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Abstract
The basis for mutations at A:T base pairs in immunoglobulin hypermutation and defining how AID
interacts with the DNA of the immunoglobulin locus are major aspects of the immunoglobulin
mutator mechanism where questions remain unanswered. Here, we examined the pattern of mutations
generated in mice deficient in various DNA repair proteins implicated in A:T mutation and found a
previously unappreciated bias at G:C base pairs in spectra from mice simultaneously deficient in
DNA mismatch repair and uracil DNA glycosylase. This suggests a strand-biased DNA transaction
for AID delivery which is then masked by the mechanism that introduces A:T mutations.
Additionally, we asked if any of the known components of the A:T mutation machinery underscore
the basis for the paucity of A:T mutations in the Burkitt lymphoma cell lines, Ramos and BL2. Ramos
and BL2 cells were proficient in MSH2/MSH6-mediated mismatch repair, and express high levels
of wild-type, full-length DNA polymerase η. In addition, Ramos cells have high levels of uracil DNA
glycosylase protein and are proficient in base excision repair. These results suggest that Burkitt
lymphoma cell lines may be deficient in an unidentified factor that recruits the machinery necessary
for A:T mutation or that AID-mediated cytosine deamination in these cells may be processed by
conventional base excision repair truncating somatic hypermutation at the G:C phase. Either scenario
suggests that cytosine deamination by AID is not enough to trigger A:T mutation, and that additional
unidentified factors are required for full spectrum hypermutation in vivo.
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Introduction
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is triggered by the Activation
Induced Deaminase (AID) -mediated deamination of cytosines in the DNA encoding the
variable (V) regions of Ig genes ( Petersen-Mahrt et al., 2002, Rada et al., 2002, Muramatsu et
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al., 2000, Revy et al., 2000). The resulting G:U mismatch is an intermediate which can be
replicated to yield C →T and G → A transitions, or whose U is removed by uracil DNA
glycosylase (UNG) to generate a mutagenic abasic site (Neuberger et al., 2003, Storb and
Stavnezer 2002). In a SHM-specific manner, it appears that the G:U pair may be recognized
by the MSH2-MSH6 heterodimer (Wilson et al., 2005, Bardwell et al., 2004, Martin et al.,
2003, Wiesendanger et al., 2000, Phung et al., 1999, Jacobs et al., 1998, Rada et al., 1998, Shen
et al., 2006), initiating an error-prone mismatch repair (MMR) reaction that involves re-
synthesis by translesion synthesis (TLS) DNA polymerases such as DNA polymerase η, ζ, θ,
and ι (Diaz and Lawrence 2005, Zan et al., 2005, Delbos et al., 2005, Mayorov et al., 2005, Faili
et al., 2002a, Diaz et al., 2001, Rogozin et al., 2001, Zan et al., 2001, Zeng et al., 2001),
however, this model remains speculative. Therefore, while it is likely that AID-mediated
deamination of cytosines in Ig DNA is the trigger to SHM, other aspects of the reaction that
remain poorly understood include: 1) How is AID specifically targeted to the Ig locus?, 2) In
what context does AID interact with the DNA of Ig regions (transcription, repair, etc.)? 3) How
does cytosine deamination lead to mutations at A:T base pairs, especially when uracil in the
DNA is not typically mutagenic to adjacent bases? (Diaz and Lawrence 2005).

AID deaminates single-stranded DNA but not double-stranded DNA in vitro ( Yu et al.,
2004, Chaudhuri et al., 2004, Chaudhuri et al., 2003, Dickerson et al., 2003, Pham et al.,
2003, Bransteitter et al., 2003, Sohail et al., 2003). Recent work by Alt and colleagues revealed
that AID interacts with replication protein A (RPA) and that this interaction enhances the
deamination reaction (Chaudhuri et al., 2004). Work by Goodman and colleagues
demonstrated that AID can act processively in vitro (Bransteitter et al., 2004), a finding that
may be consistent with a process involving elongation, such as transcription. The pattern of
mutations generated by SHM revealed hotspots of hypermutation (DGYW) that are AID-
mediated, strand bias in mutations at A:T base pairs but not at G:C base pairs, and a
predominance of base substitutions (Larijani et al., 2005, Beale et al., 2004, Rogozin and Diaz
2004, Yu et al., 2004, Bransteitter et al., 2003, Foster et al., 1999, Diaz and Flajnik 1998, Dorner
et al 1998, Rogozin and Kolchanov 1992). While these characteristics are clues to the
interaction between AID and the TLS polymerases with IgV regions, there is significant
controversy regarding the mechanism that delivers AID to the Ig V regions. Considerable
evidence suggests that AID may interact directly with the transcriptional machinery (Delpy et
al., 2004, Shen and Storb 2004, Nambu et al., 2003, Ramiro et al., 2003, Yoshikawa et al.,
2002, Bachl et al., 2001, Fukita et al., 1998, Rada et al., 1997, Tumas-Brundage and Manser
1997, Peters and Storb 1996). However, a transcription-based model has been difficult to
reconcile with the paucity of strand bias at G:C base pairs in SHM. Here, we examined strand
bias at G:C base pairs in a variety of contexts such as the Ig locus of DNA repair-deficient
mice. We reasoned that it is possible that AID is delivered to the DNA of the Ig V regions in
a strand-biased manner, such as through a transcription-mediated process, but that this may be
masked by the actions of subsequent proteins. We demonstrate that the Ig V regions from mice
simultaneously deficient in both MSH2 and UNG (Rada et al., 2004) display significant strand
bias in mutations at G:C base pairs.

Hypermutation in mammalian Ig and in the nurse shark antigen receptor, NAR, is
proportionally distributed among G:C and A:T base pairs (Diaz et al., 1999, Rogozin and Diaz
2004). However, in some species such as the frog and in bona-fide IgM in the shark, there is
a strong bias towards mutations at G:C base pairs ( Wilson et al., 1995, Hinds-Frey et al.,
1993). This G:C bias is also seen in Burkitt lymphoma cell lines such as Ramos that undergo
SHM constitutively (Harris et al., 2001) or BL2 that can be induced to hypermutate (Denepoux
et al., 1997, Poltoratsky et al., 2001) . Indeed, there is seldom an excess of mutations at A:T
base pairs; if there is a bias it favors G:C base pairs, probably a result of the requirement for
AID-mediated deamination of cytosine to initiate SHM. We examined the possibility that the
paucity of mutations at A:T base pairs in cell lines may be due to defects in known components
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of the A:T mutational machinery such as the MMR proteins, base excision repair (BER) or
DNA polymerase η. We found that Ramos is proficient at BER and MSH2-MSH6-mediated
MMR, and that DNA polymerase η sequence and expression in Ramos cells is intact. In
addition, MMR and DNA polymerase η expression and sequence are intact in BL2 cells. These
results suggest the existence of unknown factors that contribute to A:T hypermutation of Ig
genes.

Material and Methods
Cell lines

The human Burkitt lymphoma cell line, Ramos, and a human MMR-proficient lymphoblastic
cell line, TK6 (Wei et al., 2003) were obtained from ATCC, while BL2 cells were obtained
from Matthew Scharff and Claude-Agnes Reynaud. A cell line representing a late stage of B
cell development, OCYLy8c3 (Stiernholm and Berinstein, 1994) was a gift of Laurent
Verkoczy. Cells were grown in RPMI 1640 (GiBCO) medium supplemented with 10% fetal
calf serum (FCS), penicillin and streptomycin (1:100 dilution) (RPMI 1640 feeding medium)
at 37°C. The mouse embryonic stem (MES) cell line that is deficient in MMR was grown on
gelatinized plates in DMEM containing 10% fetal calf serum, penicillin, and streptomycin, β-
mercaptoethanol, 1000 units/ml leukemia inhibitory factor (ESGRO from Chemicon), and
supplemented with nucleosides and nonessential amino acids. BL2 cells were induced to
undergo hypermutation as described previously (Faili et al., 2002b). Briefly, 2 million cells
were incubated in 500 μl of RPMI medium containing 4 μl of biotinylated anti-human IgM
(Caltag laboratories, CA), 40 μl of fluorescein isothiocyanate-anti-CD19 (Immunotech,
France) and 40 μl of of phycoerythrin-anti-CD21 (BD Pharmingen, CA) for 20 minutes at 4°
C, excess antibodies were removed by washing once, and the cells were resuspended in RPMI
containing streptavidin-conjugated magnetic beads (Dynabeads M280, Dynal, Norway) and
incubated at 4°C for 20 min. Complete RPMI medium (10 ml) was added to the activated B
cells, followed by incubation at 37°C for 90 min.

RT-PCR, cloning and sequencing of the Ramos and BL2 Vh and of DNA polymerase η coding
regions

RNA was isolated by using TRIZOL reagent (Invitrogen) and first-strand cDNA was
synthesized using SuperScript TM First-Strand Synthesis system (Invitrogen) with the oligo
(dT) primer following the manufacturer’s protocol. The rearranged Ig Vh from Ramos and
BL2 was amplified by PCR from first strand cDNA using Pfu Turbo DNA polymerase
(Stratagene) as follows: 94°C for 2min, then 35 cycles of: 94°C for 30sec, 52°C for 30sec, and
72°C for 45 sec. A final extension at 72°C was done for 7 min. Primers for Ramos used were:
Vh1F:5′-GGGCGCAGGACTGTTGAAGCC-3′ andVh1R 5′-
GTGGTCCCTTGGCCCCAGACG-3′ based on those designed by Papavasiliou and Schatz
(Papavasiliou and Schatz, 2000). The primers for BL2 were: Vh4-n: 5′-
GAGGCTGCCTCTGATCCCAG-3′, and Jh5-n: 5′-CCTGGCAAGCTGAGTCTCCC-3′. Full
length DNA Polymerase η cDNA was amplified by using Accuprimer™ Pfx DNA polymerase
(Invitrogen) with the primers: Etaf- 5′-
ATGGCTACTGGACAGGATCGAGTGGTTGCTC-3′, and EtaR- 5′-
CTAATGTGTTAATGGCTTAAAAAATGATTCC-3′. All PCR products were cloned into
Topo PCR cloning vector (Invitrogen), and sequenced with T7 primer (Invitrogen) as well as
primers designed for sequencing the entire coding region of DNA Polymerase η as follows:
S5 5′-AGCCAGTGTTGAAGTGATGG-3′,S8 5′-TTCACACAATAAGGTCCTGGC-3′, S13
5′-AGCTGGTTGTGAGCATTCG-3′, S17 5′-CCATGAGCAATTCACCATCC-3′, S21 5′-
GGATATGCCAGAACACATGG-3′. The amino acid sequence of DNA polymerase η
deduced from mRNA extracted from Ramos and BL2 cells was aligned with the known human
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DNA polymerase η sequence using the CLUSTALW web interface at the European
Bioinformatics Institute website (http://www.ebi.ac.uk/clustalw/#).

Analysis of DNA polymerase η splice variants
Primers were specifically designed spanning exon II of polymerase η to identify alternative
splicing site as follows: SPLF- 5′-GCCAGGTGTTTGTTACCTTGA-3′ SPLR- 5′-
GCACGTTCAATCACAGCAAAAC-3′. PCR was conducted with REDTaq TM ReadyMix
PCR reaction with MgCl2 (Sigma).

Preparation of cell extracts
Extracts for base excision repair assays were prepared as previously described (Prasad et al.,
2000). Briefly, Ramos cells (5 X 106) were suspended in 100 μl Buffer I (10 mM Tris–HCl,
pH 7.8, 200 mM KCl), and an equal volume of Buffer II (10 mM Tris–HCl, pH 7.8, 200 mM
KCl, 2 mM EDTA, 40% glycerol, 0.2% NP-40, 2 mM dithiothreitol (DTT), 0.5 mM
phenylmethylsulfonyl fluoride, 10 mg/ml apoprotinin, 5 mg/ml leupeptin, 1 mg/ml pepstatin
A) was added. Cell suspensions were then rotated at 4°C for 1h and centrifuged at 14,000rpm
for 10min. The supernatant fraction was stored at −80°C.

Cytosolic extracts for mismatch repair assays were prepared from Ramos, BL2R, TK6 and
MES msh2-/- cell lines (Thomas et al., 1991). Cells (1 × 108) were washed in ice-cold isotonic
buffer (20 mM HEPES, pH 7.9, containing 5 mM KCl, 1.5 mM MgCl2, 1 mM dithiothreitol,
250 mM sucrose ) followed by ice-cold hypotonic buffer (as isotonic buffer above but minus
sucrose, plus 0.5 mM phenylmethylsulfonyl fluoride). Cells were re-suspended in hypotonic
buffer at concentration of ~ 0.7-1 X 108 cells/ml and then were lysed using a glass homogenizer
(Bellco). After 85% of the cells were lysed, the lysates were incubated on ice for 30 min. The
nuclei were pelleted at 2500 x g for 10 min. and the supernatant was cleared by centrifugation
at 12 000 x g for 10 min. Aliquots of the lysate were frozen in liquid nitrogen and stored at
−80°C prior to analysis. Protein concentration was measured using the Bradford protein assay
(Bio-Rad).

Preparation of DNA substrates by 5′-end labeling and primer-template annealing
Preparation of DNA substrates for the BER assay and 5′-end labeling were carried out as
described previously (Sambrook 2001). The sequence of the deoxy-uracil (U)-containing DNA
was as follows: 5′-CTGCAGCTGATGCGCUGTACGGATCCCCGGGTAC-3′.
Oligodeoxynucleotide was 5′-32P-phosphorylated with [γ-32P]ATP (7000 Ci/mmol) and T4
polynucleotide kinase. After incubation at 37°C for 45 min. the reaction was terminated by
heating the reaction mixture in boiling water for 3 min. Complementary oligodeoxynucleotide
was mixed in equimolar concentration and annealed in 10 mM Tris–HCl, pH 7.4, and 1 mM
EDTA by heating the solution to 90° C for 3 min, followed by slow cooling to room
temperature. Unreacted [γ-32P]ATP was removed by a MicroSpin™ G-25 column (GE
Healthcare) using the manufacturer’s protocol. The DNA was stored at −30°C.

BER assay
The uracil DNA glycosylase assay was performed as described previously (Prasad et al.,
2000). Briefly, a reaction mixture (10μl) was assembled on ice that contained 50 mM Hepes,
pH 7.5, 20 mM KCl, 2 mM DTT, 50 nM 32P-labeled 34-base-pair DNA with uracil at position
16 (sequence of oligo in Fig. 2B1). The reaction was initiated by adding either 10 nM UNG or
Ramos extracts, as indicated, and incubated at 37°C for 20 min. 1 μl NaOH (1M) was then
added to the mixture and heated for 5 min at 95°C, and an equal volume of gel loading buffer
(40 mM EDTA, 80 % formamide, 0.02 % bromophenol blue and 0.02 % xylene Cyanol) was
added and heated again for 2 min at 95°C. The reaction products were separated by
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electrophoresis in a 15% polyacrylamide gel containing 8M urea in 89 mM Tris-HCl, 89 mM
boric acid and 2 mM EDTA, pH 8.8. To quantify the reaction products, the gels were scanned
on a Phosphorimager (Molecular Dynamics, Model 450) and the data were analyzed using
Image Quant software.

MMR assay
The ability of cytosolic extracts to repair DNA mismatches was assessed as described
previously (Thomas et al., 1991). Briefly, wild-type and mutant M13mp2 phage derivatives
were used to prepare heteroduplex substrates that contain a nick in the (–)-strand and
mismatched or unpaired bases in the lacZ α-complementation gene (β-galactosidase gene).
Five nanograms (1 fmol) of an M13mp2 phage heteroduplex substrate, containing a G:G-
mispair, was incubated with 50 μg cytosolic extract in a 25 μl reaction for 15 min. The purified
product was electroporated into MMR-deficient E.coli NR 9162. Transformed bacteria were
plated with the α-complementation E.coli strain CSH50 onto minimal agar plates supplemented
with isopropyl-β-D-thiogalactopyranoside and X-Gal (Sigma, Dorset, UK). Repair efficiency
was calculated as 1 − (% mixed plaques in test sample ÷ % mixed plaques in a mock no-extract
control). Assays were performed using cytosolic extracts from the mismatch repair-proficient
human TK6 cell line as a positive control and mouse (MES) Msh2-deficient cells as a negative
control.

Western blot analysis for UNG expression
After SDS-PAGE electrophoresis, proteins were transferred to polyvinylidene difluoride
membranes (Millopore) using a semi-dry transfer apparatus (Pharmacia). The membranes were
blocked in 1x TBST (10 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.05% Tween 20, 5% nonfat
dry milk) for 1 h and incubated at room temperature in 5 ml anti-UNG (IMGENEX)(1:500
dilution) primary polyclonal antibody for 1 hour. The membranes were then washed four times
(15 min each) in 1x TBST and incubated with the goat anti- rabbit horseradish peroxidase
conjugate (1:5000 dilution) (Amersham) in 5 ml 1x TBST. The membranes were washed as
described above, developed with the Enhanced Chemiluminescence Kit (Amersham) and
exposed to Kodak film.

Computational analysis of mutations and strand bias
Spectra of somatic mutations in various prokaryotic and eukaryotic genes were analyzed,
spectra are listed in the Supplemental Table. The data are available upon request from Igor
Rogozin (rogozin@ncbi.nlm.nih.gov). All mutations are shown from the non-transcribed
strand. Frequencies of substitutions were corrected to represent a sequence with equal amounts
of the four bases. The Fisher exact test was used to compare frequencies of substitutions in A,
T, G, and C sites. Calculations were done using the COLLAPSE program (Khromov-Borisov
et al., 1999).

Results
Strand-bias at G:C base pairs in cells lacking A:T mutation

It has been difficult to reconcile the apparent lack of strand bias at G:C mutations with a
polarized process such as transcription for the delivery of AID into the Ig V regions. Therefore,
we considered the possibility that AID may be delivered in a strand-biased fashion, but that
this effect is masked by the proteins that follow the initial deamination, i.e. those involved in
the A:T mutation phase. We examined strand bias at G:C and A:T base pairs from a variety of
spectra, including Ig V regions from mice incapable of generating A:T mutations, such as UNG
and MSH2 doubly-deficient mice (Table 1). While most of the spectra revealed strand bias at
A:T base pairs, we found that strand bias at G:C base pairs is undetectable in most spectra,
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including UNG and MSH2 singly- deficient mice (Table 1). However, mice simultaneously
deficient in UNG and MSH2, the Burkitt lymphoma cell line BL2, and the GFP gene from
fibroblasts expressing AID, displayed significant strand-bias at G:C base pairs (Table 1).
Previous work by Reynaud and colleagues had demonstrated that in BL2, AID deamination is
strand-biased (Faili et al., 2002b). These three spectra have the lowest mutation frequency at
A:T base pairs suggesting that the A:T mutational machinery masks strand bias during AID-
mediated deamination, and that G:C base pairs are also mutated during the “A:T” phase of
hypermutation.

The Burkitt lymphoma cell lines, Ramos and BL2, are proficient in MMR and express
unmutated, full-length DNA polymerase η

Burkitt lymphoma cell lines that undergo SHM display a strong bias in favor of mutations at
G:C over A:T (Denepoux et al., 1997, Harris et al., 2001, Poltoratsky et al., 2001). The reasons
why some B cells display only the initial phase of hypermutation, i.e. the deamination step,
are unknown but can be multiple. For example, both the MSH2-MSH6 heterodimer and DNA
polymerase η are required for A:T mutation in vivo and could be deficient in cell lines. Given
that A:T mutation resulting from cytosine deamination is unique to B cells undergoing SHM,
it is likely that some components of the A:T mutational machinery in SHM may be novel and
unique to hypermutating B cells (Diaz and Lawrence, 2005). Thus, defects in MMR, DNA
polymerase η, or novel components of A:T mutation could cause the paucity of mutation at
A:T base pairs in the cell lines. Therefore, we examined mutation in Ramos and in induced
BL2 and found it to have similarly low levels of A:T mutation as described previously (Table
2). We then examined MMR in both cell lines. We used a G•G mismatch substrate that is
efficiently repaired by the MSH2/MSH6-dependent pathway of DNA mismatch repair.
Extracts prepared from Ramos and BL2 cells were proficient in MSH2/MSH6-mediated MMR
(Fig. 1). In addition, Neuberger and colleagues demonstrated previously that BER may provide
a secondary pathway for A:T mutation (Rada et al., 2004), and recent data suggest that that
BER contribution may vary depending on DNA sequence (Shen et al., 2006). This pathway
contributes only a small fraction of A:T mutations, but may account for the low yet significantly
higher A:T mutation frequency in Ramos over most Burkitt lymphoma cell lines. However,
Ramos cells express high levels of UNG (Fig. 2a) and are proficient in BER (Fig. 2b). We also
sequenced and examined the expression of mRNA transcripts encoding DNA polymerase η in
Ramos and BL2 cells. DNA polymerase η expression (Fig. 3) and coding sequence
(supplemental Figure 1) are intact in these cells. A differentially spliced form of DNA
polymerase η, predicted to encode a non-functional protein, has been reported and appears to
be a major source of regulation of this protein (Thakur et al., 2001). However, polymerase η
mRNA in Ramos and in BL2 is not subject to alternative splicing because the smaller fragments
were not detectable by PCR (Fig. 3). Thus, there is no obvious evidence of polymerase η
dysfunction in Ramos or BL2 cells.

Discussion
To assess whether AID-mediated deamination is a strand-biased process we examined
mutations at G:C base pairs in Ig V regions from a variety of databases. We found that when
phase 2 (the A:T phase) of hypermutation is almost completely absent, such as in mice
simultaneously deficient in UNG and in MMR and in the BL2 cell line, significant strand bias
at G:C bases was revealed. This implicates a strand-biased process in the delivery of AID to
Ig V regions. One candidate process is transcription. Storb and colleagues and others have
reported that e-box-like sequences or the E2A proteins themselves enhance hypermutation
(Michael et al., 2003, Schoetz et al., 2006) and that supercoiled DNA may help direct AID to
Ig V regions (Shen and Storb, 2004). Alternatively, other DNA transactions such as DNA repair
patches (Brar et al., 2004, Bross and Jacobs, 2003, Zan et al., 2003, Kong and Maizels, 2001, 
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Bross et al., 2000, Papavasiliou and Schatz, 2000) or the formation of AID substrates by a novel
mechanism (similar to the R-loops of switch regions) could account for a strand-biased delivery
of AID. Recent evidence, however, suggests that AID might directly associate with the
transcriptional machinery (Besmer et al., 2006, Duquette et al., 2005, Nambu et al., 2003).

An obvious conclusion from these results is that the A:T mutational machinery alters the strand
bias generated during AID-mediated deamination. Indeed, the three spectra with significant
G:C strand bias were those displaying the lowest level of A:T mutation: MSH2-UNG double
knockouts, the BL2 cell line, and the GFP gene from fibroblasts expressing AID (Table 1).
Since the single UNG or MSH2 knockouts did not display G:C strand bias, the explanation
cannot be due to a role by these molecules individually but rather as a part of a complex involved
in A:T mutation. An attractive explanation may lie in the participation of various error-prone
DNA polymerases in addition to DNA polymerase η in the A:T phase, some which may
contribute to mutation at G:C base pairs in a strand-unbiased manner (Diaz and Lawrence
2005).

The reason why Burkitt lymphoma cell lines display mutations predominantly at G:C bases is
an unresolved issue. The most straightforward interpretation is that these cell lines lack
components of the A:T mutational machinery. Here we demonstrate that Ramos cells are
proficient in MSH2/MSH6-mediated MMR and express wild-type, full-length DNA
polymerase η. In addition, a lack of contribution to A:T mutation by UNG and BER, a
secondary pathway that plays a smaller role in A:T mutation, is an unlikely explanation for the
lower A:T mutation in Ramos, since these cells are proficient in BER and express high levels
of UNG. BL2 cells, where the mutations are near 100% at G:C base pairs, are proficient in
MSH2/MSH6-mediated MMR, and express full-length, wild-type DNA polymerase η. A BER
defect in BL2 would not explain the severe paucity of mutations at A:T base pairs in BL2,
since BER contributes only a fraction of A:T mutations (Rada et.al. 2004, Shen et al., 2006).
The combined results suggest that all the known components of the A:T mutational machinery
are in place in at least some of the Burkitt lymphoma cell lines displaying a strong G:C bias
in Ig hypermutation, implicating deficiency of unknown components for the paucity of
mutations at A:T base pairs in their Ig loci. An A:T hypermutation recruiting factor, and
additional TLS DNA polymerases are potential candidates, specially considering mounting
evidence for the involvement of multiple DNA polymerases in Ig hypermutation, and not just
DNA polymerase η (Diaz et al., 2001, Zan et al., 2005, Masuda et al., 2005). However, it is
also possible that AID-mediated cytosine deamination is processed through a conventional
BER pathway in Burkitt lymphoma cell lines, leading to mutations predominantly at G:C base
pairs. For example, if removal of the uracil occurs prior to the recruitment of the MMR proteins,
mutations might be limited to or predominantly found at G:C base pairs. Indeed, expression
of AID in non-lymphoid tissues results in mutations predominantly at G:C base pairs (Okazaki
et al., 2003, Yoshikawa et al., 2002), and Ig hypermutation in cell lines may resemble this
conventional outcome of cytosine deamination. This suggests SHM-specific factors that cause
hypermutation to occur at bases adjacent to deaminated cytosines in the DNA (Diaz and
Lawrence, 2005). Perhaps, if SHM occurs at a different stage of the cell cycle in vitro than in
vivo, the DNA repair pathway recruited to deal with the uracil might be different, leading to
the frequent early removal of the uracil in cell lines and the ensuing conventional BER reaction
prior to recruitment of the A:T machinery. Such competition for the uracil between a SHM-
specific mechanism and conventional BER could attenuate A:T mutation in at least some of
the Burkitt lymphoma cell lines. Interestingly, these scenarios implicate a unique B cell
mechanism in vivo: one which promotes high frequency mutation at bases adjacent to
deaminated cytosines.

Xiao et al. Page 7

Mol Immunol. Author manuscript; available in PMC 2008 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Ramos and BL2 cell extracts are proficient in MSH2/MSH6-mediated mismatch repair. The
M13 heteroduplex substrate used in mismatch repair reactions (Thomas et al., 1991) contained
a G•G mismatch. A 5′ nick in the (–) strand at the Bsu36I restriction site serves as the strand
discrimination signal for the repair. The results are averages based on counting more than 500
M13 plaques per variable in three independent experiments.
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Figure 2.
BER activity in Ramos cells. (A) Western blot of UNG found in extracts from Ramos cells.
(B1) The sequence of 5′-end-32P-labeling DNA substrates containing a single uracil
(underlined) used in the assays. (B2) Ramos cells are proficient in BER. Exogenous UNG +
UGI (UNG inhibitor) (first 3 lanes, at molar ratio 1:1, 1:2, 1:5) and UNG alone was added to
oligo as controls. “Mock” represents oligo alone without the extract or exogeneous UNG.
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Figure 3.
The truncated inactive form of DNA polymerase η is not expressed in mature B cell lines. A
schematic model for the cDNA of Polymerase η, indicating exon II deletion is depicted. Primers
were synthesized for exon I and exon IV to generate a 358-bp product in the full-length
configuration. Loss of the 140-bp exon II would lead to a 218-bp fragment. The lower bright
band in the size marker (TrackIt 100 bp DNA Ladder, Invitrogen) is 600 base pairs.
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Table 1
Analysis of strand bias in Somatic Hypermutation in various genes

Spectrum G→N C→N PGC
1 A→N T→N PAT

2

In vivo mammalian SHM:
VkOx1 0.31 0.23 0.11 0.32 0.14 0.0001
neo 0.21 0.17 0.52 0.40 0.22 0.02
gpt 0.23 0.30 0.65 0.25 0.22 0.32
globin 0.21 0.29 0.61 0.27 0.23 0.18
lambda 0.26 0.22 0.26 0.37 0.18 0.000005
MMjh4 intron 0.18 0.21 0.55 0.38 0.23 0.003
HSjh4 intron 0.27 0.23 0.54 0.33 0.17 0.02
msh2-/- 0.50 0.33 0.41 0.11 0.06 0.47
iota-/- 0.25 0.20 0.35 0.36 0.19 0.001
ung-/- 0.26 0.25 0.86 0.33 0.16 0.00004
ung-/-msh2-/- 0.39 0.60 0.002 <0.01 <0.01 1.00
In vitro mammalian SHM:
Ramos 0.41 0.37 0.26 0.12 0.10 0.88
AID-tg-hP1-5 0.37 0.45 0.52 0.11 0.07 0.43
BL2 0.71 0.21 0.0005 0.08 0.00 0.10
GFP 0.55 0.44 0.05 0.01 <0.01 0.59
In vivo non-mammalian SHM:
Chicken 0.30 0.16 0.14 0.40 0.14 0.05
Xenopus 0.38 0.54 0.31 0.03 0.05 0.73
Shark NAR 0.23 0.25 0.71 0.29 0.23 0.43

1
PGC represents the probability of absence of strand-bias at G,C bases.

2
PAT represents the probability of absence of strand-bias at A,T bases.

Underlined frequencies depict significant bias.
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Table 2
Distribution of mutation at A:T and G:C base pairs in Ramos and activated BL2 cells*

G:C mutations A:T mutations
RAMOS (48 clones) 80 (85%) 14 (15%)

BL2 (30 clones) 5 (100%) 0 (0%)
*
Spectra similar as reported previously and is available upon request. These results are representative of at least three experiments.
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