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Summary

The graft-versus-leukaemia (GVL) effect following allogeneic stem cell trans-
plantation is clear evidence that T lymphocytes can control and eliminate
myeloid leukaemias. The successful identification of a range of leukaemia
specific antigens (LSA) in recent years has stimulated efforts to induce leu-
kaemia specific T cell responses to these antigens with peptide vaccines. An
ideal LSA should be restricted in its expression to leukaemia including pro-
genitor cells, intrinsically connected with the leukaemic phenotype, and
capable of inducing strong cytotoxic T cell responses to the leukaemia. Pep-
tides from three well-characterized LSA, the breakpoint cluster region–
abelson (BCR–ABL) fusion protein of chronic myelogenous leukaemia,
proteinase-3 and Wilms tumour 1 protein, serve as the basis for several clinical
trials using peptide and adjuvants to treat patients with a variety of myeloid
malignancies. Preliminary results from these studies indicate that these pep-
tides induce immune responses which can translate into clinical responses
which include complete remissions from leukaemia. These promising early
results point the way to optimizing the administration of peptide vaccines and
suggest ways of combining vaccination with allogeneic stem cell transplanta-
tion to boost GVL effects.
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Introduction

The idea of using vaccines to treat myeloid leukaemia is not
new. In the 1970s several investigators treated acute myeloid
leukaemia (AML) patients entering remission with vaccines
combining bacille Calmette–Guérin (BCG) with irradiated
leukaemia cells. Enthusiasm for the approach waned as it
became clear that vaccine recipients had no survival advan-
tage [1]. Clinical interest in immunotherapy for myeloid
leukaemias turned towards allogeneic stem cell transplanta-
tion (SCT), where it became increasingly clear that the
transplant conferred a powerful T cell-mediated graft-
versus-leukaemia (GVL) effect. The potential of allogeneic
donor lymphocyte infusions to induce remissions in
patients relapsing after SCT was strong evidence that T cells
could destroy leukaemia [2–5]. This realization led to

efforts using in vitro-generated, leukaemia-specific T cells
transferred adoptively to SCT recipients to treat relapsing
leukaemia. Despite a successful demonstration of proof of
principle, however, the approach has not been applied
widely because of its impracticability [6]. Research into cel-
lular vaccines was re-enthused with techniques to generate
dendritic cells from AML and chronic myeloid leukaemia
(CML) cells. Such dendritic cell vaccines have the potential
to stimulate optimally T cell responses to the leukaemia
[7–13]. Meanwhile, other groups have begun to re-explore
cellular vaccines in the form of leukaemia cell lysates or
heat-shock protein fractions from leukaemia cells [14–17].
While these approaches may ultimately prove effective, they
represent costly, patient-tailored techniques with variable
reproducibility. For these reasons, this review focuses on
efforts to discover and use defined leukaemia protein

TRANSLATIONAL MINI-REVIEW SERIES ON VACCINES

Guest Editor: Danny Douek

doi:10.1111/j.1365-2249.2007.03383.x

Clinical and Experimental Immunology

189Journal compilation © 2007 British Society for Immunology, Clinical and Experimental Immunology, 148: 189–198
No claim to original US government works

mailto:barrettj@nhlbi.nih.gov


antigens for immunotherapy, because of their potential to
establish universal and practical vaccines for myeloid leu-
kaemias. In the last decade a variety of proteins giving rise to
leukaemia-specific antigenic peptides have been character-
ized and several clinical peptide-based vaccine trials have
been initiated in AML and CML and myelodysplastic syn-
drome (MDS).

Leukaemia-specific antigens

Antigen discovery

The identification of antigenic proteins capable of inducing
cytotoxic T cell (CTL) responses against myeloid leukaemias
was facilitated greatly by advances in basic immunology,
which defined the molecular nature of the interaction of the
T cell receptor with peptide antigens presented by major
histocompatibility complex locus (MHC) molecules on
target cells. At the same time the mapping of intracellular
antigen-processing pathways gave us, for the first time, a
complete picture of the way in which proteins within the cell
are digested by the proteasome into short peptide fragments
which enter the endoplasmic reticulum to become
assembled into MHC class I/peptide complexes that are then
transported to the cell surface for the scrutiny of T cells
[18–20]. This revelation led almost immediately to specula-
tion that ‘neoantigen’ peptide fragments spanning the break-
points of the leukaemia-specific breakpoint cluster region–
abelson (BCR–ABL) fusion protein specific for CML could
be incorporated into MHC molecules, presented on the cell
surface and be recognized as foreign by cytotoxic T cells

[21–24]. The same peptides, it was argued, could be used as
a vaccine to treat CML. In the last 15 years or so numerous
leukaemia antigens inducing T cell responses have been
described. They can be categorized broadly according to
whether they are overexpressed or aberrantly expressed self
proteins, or neoantigens derived from leukaemia-specific
chromosomal recombinations, or alleleic polymorphisms
(minor histocompatibility antigens: mHag) which are novel
to a stem cell donor lacking that allele (Table 1). Two distinct
approaches have been used to identify leukaemia-specific
and tumour-specific antigens (LSA and TSA). The ‘classical’
approach, developed by Boon and colleagues, has been used
to characterize a long list of TSA - of interest to haematolo-
gists because many TSA are also overexpressed by leu-
kaemias [25,26]. The approach requires the purification and
expansion of tumour-specific T cells, typically from
tumour-infiltrating lymphocytes. A DNA library from the
tumour transfected into antigen-presenting cells (APC)
bearing a single human leucocyte antigen (HLA) restriction
element is used to generate a series of cell pools containing
parts of the library. The pools are screened for cytokine
production [interferon (IFN)-g or tumour necrosis factor
(TNF)] by the T cell clone. Only APC-presenting peptides
derived from the tumour antigen elicit T cell responses. In a
stepwise procedure, the DNA fragments eliciting T cell
responses can be narrowed to the precise fragment giving
rise to the protein antigen, which can then be identified by
database searching. With appropriate DNA fragmentation of
the protein sequence, the antigenic peptides derived from
the protein can then be defined. Another variation (used
successfully to identify the mHag HA-2) is to generate a T

Table 1. Candidate proteins for peptide vaccination in myeloid leukaemias.

Antigenic protein Peptides under development HLA restriction Clinical trials Ref.

Leukaemia-specific antigens

BCR-ABL b3a2 fusion region 9–25 mers HLA-A3,-11, -B-8, DR-1, -4, -11 CML [53–55]

Primary granule proteins PR1 A-2 MDS, AML, CML [72]

PR7 A-2 No [102]

PML-RARA BCR 1–25 DR-11 No [103]

Tumour-specific antigens

Wilms tumour-1 WT1-126 A-2 MDS, AML [36,38]

WT1-235 A-2, -24 MDS, AML [38,104]

WT1-187 A-2 No [38]

WT1-37 A-2 No [105]

H-TERT A-2, -3, -24 No [106–108]

PRAME A-2 No [109]

BCL-2 A-2 No [108]

G-250 A-2 No [108,110]

mHags

HA-1 protein A-2 No [111]

HA-2 protein A-2 [111]

CD33 allele A-2 No [111,112]

CD45 allele A-2 No [113]

BCR–ABL: breakpoint cluster region–abelson; WT1: Wilms tumour 1; MDS: myelodysplastic syndrome; AML: acute myeloid leukaemia ; CML:

chronic myeloid leukaemia; HLA: human leucocyte antigen.
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cell clone by stimulating post-transplant (donor) T cells
with cells from the patient. The clone is used to screen pep-
tides eluted from MHC molecules of the target cell and
separated by mass spectrometry into peptide fractions
[27,28]. The alternative approach (termed ‘reverse immu-
nology’) does not require the generation of a tumour-
specific T cell clone. Instead, a search is made of known
proteins with promising antigenic characteristics. Peptides
derived from these proteins and predicted to bind to
common HLA types are used to generate cytotoxic T cells
which are then tested against leukaemia and normal targets
to define HLA restriction, leukaemia cytotoxicity and speci-
ficity [29–31].

Validation of LSA

Candidate peptides are validated for their applicability as
vaccines using a cell panel to test HLA-restriction, leukaemia
specificity and ability to induce cytotoxic T cells. Tissue
libraries are screened for mRNA expression of the LSA to
confirm leukaemia specificity. The anti-leukaemic potential
of peptide-specific T cell clones is defined in vitro by their
cytotoxicity against leukaemic progenitors, with colony and
proliferation inhibition assays, or in vivo in non-obese dia-
betic (NOD)–SCID mice inoculated with human leukaemia.
Alternatively, specific cytotoxicity against human leukaemic
progenitors can be tested by direct cytotoxicity or by inhibi-
tion of proliferation [32,33].

Characteristics of an ideal LSA

With an abundance of already defined antigens as well as a
growing list of candidate proteins, it is useful to define some
criteria for selecting proteins most likely to serve as good
LSA (summarized in Table 1).

Leukaemia restriction

Concern that vaccines for LSA also expressed by other tissues
might cause autoimmune disease requires a comprehensive
description of LSA tissue expression. Fusion proteins arising
from specific chromosomal recombinations and linked
uniquely to the leukaemic process are safe because they are
restricted entirely to leukaemia cells. However, the require-
ment for exclusive expression by the leukaemia are not abso-
lute: the cancer-testis antigen WT1, expressed on stem cells
and gonadal cells, behaves in a leukaemia-restricted manner
because only the malignant cells which overexpress WT1 are
susceptible targets of T cell attack [34–38]. In the context of
SCT only broad graft-versus-marrow specificity is required
for safety, as the eradicated recipient haematopoiesis is
replaced by that of the donor lacking the mHag. There has
been concern (so far unjustified) that immune reactions
against proteins such as PR3 and NE may target not only the
leukaemia cells which overexpress the protein, but also

normal tissues that express lesser amounts of the protein such
as normal early myeloid precursors. In addition, PR3 is a
target of autoimmune attack in the disease Wegener’s granu-
lomatosis, a vasculitis associated with the production of IgG1
anti-neutrophil cytoplasmic antibodies (ANCA) with speci-
ficity for PR3. This has led to excluding patients with ANCA
or a history of vasculitis from vaccination with PR1.

Stem cell expression

There is an assumption that effective immunotherapy
requires the target antigen to be expressed by the earliest
leukaemic progenitor. While this seems to be a reasonable
criterion for antigen selection, it may not be a prerequisite in
every case: individual leukaemias have diverse hierarchical
patterns of progenitor and progeny. CML progression, for
example, appears to derive from the committed granulocytic
progenitor [39].

Functional importance for the leukaemic phenotype

Malignant cells have a predilection to escape immune
control by down-regulating antigen expression. Selecting
antigenic targets that are intrinsic to the maintenance of the
leukaemic phenotype (e.g. BCR–ABL, WT1, PR3) may
render it impossible for the leukaemia cell to escape and still
retain leukaemic function [40–43]. It should be remem-
bered, however, that malignant cells can also escape T cell
control by down-regulating MHC molecules allowing them
to conserve essential leukaemic features.

Immune response

To be effective as vaccines LSA must elicit clonal expansions
of cytotoxic T cells with high avidity for the antigen. Fur-
thermore, such antigen-specific T cells should be validated
for their anti-leukaemic effects as described above.

Global applicability

The broad expression of antigens such as WT1 by many
leukaemias and solid tumours makes it an attractive protein
for peptide manufacture. Similarly, proteins which encode
for multiple antigenic peptides binding to multiple class I
and II HLA molecules are attractive because this removes the
constraints of HLA-restricted vaccine approaches.

Peptide vaccines under clinical development
(Table 2)

BCR–ABL vaccine

Four fusion variants of the BCR–ABL protein are known. Of
these, the p210 b3a2 variant appears most promising in
terms of HLA restriction with many HLA class I and II
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binding peptides [21,23,24,44–47]. Recently, Melief and col-
leagues identified 17 novel, potentially antigenic, BCR–ABL
fusion peptides [48]. Ten HLA class I binding fusion peptides
fulfilled the essential requirement for antigen presentation of
being excised after their C-terminus by the proteasome. It is
clear from numerous descriptions that b3a2 peptides can
induce peptide-specific T cells and that CML cells do present
BCR–ABL peptides, but BCR–ABL peptides have not been
found reproducibly to induce CTL lytic for CML. The most
convincing results come from studies by Clark et al., who
were able to generate MHC-restricted CTL responses to
CML cells using an HLA A-3 binding peptide [49]. In vivo
peptide-specific CTL have been identified after stem cell
transplant in patients with controlled CML and in HLA-A3
positive healthy individuals [49–52]. These cells had low
affinity for the peptide with variable lytic activity against
fresh CML targets.

BCR–ABL trials

Pinilla-lbarz and colleagues, at the Memorial Sloane Ketter-
ing Institute, were the first to develop a BCR–ABL vaccine
composed of a pool of six peptide fragments (Table 2). A
safety study showed that the vaccine and adjuvant were well
tolerated and could elicit T cell immune responses to BCR–
ABL [53]. They then performed a phase II study where 14
CML patients in chronic phase received five doses of
the vaccine and adjuvant [54]. All patients developed

delayed-type hypersensitivity (DTH) or CD4+ proliferative
responses to the peptides. IFN-g-producing CD4+ and CD8+

T cells developed in 11 and four patients, respectively.
Reduction in marrow Ph chromosomes occurred in four
patients, but three of these continued other treatments with
IFN-a or imatinib. Three patients in molecular relapse after
SCT had transient molecular remissions, but two had also
been treated with donor lymphocyte infusions. These
results, while promising, do not demonstrate convincingly
the efficacy of the vaccine. In a subsequent, more stringent,
trial using the a similar peptide combination Bocchia et al.
in Italy studied 16 b3a2 variant CML patients with residual
disease stable for at least 6 months, after a minimum of
12 months’ treatment with imatinib or 24 months with
IFN-a [55]. Patients received six vaccinations and were then
assessed for immunological and disease response. Of 10
patients on imatinib, nine had stable cytogenetic disease
and one was in cytogenetic remission for a median of
10 months. Five achieved a complete cytogenetic remission
with a negative polymerase chain reaction (PCR) for BCR–
ABL in three. Of six patients stable for a median of
17 months on IFN-a treatment with 13% median Ph+

chromosomes in the marrow, five showed reductions in the
percentage of Ph+ chromosomes, with two reaching com-
plete cytogenetic remission. Five of five patients showed spe-
cific responses to the peptide with IFN-g production, 13 of
14 had proliferative responses and delayed-type hypersensi-
tivity to the peptides was seen in 11 patients. These results

Table 2 Peptide vaccines under clinical evaluation in myeloid malignancies.

Characteristic BCR–ABL PR1 WT1

Expression Unique to CML Myeloid malignancies Many leukaemias and solid tumours

Essential for phenotype Yes Probably Yes

Peptide(s)/HLA restriction SSKALQRPV/A-2,

KQSSKALQR/A-3

ATGFKQSSK/A-11

HSATGFKQSSK/A-3,A-11

GFKQSSKAL B-8

IVHSATGFKQSSKALQRP VASDFEP

/DR-1, -4, -11

VLQENTVLV/A-2 RMFPNAPYL/A-2

CMTWNQMNL

/A-24

CYTWNQMNL

(heteroclitic)/A-24

Size (mer) 9,11,15 9 9

Adjuvant QS-21 (Quillaja saponaria) Montanide Montanide

GM-CSF GM-CSF GM-CSF

In vitro-generated CTL kill

leukaemia cells

Variable + + + + + +

Affinity of T cells to peptide Low High and low High and low

Natural T cell immunity

In controls +/– < 1/100 000 < 1/100 000

In leukaemia +/– < 1/10 000 1/10 000

After SCT May be lytic to CML Up to 13% CD8 Up to 5% CD8

Antibodies identified Yes (after vaccination) Yes (ANCA) Yes (in leukaemia and MDS patients)

T cell response to vaccine + + +
Clinical responses to vaccine + + +

BCR–ABL: breakpoint cluster region–abelson; WT1: Wilms tumour 1; MDS: myelodysplastic syndrome; AML: acute myeloid leukaemia ; CML:

chronic myeloid leukaemia; HLA: human leucocyte antigen; PR1: proteinase 1; CTL: cytotoxic T cell; GM-CSF: granulocyte–macrophage colony-

stimulating factor; ANCA: anti-neutrophil cytoplasmic antibodies.
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suggest that clinical responses to BCR–ABL peptides can be
induced in patients with CML with low levels of stable
disease. These rather modest results raise concerns that the
method of vaccine administration or the immune status of
the treated patients may be suboptimal, or that BCR–ABL
does not induce sufficiently powerful cytolytic T cell
responses to CML.

Primary granule proteins

Primary granule proteins (PGPs) are a group of serine pro-
teases, or closely related molecules, found in granulocytes
and their precursors. They occur in high concentrations in
maturing granulocytes and neutrophils - approximately
1 pg enzyme per cell [56–58]. Two PGPs, PR3 and NE, have
been studied in detail. Both are overexpressed in myeloid
leukaemia blasts and CD34+ leukaemic progenitors [29,56].
They may be important in maintaining a leukaemia pheno-
type: PR3 anti-sense oligonucleotides halt cell division and
induce maturation of the HL-60 promyelocytic leukaemia
cell line [43,56] and NE-deficient mice are protected from
developing acute promyelocytic leukaemia [59]. NE produc-
tion by CML cells inhibits normal granulopoiesis in culture,
suggesting that NE gives CML clonal dominance over
normal granulopoiesis [60–62]. In 1995 we chose to study
PR3 as a potential source of LSA and using a reverse
immunology approach identified PR1 a nine-amino acid
HLA-A*0201-restricted peptide which induced myeloid
leukaemia-specific CTL responses [30,31]. PR1 is naturally
processed and presented on MHC class I molecules from
CD34+ CML cells [63], and the degree of cytotoxicity exerted
by PR1-specific T cells correlated with the degree of cyto-
plasmic PR3 expression by the target [30,31,52,64,65]. PR1-
specific CD8+ T cells are found at low frequencies
(approximately 1/100 000 CD8+ T cells) in healthy individu-
als, but in leukaemia patients and after SCT these frequencies
may rise one or two logs, respectively [52]. High frequencies
of PR1-specific CTL are also found in patients with CML
responding to IFN-a, and in patients entering molecular
remission after SCT as well as patients with AML [52,64,65].
PGP as a group are immunogenic: 40–60% of healthy indi-
viduals have CD4+ and CD8+ T cells recognizing NE, PR3
and cathepsin G. These protein-specific T cells can be
expanded in vitro and are cytotoxic to CML cells [29]. The
occurrence of autoreactive T cells to PGP is not well
understood. It appears that T cells recognizing PGP escape
the normal process of eliminating autoreactive T cells by
the thymus. This may explain why PGP are a target of
autoimmune attack in Wegener’s granuloma and related
vasculitides [66–71].

PR-1 vaccine trials

A pilot study nearing completion evaluated PR1 vaccine in
patients with refractory or progressing myeloid leukaemias,

including many who relapsed after SCT. Patients received a
course of 3-weekly PR1 vaccine with montanide adjuvant
and granulocyte–macrophage colony-stimulating factor
(GM-CSF) [72]. Increased frequencies of PR1-specific
CTLs occurred in 22 of 37 patients. Sixteen responders
showed clinical improvement including complete remis-
sions in four patients, and a longer event-free survival for
patients who had an immune response compared with
those who did not. No patients developed cANCA antibod-
ies or vasculitis. These encouraging results have led to the
initiation of several new studies with PR1 in less advanced
patients.

WT-1

Mice immunized with WT1 peptide or WT1 cDNA reject
WT1-expressing tumours, suggesting that WT1 vaccines
might be effective as immunotherapy for WT1 positive
leukaemia. In man WT1 protein is overexpressed in a wide
range of malignancies, including myeloid leukaemias and
MDS [34,73–75]. Furthermore, expression increases as
disease progresses, making WT1 an attractive vaccine candi-
date in otherwise untreatable advanced leukaemia [76,77]. A
number of HLA-A2- and HLA-24-restricted WT1 epitopes
are known and CTLs specific for WT1 peptides and cytotoxic
to myeloid leukaemias are generated readily from normal
individuals [36,38,78]. Several investigators have reported
the occurrence of WT1-specific CTL in patients with
cancers, myeloid and lymphoid leukaemias and healthy vol-
unteers [52,65,79–81]. T cells from patients with leukaemia
are polyclonal, often recognizing all four HLA-A*0201
immunodominant peptides, whereas healthy controls had
lower frequency responses to fewer epitopes, suggesting that
myeloid leukaemias naturally elicit T cell responses to WT1
[81]. WT1 IgM and IgG antibodies can also be detected in
patients with haematopoietic malignancies [35,82,83]. These
observations suggest that WT1 is highly immunogenic in
man and an interesting vaccine candidate for haematological
malignancies in general.

WT1 vaccine trials

Oka et al. reported the outcome of a phase I clinical study of
WT1 peptide-based immunotherapy in patients with breast
or lung cancer, MDS or AML [84,85]. Patients received an
HLA-A24 9-mer WT1 peptide in Montanide adjuvant at
2-week intervals in a dose escalation study. The vaccine was
well tolerated and 18 of 26 patients received three or more
vaccinations. The only notable side effect was profound leu-
kopenia in two MDS patients reversed by steroid treatment,
which concommittently abrogated the WT1 T cell response.
Twelve of the 20 evaluable patients had clinical responses,
including reductions in blood or marrow leukaemic blasts or
tumour size or tumour markers. Increases in WT1-specific
CTL frequency correlated with a clinical response.
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Scheibenbogen and colleagues [65] used a WT1-126
peptide vaccine in 16 patients with AML and 1 patient with
MDS. Patients received a median of eight vaccinations
(range 3–18) [86]. WT1-specific T cell responses were
detected in nine of 13 patients by tetramer analysis and eight
of 13 by intracellular cytokine staining. Clinical responses
were seen in six of 12 patients, with one patient achieving
complete remission for 12 months. The patient with MDS
had an improvement in neutrophil and platelet counts, two
patients had minor responses with transient reductions in
leukaemic blasts and two patients achieved temporary
disease stabilization. WT1 transcripts as molecular disease
markers decreased in five of these six patients. These
very promising results indicate that WT1 vaccination can
induce functional CTL responses associated with clinical
improvement.

Vaccine developments

Improving the applicability and efficacy of
peptide vaccines

Peptide vaccines are attractive to use in clinical trials because
they are relatively cheap, easily manufactured to clinical
grade and easy to administer. However, they have significant
limitations. The first is HLA restriction: vaccine use is
restricted to patients who have the appropriate HLA type
(usually HLA-A2 or A24). At least 60% of the population
lack these HLA types and are ineligible for vaccination.
Studies with adoptive transfer of immunity to cytomegalovi-
rus have shown the importance of combining CD4+ with
CD8+ antigen-specific T cells to achieve sustained immunity
[87]. Inclusion of MHC class II binding peptides in a vaccine
to elicit CD4+ cells in combination with CD8+ cells would
therefore be a worthwhile goal.

Peptide library screening

Peptide library screening offers a way to find new peptide
epitopes. Lymphocytes from individuals selected for HLA
haplotypes of interest are screened against a 15 mer overlap-
ping peptide library covering the entire protein sequence.
Guided by computer-generated peptide–MHC binding pre-
dictions, candidate peptides are synthesized and tested for
their ability to induce IFN-g production and promising pep-
tides are further validated as described above. A cocktail of
peptides with broad specificity for most common HLA class
I and II types can be produced in this way [88,89].

Heteroclitic peptides

Heteroclitic peptides represent a method to enhance peptide
vaccine potency. Heteroclitic peptides are synthetic varia-
tions of the natural peptide sequence which retain the same

HLA binding specificity and avidity but which have
enhanced affinity to the T cell receptor (TCR). Several
groups are currently exploring heteroclitic WT1 peptides as
vaccines [90–93].

Alternatives to peptide vaccines

The use of whole protein rather than defined peptides offers
the opportunity to generate leukaemia-specific CTLs against
multiple peptide epitopes, binding to a wide range of HLA
class I and II molecules, thus eliminating the constraint of
HLA restriction and allowing the generation of CD4+ T cells,
which could provide help for CD8+ T cell expansion. The
identification of PGP-specific CD4+ and CD8+ T cells in
healthy donors [29] supports the development of PGP
protein vaccines. Protein vaccines, nevertheless, have
shortcomings. They are difficult to manufacture and are
inefficient inducers of CD8+ CTL responses as they are pro-
cessed mainly by APCs for MHC class II presentation to
CD4+ T cells [94–96]. As an alternative to proteins, DNA
vaccines may ultimately represent the most practical
approach to inducing T cell responses to a broad range of
MHC class I and II epitopes (reviewed in [97]).

Clinical applications of LSA vaccines - the future

While vaccines could conceivably be used to prevent myeloid
malignancies, it is unlikely that vaccines alone could eliminate
established disease unless combined with other treatments.

Combining vaccines with allogeneic SCT

The finding of increased frequencies of BCR–ABL-, PR1-
and WT1-specific CTL after SCT suggests that GVL could be
enhanced by post-transplant vaccination. The transplanta-
tion of a healthy donor immune system in a leukaemic
recipient offers a unique opportunity to boost GVL by also
vaccinating the donor. Immediately after SCT, conditions
may be favourable for antigen-specific T cell expansion
because the preparative regimen creates a lymphopenic envi-
ronment causing a surge of interleukin (IL)-12 and IL-15
which stimulates lymphoproliferation strongly [98–100]. T
cells recently activated by antigen can be boosted favourably
by vaccine during this period. However, before vaccination
can be applied effectively in SCT recipients it will be
necessary to improve methods to selectively prevent acute
graft-versus-host disease (GVHD) eliminating the need for
post-transplant immunosuppression. The combination of
the potent GVL effect of the allograft with the vaccine boost
for leukaemia-specific T cells could prove to be a highly
effective strategy to control refractory leukaemias.

Combining vaccines with non-transplant treatments

Low disease burdens in CML patients stabilized to low levels
of molecular disease by imatinib, patients with AML in
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remission or patients with early MDS offer ideal opportuni-
ties for vaccination. Chemotherapy, like SCT, can induce a
favourable lymphopenic milieu conducive to rapid expan-
sion of vaccine-boosted T cells but may also blunt T cell
responsiveness. To optimize vaccine efficiency, it may there-
fore be necessary to collect antigen-stimulated lymphocytes
by apheresis before chemotherapy, re-infusing them
with further vaccination following lymphoreductive
chemotherapy. Indeed, work published recently by Rapoport
and colleagues supports the feasibility of this approach
[101]. They performed a randomized Phase I–II trial in 54
patients with advanced myeloma to determine whether com-
bination immunotherapy consisting of vaccination with the
pneumococcal conjugate vaccine (PCV) and adoptive T cell
transfer could correct the immunodeficiency and lymphope-
nia induced by high-dose chemotherapy. They demonstrated
that individuals who received a single early post-transplant
infusion of in vivo vaccine-primed and ex vivo co-stimulated
autologous T cells followed by post-transplant booster
immunizations had accelerated immune reconstitution
and enhanced antigen-specific CD4+ and CD8+ T cell
function in vivo.

We are therefore exploring the strategy of inducing lym-
phopenia (with or without allogeneic transplantation) fol-
lowed by PR1 and WT1 peptide vaccination to selectively
expand leukaemia-specific CTLs during the phase of lym-
phocyte recovery.
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