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A recent editorial review in this journal [1] discussed whether MRI was fulfilling its promise
for molecular imaging of cartilage in osteoarthritis (OA) and related joint diseases. Many issues
in the implementation of three MRI techniques (T2, T1rho, and dGEMRIC) were discussed in
both clinical and high resolution environments. Although the theoretical bases of these MRI
techniques are reasonably comprehensible, quantitative correlations between the values of
these MRI parameters and the healthy states of the cartilage tissue have not yet been proved
to be reliable and consistent in clinical trials of OA. The authors [1] concluded accurately that
“the factors associated with cartilage degeneration may have differential and competing
effects” on the values of these parameters. In this short note, we would like to participate in
this discussion by exploring the influence of an additional factor, the image resolution, in MRI
of cartilage, based on our limited experience in microscopic imaging of cartilage using T2
relaxation and in quantitative correlation among several microscopic imaging techniques.

Fundamental Issues in Cartilage Imaging by MRI
Before we try to elaborate on the influence of image resolution in MRI of cartilage, a seemingly
trivial factor, let’s first outline some fundamental issues in our quest for better management of
arthritis using the molecular imaging methods of MRI.

1. Even though articular cartilage is quite thin, its morphological structure has a distinct
depth-dependent heterogeneity across its (thin) thickness. In the simplest sense,
cartilage has three sub-tissue zones from the articular surface to the bone: the
superficial zone, the transitional zone, and the radial zone. Each of these three zones
is distinctly characterized by a different orientation of collagen fibers [2–4]. As a result,
a bulk MRI measurement is unlikely to be useful in molecular imaging of cartilage
because of the averaging of different structures. (It should be noted that MRI is an
effect tool in morphological imaging of cartilage, which relates the volume / area /
thickness of cartilage tissue to the clinical grade of tissue lesion [5, 6].)

2. Articular cartilage curves as a two-dimensional surface at the ends of bones in
synovial joint. The biomechanical, physical, morphological, and molecular properties
of the tissue from different locations in a single joint surface can have noticeable
topographic variations [7–14]. Therefore, identifying the precise sampling site where
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the measurement is done can become an important factor, especially when multiple
specimens/subjects are involved in the study.

3. The earliest clinically detectable lesion tends to be localized and small (e.g., occurring
near the articular surface at certain topographical locations) [15–17]. Therefore, any
method for early detection likely needs a wide field of view to survey the surface in
order to identify any localized lesion.

4. Because MRI requires a specimen to be placed in a strong magnetic field, the physical
orientation of some macromolecules (eg, collagen fibers, muscle fibers) can cause the
tissue to behave differently in MRI when the same tissue is oriented differently in the
magnet [18–21]. For that reason, the physical orientation of the specimen (including
human) in the magnet can become important in MRI experiments.

5. The degradation of articular cartilage leading to OA and other diseases is an insidious
and continuing process, characterized at different degradation stages by different
types of structural and molecular changes [17, 22]. The mechanisms of these changes
exist at multiple levels, including biochemically, molecularly, ultra-structurally, and
histologically. Some of these mechanisms may co-exist ‘intrinsically’ while others
co-exist because of multiple molecular environments, consequently nulling and
voiding any significant outcome.

The Importance of Imaging Resolution
As one can see, these fundamental issues are intricate and convoluted; the solution for one
issue could be undesirable for another issue. Except for the issue of competing mechanisms,
however, the influence of all other issues towards the outcome of our measurement can be
minimized if we can ‘tailor’ the molecular environment within any single voxel (individual
volume elements of an image). By improving the image resolution, a smaller voxel can better
resolve individual sub-tissue zones, better differentiate topographical variations, better identify
local tissue degradations, and better map tissue curvatures. Perhaps more importantly, a smaller
voxel could simplify the molecular populations in the volume element, hence reducing the
averaging effect of competing mechanisms.

In addition to several of our μMRI studies that used healthy cartilage [14, 23], one recent μMRI
study in our lab found a number of detectable changes in an animal model of early OA [24].
An important feature of these significant OA cartilage findings is their strong topographical
dependency on the tibial surface, since they were not significant in the central locations of the
tibias where there was no meniscus (i.e., the site/load dependency). To obtain these meaningful
results, the transverse pixel sizes of 13.7 μm to 23.1 μm had been used in μMRI. If the
resolutions of this tibial OA study were not that high, these significant findings of early lesion
would likely be missed.

The ‘Scaling Law’ in Cartilage Imaging
Let’s set aside, for the moment, the immediate sighs of “How can we get a 13.7 μm resolution
in clinical MRI?”, and answer a simple question: “Is this microscopic resolution a necessity in
human MRI?” In these μMRI experiments of canine cartilage [23], the total thickness of the
non-calcified tissue was about 650μm. At that resolution, one has about 50 pixels across the
entire depth of non-calcified tissue; in other words, each pixel represents approximately 2%
of the total thickness of the tissue. So, the question can be rephrased as, “How fast does the
morphological structure (hence, molecular environment) change in articular cartilage along its
depth?” Since the same pieces of tissue in these studies were also imaged by polarized light
microscopy (PLM) at a much higher resolution [23], the thicknesses of the sub-tissue zones
were known: 49.7±23.8μm for the superficial zone, 100.8±14.4μm for the transitional zone,
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and 472.8±31.5μm for the radial zone. One can easily see that the thinnest zone in the tissue
only had about three pixels across its thickness - this 13.7 μm resolution was therefore not a
luxury, but a necessity.

However, this 13.7 μm resolution was a necessity only for a thin piece of cartilage 650μm
thick. If we keep the same relative dimensionality (2% thickness per image pixel) in the
structural variation of articular cartilage and in cartilage imaging, since the clinically important
human cartilage (from knees and hips) is much thicker, we could scale up the resolution
requirement and still obtain results comparable to the microscopic studies. We would need a
pixel resolution of 27.4 μm for tissue 1.3 mm thick or 41μm for tissue 2 mm thick. A pixel size
of 41μm, though it is still a challenge in clinical environments, could conceivably be reachable!
(It should be noted that this recommendation for clinical resolution is made purely based on
the need to resolve tissue structures in imaging. A discussion of various experimental and
technical consequences of this recommendation is beyond the scope of this short note.)

The Importance of Voxel Orientation when the Voxel Size is Not Isotropic
Before we rush to fine-tune our instruments, we need to understand the importance of one more
parameter in MRI experiments: the size and direction of the image slice. An ideal MRI protocol
for cartilage imaging should use a 3D k-space sampling with an isotropic resolution, which
offers several distinct advantages over the 2D slice selection protocol [6, 25–28]. However, 3D
imaging at high resolution is extremely time and computationally consuming; many MRI
experiments are done in a 2D (coronal, sagittal, axial) format using the slice selection. The use
of slice selection essentially tailors the shape of the individual image voxels from a ‘cube’ to
a ‘pencil’. In the 13.7-μm μMRI experiments [23], a 1-mm slice thickness was used. So the next
question is, what is the best way of orienting this pencil-shaped voxel?

For experiments that characterize the depth-dependent variations in cartilage, one can orient
the short dimension of this elongated voxel to be parallel with the tissue thickness, to resolve
different histological zones in high resolution. By placing the long dimension of this elongated
voxel orthogonal to the radial direction, one can reduce the experimental time and improve
SNR. Of course, the topographical variations over the 2D joint surface will cause some
structural averaging over this long dimension, and for that one has to consider the ratio of the
slice thickness over the joint size. For experiments that study other features of the tissue/tissue
degradation, one might want to orient the elongated voxel in some other direction. In essence,
if one can tailor the imaging voxel in such a way that the molecular environment inside this
volume is the simplest and most homogenous possible, any effect due to partial volume
averaging and competing mechanisms would be minimized.

Conclusion Remarks
In summary, in imaging articular cartilage using MRI, the parameter of imaging resolution can
have some non-trivial effects on the outcomes of the experiment. By reducing the size of the
imaging voxel, one can improve the homogeneity of the molecular environment, consequently
reducing any artifacts due to partial volume averaging and/or competing mechanisms. By
placing the imaging dimensions carefully, one can optimize the experiments by utilizing the
symmetry of the tissue structures. By managing the relative orientation between the specimen
(tissue block as well as human) and the direction of the magnetic field, one can manipulate the
magic angle effect in cartilage MRI. The goal here is to simplify the molecular environment
within each voxel so that the desired mechanisms become dominant.

Based on our limited experience in μMRI of cartilage using T2 relaxation, it seems that a
transverse resolution of approximately 2% relative tissue depth per image pixel is a necessity,
which, at the present time, poses challenges to the whole-body scanners. However, one needs

Xia Page 3

Osteoarthritis Cartilage. Author manuscript; available in PMC 2007 May 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to recognize that most of the clinical MRI scanners are designed as the generic version of the
MRI system, with a primary target in neurological applications and body scans. Valuable
information at higher resolutions and the social importance of managing joint diseases are
sufficient motivations for all of us to work together to design effective MRI systems around
our problem (musculoskeletal conditions) and to develop novel MRI protocols that are
exquisitely sensitive to a small set of relevant events in the tissue degradation.

Finally, having a fine spatial resolution in MRI is not going to solve all issues in molecular
MRI of cartilage. The competing mechanisms [1] intrinsically co-existing at the molecular level
will pose the ultimate limit to the potential of the technology. In view of the complex molecular
and ultrastructural changes due to early diseases and the interdependent relationships among
concentration-structure-property-function in articular cartilage, applying multidisciplinary
techniques together can discriminate among the various factors/changes and their influence on
the functional integrity of cartilage as a load-bearing biological tissue, thus providing critical
information towards the development of novel methods for early detection and effective
monitoring of the etiology of cartilage diseases at both clinical and molecular levels.
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