent years, the biomolecular dynamics
simulation community is able to attack ever more physiologically relevant biological systems.
Considering that the BlueGene/L Machine of Livermore Labs is able to sustain 280 teraflops,
a petaflop computer may be available in the near future. While the amount of physiological
time simulated in biomolecular dynamics simulations has been the traditional benchmark for
biomolecular simulation (Duan and Kollman 1998), a second dimension of measurement is
equally important. The size of the system, defined by the number of atoms simulated, is crucial
to make contact between theoretical and experimental studies of physiologically important
systems. The lower than expected number of genes found in the sequencing of the human
genome(Lander et al. 2001) has underscored the importance of complex interactions between
macromolecules and macromolecular complexes. Large system sizes (i.€., Natoms > 108 and L
> 10 nm, where Nyiomg is the number of atoms including solvent and L is the extent of the
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complex) are required to simulate these macromolecular machines. While embarrassingly
parallel techniques have produced the thermodynamics of protein folding systems (Garcia and
Onuchic 2003) and total sampling times on the order of 500 microseconds for small systems
(Sorin et al. 2005), sophisticated parallel dynamic load-balancing techniques have made
multimillion-atom simulations possible (Sanbonmatsu et al. 2005). Here, we briefly review
progress in increasing the simulation system size and present recent performance results
produced by simulations of the ribosome on the LANL Q-Machine using the NAMD simulation
code. We emphasize that this review is by no means complete, but serves as a starting point
for more extensive reviews.

Biomolecular dynamics simulations originally simulated very short timescale dynamics (t ~
10 ps, where 7 is the physiological time simulated) of small proteins (bovine pancreatic trypsin
inhibitor, Natoms~500) in absence of solvent molecules due to limitations in compute power
(McCammon 1977; Karplus and McCammon 2002). Increases in computing power allowed
inclusion of solvent for small systems (bovine pancreatic trypsin inhibitor, Natoms~3100, T ~
25 ps) (Van Gunsteren and Karplus 1982). Fast multipole algorithms were used to achieve
simulation sizes of 1.26 x10% (t ~ 40 ps, photosynthetic reaction center of Rhodopseudomonas
viridis) (Heller et al. 1990), 2.4x104 (POPC lipid bilayer patch) (Board et al. 1992), and
3.6x10% atoms (t ~ 1 ps, estrogen receptor binding domain plus DNA complex) (Nelson et al.
1996). Simulations of the HIV-1 protease using a CRAY YMP with vector parallelization were
also performed (Natoms ~ 2.3x10%, © ~ 40 ps) (Harte et al. 1992).

An impressive multipole simulation of the tomato bushy stunt virus was performed (Natoms ~
4.88x10°, T ~ 5 ps); however the simulation utilized the symmetry properties of the virus by
imposing symmetry constraints and included approximately 8x103 independently moving
atoms (Mathiowetz et al. 1994). The fast multipole method was also combined with a multiple-
time-step method to simulate systems of 3.6x10% atoms (Streptavidin, t ~ 1.2 ns) (Eichinger
etal. 1997). Binding of the estrogen receptor to DNA was studied in the same year using a fast
multiple method (Natoms ~ 3.6x10%, 7~ 100 ps) (Kosztin etal. 1997). A significant improvement
in parallelization was made using Eulerian domain decomposition with dynamic load-
balancing to simulate the solvated acetylcholinesterase dimer in absence of long-range forces
(Natoms = 131,660, T ~ 0.2 ps) (Clark et al. 1994; Eichinger et al. 1997).

The particle mesh Ewald algorithm (Darden et al. 1993), which evaluates the electrostatic term
of the molecular dynamics potential, enabled extremely efficient calculations of long-range
forces and is used for the majority of biomolecular simulations performed today (Young et al.
2001; Hansson et al. 2002; Karplus and McCammon 2002; Tajkhorshid et al. 2002; Grater et
al. 2005; Grubmuller 2005). This algorithm has played a key role in producing stable
trajectories of nucleic acid molecules (Auffinger and Westhof 1998; Auffinger et al. 1999;
Sarzynska et al. 2000; Auffinger and Westhof 2001; Sanbonmatsu and Joseph 2003; Cheatham
2004; Spackova and Sponer 2006). Particle-mesh Ewald simulations using the NAMD code
of FN-I1 (Natoms~1.26x10°, sampling of 12 ns for the entire study) were also performed (Gao
etal. 2002). A large particle-mesh Ewald simulation of electroporation of a DOPC lipid bilayer
(Natoms~4.2x10°, 7> 3.5 ns) (Tieleman 2004) was recently performed using GROMACS (Van
Der Spoel et al. 2005). We note that a large coarse grain calculation (Npgrticles > 4x105) of
phospholipid vesicle formation was performed using a screened coulomb potential, neglecting
long-range forces (Marrink and Mark 2003).

Finally, more sophisticated dynamic load balancing in the NAMD code has produced
simulations of > 3x10° atoms using the Pittsburgh Supercomputing center Lemieux machine
with 1 GB RAM per processor (fLATPase macromolecular complex, 3.26x10° atoms)(Phillips
et al. 2002), and, more recently, the satellite tobacco mosaic virus using the NCSA Cobalt
machine with ~ 4GB RAM/CPU (~108 atoms)(Freddolino et al. 2006). The improved load-
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balancing was achieved by replacing spatial domains by meta-domains, based on compute-
load, as the smallest parallel decomposition unit. In particular, NAMD is built on top of the C
++ parallel interface, CHARM++ (Kale and Kirshnan 1996). CHARM++ uses a more general
form of domain decomposition where, in addition to spatial domain decomposition, a second
level of parallelization is used, namely the distribution of the force calculation for each particle
across processors. As in standard spatial decomposition, particles are divided into cubes
according to their position in the spatial domain (a cube is referred to as a 'patch’ in CHARM
++ nomenclature). A computational object is then created for each pair of neighboring cubes.
This object is then decomposed into a number of sub-objects based on the different
contributions to the force (e.g., bond, angle, dihedral, constraint and electrostatic
contributions). However, this division into subsets of interactions does not give equal
computational weight to each term in the potential, but is constructed to yield equal
computational work to each computational object, producing unprecedented load-balancing
for biomolecular systems with long-range forces. When the calculation for a given patch
requires data from other processors, a proxy patch is used, in a manner analogous to ghost cells
in conventional domain decomposition. The parallel decomposition performance is measured
during the simulation and the distribution of compute objects on processors is changed
throughout the simulation to ensure optimal load-balancing. The key advantage of CHARM+
++ is that it enables the overlap of compute and communication operations, dramatically
improving parallel performance. We emphasize that the implementation of this algorithm is
more complicated than this simplistic description and has been described in detail previously
(Kale and Kirshnan 1996; Phillips et al. 2002).

While this method represents a significant breakthrough in scaling, the memory overhead for
this particular implementation is prohibitive, in the sense that simulations of RNA complexes
with counter ions with Nyioms > 2x108 atoms require more than 2 GB RAM per processor. In
particular, using the Los Alamos National Laboratory Q Machine (SC03 2004), we have found
that these simulations can be performed with 4 GB RAM per processor but cannot be performed
with 1 GB RAM per processor. We have simulated the dynamics of the ribosome (2.64x10°
atoms) for a total of 22 ns sampling (including one 4 ns trajectory and many 2 ns trajectories)
using the Los Alamos Q-Machine and the NAMD molecular dynamics package of Klaus
Schulten and coworkers (Kale et al. 1999).

In figure 1 we show the largest sustained-performance biomolecular simulations, to our
knowledge, performed to date at the time of publication. We define “sustained-performance
simulations” as simulations lasting ~10 ps or longer, requiring on the order of 5x103 to 104
time steps, depending on the particular time step chosen. This definition includes early
production quality simulations, but excludes simulations performed merely for the purposes
of benchmarking or performance testing. We note that in several cases, systems used for
performance testing were eventually simulated for production-length time scales; however,
these simulations were published after the publication of production-length simulations of
larger systems and therefore were not the largest sustained-performance simulations at the time
of publication.

The same set of simulations would be included by another definition requiring simulations of
length 10 ps for years 1970-1979, 10-100 ps for years 1980-1995, 100 ps - 1 ns for years
1995-1999, and 1 ns - 100 ns for years 2000-2007. This definition reflects “typical” simulation
lengths for a given historical time period. While this definition may appear to be be the most
useful, it is also the most arbitrary and subjective (unless one were to record the simulation
times of a large number of published simulations and average over these simulation times). A
third definition uses the number of CPU-hours required for the simulation; however, this
definition “punishes” computers with faster CPUs, requiring longer physiological times for
computers with faster CPUs. The 10 ps “sustained performance” definition happens to be
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sufficient for the purposes of this discussion because, to date, simulation times for performance
studies have been less than 10 ps. However, an improved definition may be necessary in the
future to exclude performance studies with simulation times > 10 ps. Finally, we emphasize
that while our list is by no means complete nor definitive, we provide the list as a first step in
compiling a complete list.

Figure 1 also displays so-called “Moore’s law” curves of the form, a2t/ where a=100
atoms, tg = 1970 years, and Ty = 2.35 years (28.2 months) for the solid curve and 3.3 years
(39.6 months) for the dashed curve. The dot-dashed curve depicts a crude and arbitrary fit of
the simulation size data points of the form, a2(b(t-to)+c(t-to)sin?d(t-to+e))?M \where a = 100 atoms,
b=0.99, c=0.4,d=0.14, tg = 1970 years, ¢ = =5 years, and Ty = 3.3 years (39.6 months).
Since 1977, the increase in system size appears to lag behind the traditional Moore’s law of
doubling every 18 months, possibly due to the inefficiencies of biomolecular dynamics
simulation codes, with respect to single CPU usage and parallelization. However, in the past
four years, the system size has doubled approximately every nine months, out-pacing the
traditional Moore’s law. This is consistent with the appearance of more efficient code and the
fact that the increase in speed of supercomputers is also out-pacing the traditional Moore’s
law. Extrapolating along our sinosoidal doubling curve (dot-dashed curve in Fig. 1), a
simulation size of Naioms~107 is expected by 2010.

Biomolecular dynamics simulations originally focused on protein dynamics (Doniach and
Eastman 1999), drug design, and protein folding (Karplus and McCammon 2002; Gnanakaran
et al. 2003). More recently, progress has been made in simulating the conformational changes
occurring in large protein complexes (Elcock 2002; Karplus and McCammon 2002), Attention
has shifted to understanding gene expression, which is a major focus of molecular biology. In
this case, emphasis is placed on how molecular machines (generally taking the form of large
protein or ribonulceoprotein complexes) perform their function, i.e. the molecular basis for
conformational changes which occur during gene expression (Bockmann and Grubmuller
2002; Sanbonmatsu et al. 2005). The understanding of macromolecular complexes in atomic
detail is of great importance in understanding gene expression. In particular, molecular
dynamics simulations of molecular machines make contact between phenomenological
systems biology models of gene expression and all-atom crystallography structures of
molecular machines.

In this work, we focus on the ribosome, a molecular machine that is central to the genetic code.
The ribosome is responsible for translating genetic information from the 4-letter alphabet of
nucleic acid to the 20-letter alphabet of protein. The ribosome is one of the most highly
conserved biomolecules across species and constitutes a substantial fraction of the dry mass
of the cell (~25% in E. coli). In addition to its important biological role, the ribosome is also
the target of several large classes of antibiotics (Brodersen et al. 2000). The ribosome
simulations described below not only examine a crucial molecular machine for gene
expression, but have also opened the door for simulations of large molecular machines
important for gene expression and drug design.

2. Materials and Methods

2.1. Los Alamos National Laboratory Q Machine

The Los Alamos National Laboratory Q Machine currently has 2048 HP Alphaserver ES45
nodes, each with 4 EV6 1.25 GHz CPUs and an 8 MB cache. Nodes are connected with a
Quadrics high speed interconnect with ~2 ps latency and 300 MB/s bandwidth. 256 nodes have
16 GB RAM (i.e., 1024 CPUs with 4 GB RAM per CPU). A second machine (“QSC”) of 256
nodes has identical architecture. Each node on the QSC cluster has 16 GB RAM, or 4 GB RAM
per processor. Application simulations were performed on 768 processors on the Q machine
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cluster and 512 processors on the QSC cluster. Scaling simulations achieved a maximum of
~437 GFLOP/s on the QSC cluster using 1024 processors.

2.2. Simulation Set-up

To understand the parallelization efficiency measured for the ribosome simulation in
comparison to previous scaling studies, several systems with different numbers of atoms were
studied. Three ribosome simulations were performed: (1) the small subunit of the ribosome,
Natoms ~ 1.07x108, two simulations of 8.9 ns and 13 ns, based on PDB structure 1J5E
(Wimberly et al. 2000); (2) the 70S ribosome, Natoms ~ 2.03x106, one simulation of 10.45 ns,
based on model described previously (Tung and Sanbonmatsu 2004); (3) larger 70S ribosome
system with larger messenger RNA, Natoms ~ 2.64x108, one 4 ns simulation, based on model
described previously (Sanbonmatsu et al. 2005). Furthermore, simulations of (4) the ribosomal
decoding center (Nioms ~ 1.63x10%) (Sanbonmatsu and Joseph 2003) and (5) transfer RNA
(Natoms ~ 5.73x10%) were performed. Finally, to make contact with previous scaling studies
(Phillips et al. 2002), the NAMD benchmark systems (6) apoal (Natoms ~ 9.22x10%) and (7)
f1ATPase (Natoms ~ 3.28x10°), were studied. Two sets of simulations were performed for the
NAMD benchmark systems, one using parameters similar to those used in previous studies
and a second set of simulations using parameters used in our ribosome simulations (described
below).

In simulations (1)—(5), ions were placed randomly in a box around the solute at concentrations
of 0.1 M KCIl and 7 mM MgCl,. lons were then equilibrated with the NAMD molecular
dynamics simulation code and AMBER force field using a continuum water model with 5 A
radius for the ions to ensure electrostatic energy convergence. In the case of the whole ribosome
simulations, the ion-solute systems were equilibrated for 10 ns. Energy equilibrium was
reached in approximately 1.5 ns. Subsequently, the ion-solute systems were embedded in a
TIP3P water solvent box using the solvate routine (Kale et al.). The ion-solvent-solute systems
were minimized using steepest descent minimization. Next the solvent and ions were gradually
heated via constant volume molecular dynamics and temperature coupling from temperature
T =10 K to T=300 K over 200 ps, while keeping the solute fixed in place.

The system was then equilibrated with respect to volume running at constant pressure, P= 1
atm, for 200 ps using Langevin-Nose-Hoover pressure coupling. The solute was then restrained
with harmonic positional restraints at 200 kcal/mol A2 which were gradually lowered to 1 kcal/
mol A2 over ~ 1.2 ns. The restraints were set to 0 with the exception of bases near the large
subunit proteins in the 70S ribosome systems, which could not be modeled in the case of 70S
ribosome simulations. The restraints are used to mimic the presence of these missing proteins.
The total equilibration time was approximately 1.6 ns. A similar procedure was followed for
the other systems, with the exception of the NAMD benchmark systems. For production
molecular dynamics with solvent, all simulations use a time step of 2 fs, SHAKE constraints
on all hydrogens, particle mesh Ewald electrostatics with a grid spacing of ~ 1 A, cutoff = 9
A, multiple time steps, the AMBER force field, constant pressure and NAMD unless otherwise
stated. We chose atime step of 2 fs, SHAKE and the cutoff =9 A as an efficient set of parameters
that is consistent with our previous work as well as the work of many others using the AMBER
suite of simulation codes for protein and nucleic acid (Cheatham and Kollman 2000; Garcia
and Sanbonmatsu 2001; Auffinger and Westhof 2002; Case et al. 2002; Sanbonmatsu and
Joseph 2003).

We purposely repeated the NAMD benchmark system simulations with two sets of parameters
to compare our simulation performance results to those of previous studies. The starting
structure of the apoal system was taken from the NAMD benchmark website (Phillips 2005).
The starting structure of the fLATPase system was obtained from Jim Phillips (Jim Phillips,
private communication) and was described previously (Phillips et al. 2002). The first set of
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parameters for these systems (apoal and f1ATPase) was similar to those used above. The
second set was identical to those used for the previous benchmark simulations (Phillips et al.
2002). The second set of parameters uses a time step of 1 fs, no SHAKE constraints, constant
volume and a cutoff = 12 A. Both sets of simulations of the benchmark systems used the
CHARMM force field.

2.3. Performance measurement

Performance of NAMD on the Q Machine as a function of processors and number of atoms
was measured based on short test simulation runs. Results are reported in FLOP/s, where the
number of floating point operations per cycle for each system was determined by the perfex
monitoring utility. To measure the total number of floating point operations per time step, the
perfex utility was used for single processor simulations of each simulation system on the LANL
Theta SGI Origin 2000 system, as done previously by Phillips and coworkers (Phillips et al.
2002). Operation counts for 20 and 40 steps were calculated to remove startup operations as
previously (Phillips et al. 2002). To measure execution time, production solute/solvent/ion
systems were prepared as described above. Once equilibrated, restart simulations were run for
200 cycles, load balanced by complete reassignment based on measurement over cycles 100—
200, and load balanced again by refinement based on measurement over cycles 300-400.
Execution time was measured over steps 2100-2440 after restart. For single processor
simulations, restart runs were performed starting at step 2020. Execution time was measured
over steps 2100-2440.

3. Performance Results

The major result of our performance study is the demonstration of the increase in performance
with respect to the number of atoms simulated. This results from the increase in the ratio
between the compute time and the communication time as a function of the system size, which
is expected for efficient parallel code. Figures 2a and 3 display the increase in performance as
a function of the number of processors. For the apaol (Naioms = 9.22x104) and flatpase
(Natoms = 3.28x10°) comparison systems, two curves are shown. The solid curves with filled
triangles and circles represent system parameters with dt= 2 fs and cutoff = 9 A. The dashed
curves with open triangles and circles represent system parameters with dt= 1 fs and cutoff =
12 A. The number of operations in the apoal system with dt = 1 s and cutoff = 12 A is
approximately 83% greater than with dt = 2 fs and cutoff = 9 A. The number of operations in
the flatpase system is 92% greater. Thus, due to the larger number of local interactions
(proportional to ~(12 A/9 A)3), the compute load is significantly greater when using the
Phillips, et al. parameters. As a result, the scaling and performance is greater; however, the
execution time is significantly longer (Fig. 2b). Furthermore, the physiological time simulated
per wall clock day is substantially lower with the Phillips parameters due to the smaller time
step (Fig. 4). Our peak performance was achieved for the whole ribosome system (Natoms ~
2.64x106) at 437 GFLOP/s.

The relative performance as a function of processors has a speed-up of ~867 for the larger
whole ribosome system (~85% efficient), where efficiency = speed-up/Nprqcs, Speed-up =t/
tnprocs: t1 1S the execution time on a single processor without MPI and tnprocs is the execution
time on Npyocs processors (Fig. 3). A “turnover” in performance with respect to the number of
atoms results from the increase in the ratio between the compute time and the communication
time. That is, the compute time scales with the number of atoms. For systems with small
numbers of atoms, the communication time between processors is actually longer than than
the compute time, resulting in poor scaling with respect to processor number. For example, in
the case of Naioms = 1.63x10%, simulations on 1024 CPUs are much slower than simulations
on 256 CPUs. For systems with large numbers of atoms, the communication time is much
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smaller than the compute time, resulting in efficient scaling. Thus, in the case of Ngtoms =
2.64x106, simulations on 1024 CPUs approach speeds four times faster than simulations on
256 CPUs. The turnover in speed-up occurs near Nprocs=256 and 5.73x10%< Nytoms <
9.22x10%.

The increase in performance with respect to the number of atoms is shown explicitly in Fig. 5
for the case of Nprocs = 512. The large increase between Nagoms= 5.73x10% and Natoms
=9.22x10* corresponds to the turnover point. The higher performance curve (black dashed
curve) uses the Phillips parameters, which have a significantly larger compute load than our
parameters for the same number of atoms. To compare execution times between systems with
different numbers of atoms, we also show the physiological time simulated per day multiplied
by the total number of atoms in the simulation (Ngtoms X NS /day).

Memory usage vs. the number of processors for different system sizes is displayed in Fig. 6.
The memory usage of the master node is shown; however, we note that simulations using >
1024 processors with > 2x10° atoms terminated with memory problems even when running
with the master on a 16 GB node (4 GB/process) and other processes on 4 GB nodes (1 GB/
process). Figure 6 shows that NAMD requires more than 2 GB/process for simulations with
Nprocs > 768 and Natoms > 2x106.

4. Targeted Molecular Dynamics Simulations

To illustrate the utility of large-scale simulations, we briefly review results of targeted
molecular dynamics simulations that simulate the conformational change on the ribosome
occurring during the accommaodation of tRNA by the ribosome during decoding. During
accommodation, the aminoacyl tRNA moves from the A/T state to the A/A state. This
conformational change is the rate-limiting step of decoding for the acceptance of cognate
(Gromadski and Rodnina 2004). While calculations based on coarse grain sequence-
independent potentials have observed many interesting conformational changes, these methods
have not captured the accommodation motion of tRNA into the ribosome during decoding
(Tama et al. 2003; Trylska et al. 2005).

Because the accommaodation rate of cognate tRNASs is = 7/s (Gromadski and Rodnina 2004),
we have implemented the targeted MD algorithm (Schlitter et al. 1994; Ma et al. 2000; Young
etal. 2001) in explicit solvent (Fig. 7), which gradually reduces the root-mean-squared distance
(RMSD) of the complex to the A/A state while allowing thermal fluctuations of the structure
at any given RMSD. Thus, the simulation provides a stochastic pathway from the A/T state to
the A/A state. The targeted molecular dynamics simulations produce stereochemically feasible
pathways with candidate tRNA-rRNA interactions that can be tested via site-directed
mutagenesis. The simulations were described in detail previously and will thus be summarized
(Sanbonmatsu et al. 2005). To simulate single accommodation events, as opposed to
spontaneous rates, eight simulations were performed with durations of 2 ns each. To determine
whether numerical artifacts were introduced due to the time scale, simulations of 1 ns and 4
ns were also performed.

As expected, the body of the aminoacyl-tRNA relaxes from the kinked A/T state(Valle et al.
2003) to the native-like A/A state (Fig. 8). An accommodation wall region is defined by the
motion of the acceptor arm and elbow of the tRNA, as it sweeps over the large ribosomal
subunit during accommaodation. Specifically, large subunit helix LH89 is positioned to act as
a guide rail, ensuring that fluctuations in the tRNA elbow angle are sufficiently small to allow
the 3’-CCA end to reach the peptidyl transferase center. LH38 and LH69 are positioned to
prevent the aminoacyl-tRNA from over-shooting its A/A state equilibrium position.
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Interestingly, the 23S rRNA A-loop (H92) is positioned to block the entrance of the 3’-CCA
end of the aminoacyl-tRNA into the peptidyl transferase center (Fig. 9). During the simulations,
the CCA end indeed flexes backwards relative to the motion of the tRNA body as the CCA
end encounters the A-loop. Subsequently, both the CCA end and the A-loop flex, allowing the
CCA end to enter the peptidyl transferase center (Fig. 9). The flexing of the CCA end is
significant and constitutes a second flex region on the tRNA, in addition to that discovered by
Frank and co-workers (Valle et al. 2003). The 4 ns validation simulation displayed similar
behavior demonstrating that 4 ns simulations offer little new information in comparison to 2
ns simulations (Sanbonmatsu et al. 2005).

The simulations produced interactions between the aminoacyl-tRNA and the 10 universally
conserved 23S rRNA nucleotides (2451, 2452, 2506, 2508, 2553, 2583, 2584, 2585, 2662,
2663) identified previously by x-ray crystallography(Hansen et al. 2002) and cryo-EM(Valle
et al. 2003). In addition, the simulations identified 8 universally conserved 23S rRNA
nucleotides (1943, 1953, 1955, 2492, 2552, 2556, 2573, 2602) as important for accommodation
that cannot be observed in x-ray crystallography or cryo-EM because the interactions occur
during the process of accommodation, rather than before or after accommodation.

The simulation results demonstrate the suitability of the targeted molecular dynamics algorithm
for this particular problem. We emphasize that the accommodation problem differs
significantly from that of protein folding. While protein folding requires exhaustive sampling
of conformational space, accommodation essentially consists of two hinge movements of the
tRNA inside a largely immobile ribosome. Because the tRNA itself is almost entirely
constrained by steric interactions with the ribosome, accommodation requires a miniscule
exploration of conformational space due to the small number of possibilities available (in
comparison to protein folding), be it in vitro, in vivo or in silico. Targeted molecular dynamics
allows us to produce accommodation pathways that are entirely consistent with experimentally
determined initial and final states.
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Figure 1.

Increase in simulation system size with respect to year simulated. The largest bio-molecular
sustainted performance simulations to date at the time of publication to our knowledge are
shown. All simulations include explicit solvent unless otherwise noted. BPTI (VAC), bovine
pancreatic trypsin inhibitor without solvent (McCammon 1977; Karplus and McCammon
2002); BPTI, bovine pancreatic trypsin inhibitor with solvent (Van Gunsteren and Karplus
1982); RHOD, photosynthetic reaction center of Rhodopseudomonas viridis (Heller et al.
1990); HIV-1, HIV-1 protease (Harte et al. 1992) ; ES, estrogen-DNA (Kosztin et al. 1997);
STR, streptavidin (Eichinger et al. 1997); FN-111 (Gao et al. 2002); DOPC, DOPC lipid bilayer
(Tieleman 2004); RIBO, ribosome (Sanbonmatsu et al. 2005). Solid curve, Moore’s law
doubling every 28.2 months. Dashed curve, Moore’s law doubling every 39.6 months. Dot-
dashed curve, sinosoidal doubling fit (described in text).
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Figure 2.

Performance of NAMD on the LANL Q-Machine as a function of number of atoms. Solid
symbols used a cutoff of 9 A and dt = 2 fs with SHAKE. Open symbols used a cutoff of 12 A
and dt = 1 fs without SHAKE (Phillips, et al. parameters), resulting in a factor of ~2 increase
in compute load and higher parallel efficiency but longer wall clock time per step. (a)
Performance measured in GFLOP/s vs. number of processors. Performance increases with
increasing system size. (b) Execution time per step as a function of the number of processors.
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Parallel performance curve. Speed-up as a function of processors for systems with different
numbers of atoms. Black curve represents ideal speed-up.
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Figure 4.

Physiological time simulated vs. number of processors for different numbers of atoms. The
‘turn-over’ in efficiency occurs between Natoms = 5.73x10% and 9.22x10%,
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Performance vs. the number of atoms (black curves) and total number of atoms-ns simulated
per day vs. number of atoms (red curves) for a constant number of processors (Nprocs =512).
Dashed curves with open symbols use Phillips, et al. parameters.
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Figure 6.

Memory usage vs. number of processors for different numbers of atoms. Simulations with

Natoms > 2x108 require > 2 GB RAM per processor.
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Figure 7.

Solvation shell of the ribosome. Cyan, water density contours at ~ 3 times the bulk density,
averaged over 1 ns. White = small subunit, Green = large subunit, Pink = mRNA, Red =
aminoacyl-tRNA, Yellow = peptidyl-tRNA.
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Figure 8.

Aminoacyl-tRNA moves from the A/T state to the A/A state during the targeted molecular
dynamics simulations. Blue, oxygen atom on every 5" water molecule. White, 23S rRNA;
light green, 50S ribosomal proteins; cyan, 16S rRNA; magenta, 30S ribosomal proteins;
yellow, aminoacyl-tRNA,; red, peptidyl-tRNA; green, mMRNA. The top portion of the simulation
domain is not shown in order to display the full tRNAs.
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Figure 9.

Entrance of the aminoacyl-tRNA 3’-CCA end (yellow) into the peptidyl transferase center of
the large ribosomal subunit. Green, aminoacyl-tRNA amino acid; purple, 23S rRNA A-loop
(LH92); pink, 23S rRNA LH90; blue, 23S rRNA LH89; red, universally conserved
accommodation gate nucleotides; light green, peptidyl transferase center nucleotides that
interact with the 3’-CCA end in the x-ray crystallography structure representing A/A state;
cyan, peptidyl-tRNA amino acid.
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