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ABSTRACT Statistical potentials have been widely used in protein studies despite the much-debated theoretical basis. In this
work, we have applied two physical reference states for deriving the statistical potentials based on protein structure features to
achieve zero interaction and orthogonalization. The free-rotating chain-based potential applies a local free-rotating chain
reference state, which could theoretically be described by the Gaussian distribution. The self-avoiding chain-based potential
applies a reference state derived from a database of artificial self-avoiding backbones generated by Monte Carlo simulation.
These physical reference states are independent of known protein structures and are based solely on the analytical formulation
or simulation method. The new potentials performed better and yielded higher Z-scores and success rates compared to other
statistical potentials. The end-to-end distance distribution produced by the self-avoiding chain model was similar to the distance
distribution of protein atoms in structure database. This fact may partly explain the basis of the reference states that depend on
the atom pair frequency observed in the protein database. The current study showed that a more physical reference model
improved the performance of statistical potentials in protein fold recognition, which could also be extended to other types of
applications.

INTRODUCTION

Knowledge-based statistical potentials, together with semi-

physical energy functions and optimization-based potentials,

have been widely used in protein structure-related studies.

These types of energy functions have been generated for

numerous purposes, including fold recognition (1–10),

structure prediction (11–16), model validations (17–19),

and docking and binding studies (20–23). Knowledge-based

statistical potential can be categorized on the basis of

different aspects: residue level potentials (1,2,24–30) versus

atomic level potentials (3,5,7,8,31–34) or contact-based

potentials (4,8,10,24) versus distance-dependent potentials

(1–3,7,25). The potential-of-mean-force method involves the

derivation of a statistical potential from the atomic spatial

distribution in the database by using the Boltzmann formula

(25,35). To extract an accurate energy function, the spatial

distribution without any atomic interactions, which is con-

sidered as the reference state, needs to be defined. In addi-

tion, comparison of the real distribution of the atom pairs and

the reference state allows for the calculation of the energy

functions for all atom pairs. The reliability of this method,

however, has been questioned as a result of ambiguous the-

oretical basis (36–38). The most serious problem, which

separates the energy functions from the physical interactions,

is that the spatial distribution of an atom pair observed from

the database relates to other factors in addition to the

interaction within this pair including the geometric confine-

ments and the interactions from other atom pairs in its

potential (37). For example, the energy function between two

Ca atoms may involve the interaction between the nearby

atoms N and O. In this case, the sum of these energy func-

tions may not accurately describe the free energy of the

system even with a strictly noninteracting reference state.

Thus, defining a reference state that includes the interactions

from nearby atoms will render the energy function of every

pair more independent and, thereby, more accurate.

Reference states based on the quasi-chemical approxima-

tion (5,24), which has been used to extract the Miyazawa-

Jernigan potential and knowledge-based potential (KBP), are

generally accepted and have been carefully studied (39).

Some other reference states, such as Sippl’s uniform density

reference state (26) and RAPDF (residue specific all-atom

probability discriminatory function) (3), were based on the

same theoretical assumption as the quasi-chemical reference

state. In this kind of reference state, the expected number of

atom pairs in a given distance shell is equal or proportional to

that observed in the database regardless of atom types. These

reference states are referred to as the database-dependent

reference state, which implicitly assume that, on average, the

atoms in proteins have little or no interaction with each other.

Another newly-developed physical reference state is a

distance-scaled, finite ideal gas reference state (DFIRE)

(7,40). This reference state differs from previously described

states via the use of a distinct physics model that assumes the

spatial distribution in the reference state should be scaled as

ra. Additionally, this method, which partially cuts the long-

range tail caused by the statistics bias, assumes that all atom

pairs beyond a distance cutoff are noninteracting. The

DFIRE potential exhibits an improved performance in fold
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recognition by the unique physical reference state and the use

of the cutoff.

Nevertheless, these two types of reference states suffer

from different problems. The reference states based on atom

spatial distribution involve some energy information and,

thus, cannot reflect absolutely zero interaction. For example,

the extremely low frequency of database-dependent refer-

ence state from 0 to 2.5 Å, which may indirectly decrease the

score for atom collision, is attributable to the van der Waals

force between atoms. On the other hand, the distance-scaled,

finite ideal gas reference state neglects to incorporate factors

other than interaction that contribute to the spatial distribu-

tion of the atoms in the reference state. As the atoms in

proteins are not weakly interacting particles in the gas phase,

the proximity of two atoms may not result from an attractive

interaction but from a bond restriction. Moreover, the influ-

ence from nearby interactions cannot be eliminated from the

DFIRE potential. Thus, this potential differs from the actual

physical interaction. The chain connectivity and the nearby

interactions represent intrinsic constraints, which may par-

tially determine the distance distribution for the atom pairs

and should be involved in the reference state. Therefore, a

more reasonable reference state to extract the actual physical

interaction is a chainlike model (41).

A Gaussian random coil reference state was applied to

calculate the contact probability in proteins (39), but the real

contact probability between atom or residue pairs is related

to the sequence distance. As a result, a more precise chain-

like reference state should be a sequence distance-dependent

model. In the current work, two different sequence distance-

dependent chainlike reference states were developed to ex-

clude the intrinsic constraints and to simultaneously achieve

zero interaction. The potentials based on these two states

were applied to the fold recognition decoy sets. These two

reference states implicitly achieve our two goals simulta-

neously for atom pairs with long sequence distance. In addi-

tion, these reference states deal with atom pairs with short

sequence distances in different ways: 1), the first reference

state is the free-rotating chain reference state that results in a

local noninteracting model while maintaining the geometric

restrictions in protein structures to achieve local zero inter-

action; and 2), the second reference state is the self-avoiding

chain reference state that incorporates the van der Waals

interaction into the local model to partially exclude interfer-

ence of other atoms from the pairwise potential.

METHODS

Factors included in the reference state

Each polypeptide backbone is restricted by bond length, bond angle, and

bond rotation. In a chain model, the spatial distance of two atoms depends on

their sequence distance or sequence length. Here, the sequence length was

measured by the number of bonds between these two atoms, and sequence

distance was measured by residues. For a given atom pair with fixed se-

quence distance, the reference state is a chain that links the two atoms with

the same geometric restriction as the peptide, assuming that the atoms on the

chain have no interaction with each other. Due to the solvent confinement

and crystal packing effect, the chain linking the atom pair should be depicted

as a chain confined in a finite region. To simplify this model, we defined the

reference state as a chain confined in a hard sphere. For the two atoms being

studied (the two terminals of the chain), one was defined as fixed in the

center of the sphere and the other as floating in the sphere. Under this

assumption, two different circumstances can occur:

1. When the sequence distance is short enough to guarantee that the

farthest end-to-end distance is less than the radius of the sphere and that

the solvent confinement cannot influence the structure of the chain, the

two terminals of the chain are considered a local atom pair.

2. When the sequence distance is long enough and the distance distribution

in the sphere is not influenced by bond restriction, the two terminals of

the chain are considered a nonlocal atom pair.

After the delimitation of the two circumstances (see Supplementary

Material), we defined the atom pairs with sequence distances ,5 as local

atom pairs and all other atom pairs as nonlocal atom pairs. Each of these

cases warrants its own statistics and reference states. The local reference

state is a sequence distance- and spatial distance-dependent reference state

while the nonlocal reference state is only spatial distance-dependent. These

two states generate two distinct potentials, the nonlocal potential (sequence

distance-independent potential) and the local potential (sequence distance-

dependent). The full potential is the sum of these two parts.

This model has taken the bond restriction and the solvent confinement

into account. Under these circumstances, the expected distance distribution

for nonlocal atom pairs is related to the square of the distance and is inde-

pendent of the sequence length. As the atoms in proteins are not weakly

interacting particles, interaction between atoms could partially influence the

spatial distribution of other atoms. Accepting the two factors described

above causes the extracted energy function for a given atom pair to incor-

porate the interaction from other atom pairs. Here, we defined orthogonal

potential as the potential in which the energy function for each atom pair

does not include the influence or energy from other pairs. In addition, the

process to generate the orthogonal potential is termed ‘‘orthogonalization.’’

To achieve orthogonalization, the influence from the other atoms should be

precluded as much as possible; however, the depiction of all interactions

from other atoms in a reference state for pairwise potential is difficult. Thus,

the van der Waals force, which is the interaction that all varieties of atom

pairs share, is incorporated. This interaction is simplified to a short-range

hard sphere interaction. When an atom is fixed, the atoms with a few bonds

linked to the fixed atom are obliged to remain nearby and occupy space via

their pump volume, and thus, little neighboring space remains available to

other atoms. Consequently, the atoms with longer sequence distances are

more inclined to occupy the space in a farther distance bin so as to avoid

those local atoms. In this case, the volume of remaining space (the nonlocal

reference state) to locate the nonlocal atom would change more notably than

the square of distance.

Consequently, if the expected distance distribution is scaled as the square

of the distance and the method was applied to atoms on a self-avoiding

lattice chain, the energy function for the hard sphere potential would have a

long tail. Therefore, for nonlocal atom pairs, the self-avoiding effect should

be taken into account in the reference state. However, it should be noted that

the self-avoidance between the two atoms under examination is part of the

potential and cannot be incorporated into the reference state.

The confined free-rotating chain state

Based on the factors presented above for the local reference state, the bond

restrictions, including bond length and bond angle, primarily determine the

expected distance distribution for local atom pairs. Local self-avoidance is

not included. In the nonlocal reference state, the intensity of self-avoidance

influenced the distance distribution. Locally, the chain is a short free-rotating

chain without solvent confinement whose end-to-end distance distribution
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obeys the Gaussian distribution. Therefore, the expected probability of the

atom pair i and j between the spatial distances r�Dr and r1Dr is governed

by the algebraic expression

fexpði; j; l; rÞ ¼ 2c 3 exp � 3r2

2Ær2æ

� �
�

r
2
3 Dr ¼ 2c 3 exp � 3r

2

12l

� �
3 r

2
3 Dr; (1)

where c is the normalization constant, which does not affect the distribution

factually, l is the sequence length of pair i and j with a sequence distance (d)

,5, and Ær2æ is the root mean-square end-to-end distance of reference state

(RMSED) determined by the sequence length l. With the backbone

geometric features, we found that Ær2æ � 6l (see Supplementary Material).

As the RMSED is determined by the sequence length, the distance distri-

bution varies for different sequence distances for a given atom pair.

In the nonlocal range, the probability is virtually independent of the se-

quence distance and, thus, could be simplified as a spatial distance-

dependent function. In DFIRE (7), this probability was assumed to be directly

proportional to the spatial distance to the power of 1.61 (a fitted value). In

our method, an atom is fixed in the center of the sphere. Therefore, the

possibility should be directly proportional to the square of the spatial

distance without the self-avoiding effect; however, the self-avoiding effect,

which acts like a repulsive force, renders the same exponent parameter .2.

Therefore, the probability of atom pairs between r�Dr and r1Dr is

fexpði; j; rÞ ¼ c 3 ½ðr 1 DrÞa11 � ðr � DrÞa11�
� 2c 3 ða 1 1Þ3 r

a
3 Dr; (2)

where c is the normalization constant and the value of the power exponent a

is the power parameter .2 that represents the intensity of nonlocal self-

avoidance and is obtained from the scaling behavior of the atom distance

distribution in the database. While an a-value approximating two indicates

that the self-avoiding effect of other atoms does not considerably alter the

end-to-end distance distribution, an a-value .2 indicates that the exclusive

volumes of other atoms occupy a large proportion of space that could have

contained the nonlocal atoms. These effects influence the distance distri-

bution of nonlocal atom pairs and can be obtained from protein structure

database analysis. To evaluate the self-avoiding effect on other atoms, we fit

the distribution to Eq. 2 and only applied the probability distribution

between 3 and 15 Å as the probability densities within 3 Å are attributable to

the van der Waals potential between the two atoms under examination,

which is not involved in the reference state. Moreover, the linear relation

between the logarithm of the expected probability and the logarithm of the

distance only occurs when the spatial distance is .3 Å. Thus, the value of

a from the distribution beyond 3 Å (Fig. 1) can be determined from the

distance distribution of nonlocal pairs:

Lnð fexpðrÞÞ ¼ 2:7 LnðrÞ � 8:6 Correlation coefficient: 0:97;

a ¼ dLnfexpðrÞ
dLnr

a: 2:7:

Thus, we assigned the value of a to 2.7, and c3½ðr1DrÞa11 � ðr � DrÞa11�
was applied as the expected probability of nonlocal reference state. The

values from 2.2 to 3.5 were also used to verify that the potential performs

best at 2.7 and is not much sensitive to the parameter change.

In the confined free-rotating chain state, the nonlocal spatial distribution

is similar to the distribution in the database (Fig. 1), while the distance

distribution predicted by a Gaussian distribution does not coincide with the

actual distribution in proteins as it fails to incorporate local self-avoidance in

the reference state. Although self-avoidance is regarded as a nonlocal effect

in general, ignoring it would cause a deviation from the actual distribution.

Additionally, a local free-rotating reference state cannot orthogonalize the

local potential. To study the relationship between the self-avoiding effect

and the local potential, we applied a new method to establish a completely

self-avoiding chain reference state.

The confined self-avoiding chain state

To thoroughly incorporate the self-avoidance in the second reference state

(both local and nonlocal), we constructed a database of artificial peptides via

Monte Carlo simulation. At each sequence length, we generated 200,000

self-avoiding chains for each sequence length from 3 to 100 with different

backbone dihedral angles (different conformations). In these self-avoiding

chains, the hard-sphere contact radii of heavy atoms was used in some

classical work (42) and was defined as collisions that occur when two atoms

are closer than 2.75 Å. Here, the collision distance is set slightly less than the

average distance to include the possibility of hydrogen bonds and weak

collisions. The bond lengths and angles used in simulation are the same as

the parameters in the free-rotating chain (see Supplementary Material).

Solvent confinement was defined as a sphere with a radius equal to 20 Å,

which contains the chain (also applied to the free-rotating chain). This

definition does not affect the performance of the potential as the local

distribution is nearly free of the solvent confinement. A strict self-avoiding

chain completely excludes the existence of atom collision and strong

hydrogen bonds. The collision and hydrogen bond between the two

terminals (the atoms in question), however, are included in the potential, and

this collision is not included in the reference state. Consequently, we

suppose that the fixed terminal cannot collide with all the atoms on the chain,

including the floating terminal. This assumption implicitly permits the

collision and hydrogen bonds between the atoms and the fixed terminals, and

the other atoms on the chain, including the floating terminal, must avoid each

other. After simulation, the end-to-end distance distribution of this self-

avoiding chain is determined, and this distribution is used as the new

expected distance distribution. Comparison of the distribution in protein

structures and those expected by the two local reference states (Fig. 2)

indicates that the self-avoiding chain assumes a much better fit with the

protein structures as this chain takes more properties of the real polypeptide

into account.

In addition to the similarities of the distance distributions for local atom

pairs, similarities between the self-avoiding chain and the proteins exist for

the nonlocal pairs as well (Fig. 3). In the self-avoiding chain, the sequence

length does not influence the nonlocal distribution curve, and the scaling be-

havior is similar to that observed from databases. Both curves share the same

scaling behavior after 3 Å. This similarity explains why database-dependent

FIGURE 1 Scaling behavior of the distance distribution of nonlocal atom

pairs.
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reference states (e.g., KBP and RAPDF) also produce decent potentials even

though these reference states do not explicitly claim zero interaction and

orthogonalization of their potentials. In the simulated self-avoiding chains,

the natural logarithm of the expected probability is also linearly proportional

to that of spatial distance,

Lnð fexpðrÞÞ ¼ aLnðrÞ � b;

where a ranges from 2.4 to 2.8 stochastically with correlation coefficients

.0.98 when the sequence length of the chain is no less than 40. This finding

coincides with the 2.7 derived from the nonlocal distribution in the database.

These two reference states share the same nonlocal distribution (a 2.7), and

thus, the two reference states have the same nonlocal potential. The two local

potentials based on the two reference states were named free-rotating chain-

based potential (FRCBP) and self-avoiding chain-based potential (SACBP).

In these reference states, the expected number of pairs of atoms i and j

between the spatial distances r�Dr and r1Dr under different circumstances

(local or nonlocal) is derived from the reference state. The knowledge-based

potential functions can be written as

Eði; j; rÞ ¼ �kBT ln
fobsði; j; rÞ
fexpði; j; rÞ

¼ �kBT ln
Nobsði; j; rÞ

Ni 3 Nj 3 fexpði; j; rÞ
: (3)

Cutoff of the potentials

Most knowledge-based potentials, including the potential derived from the

Sippl’s approximation (25), the RAPDF (3), the KBP (5), and the DFIRE

(7), have a tail when the distance is .10 Å. The DFIRE potential performed

better on the decoy sets by using 15 Å as a cutoff and setting the potential

before 15 Å as

Eði; j; rÞ ¼ �kBT ln
Nobsði; j; rÞ3 fexpði; j; rcutÞ
Nobsði; j; rcutÞ3 fexpði; j; rÞ

: (4)

In our method, the bin between 14 and 15 Å was also selected as the

cutoff. Thus, for some local atom pairs with a maximum distance of ,14 Å,

the greatest distance bin was employed as the cutoff distance. Theoretically,

interactions beyond 10 Å quickly approach zero, and the tail of the potential

in this long range may, in fact, camouflage or exaggerate the real interactions

between the atoms. This long-range tail may be attributed to different rea-

sons. The local atom pair at a given sequence distance always corresponds

to a secondary structure. The high frequency of secondary structures renders

the chains between atomic pairs unlikely to exist as an extended state, and

thus, the low frequency in long-distance bins generates an energy platform

in energy function. For nonlocal atom pairs, the potential between atoms

in two hydrophobic residues may have either a repulsive or an attractive

tail after 10 Å, even if no electrostatic interaction exists (37). Generally,

the long-range tail of local and nonlocal potentials both begin from 8 to

10 Å. Therefore, in our potential (both local and nonlocal), we calculated

the energy within 10 Å by Eq. 4 and ignored the effects of the energy beyond

10 Å.

In other words, when the distance was ,10 Å,

Eði; j; rÞ ¼ �kBT ln
Nobsði; j; rÞ3 fexpði; j; rcutÞ
Nobsði; j; rcutÞ3 fexpði; j; rÞ

:

When the distance was .10 Å,

Eði; j; rÞ ¼ 0:

The variation in the long-range potential improves the measurement in a

decoy-independent manner and enhances the average Z-score of all the

decoy sets by 5%. The bin width and cutoff have not been further optimized,

although changes in these parameters may offer an enhanced performance of

this method.

Training set and test sets

We employed the structural database used in the DFIRE method (7). This

database was based on databases selected by Hobohm et al. (43) and

contained 1011 proteins with resolution ,2 Å and sequence identity ,30%.

To assess the potential, three groups of decoy sets were tested:

1. The first group was comprised of five single decoy sets from the Prostar

website (http://prostar.carb.nist.gov) including: misfold (44), asilomar

(45), pdberr (46), sgpa (46), and ifu (47). In the ‘‘Asilomar’’ decoy set,

the native structure of protein NDK was replaced by the structure of

PDB code 1nue (48). Eight decoys were excluded from the original set

FIGURE 2 Comparison of the spatial distribution of local atom pairs

derived from databases, distribution derived from self-avoiding chain sim-

ulation, and distribution predicted by free-rotating chain, when the sequence

lengths between the atom pairs were fixed to 9.

FIGURE 3 Comparison between the spatial distribution of nonlocal atom

pairs and the distribution derived from self-avoiding backbone simulation

(sequence lengths of 40 or 100).
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due to mismatched sequences: crabpi_vriend, edn_biosym, edn_weber,

mchpr_vihinen, ndk_abagyan, ndk_vihenen, p450_abagyan, p450_we-

ber (7).

2. The second group was comprised of five multiple decoy sets

(4state_reduced (49), fisa (12), fisa_casp (12), lmds (50), and lattice_ssfit

(51)) from the Decoys ‘R’ Us website and included 32 proteins.

3. The third group comprised a multiple decoy set Rosetta (52) from the

Baker laboratory website. This set included 41 proteins with corre-

sponding x-ray crystal structures.

Here, we compared FRCBP and SACBP with three atomic detailed

potentials that have a physical reference state (RAPDF, KBP, and DFIRE)

and two other potential with different methods (McConkey’s potential and

DFIRE-side-chain center-of-mass (SCM)).

Atom types and bin procedure

FRCBP and SACBP only include the interaction between heavy atoms and

use the residue-specific heavy atom type to distinguish different atoms.

Thus, 167 types of atoms are taken into account.

In the bin procedure, we divide the distances into 0.5 Å bins from 2 Å to 8

Å, into 1 Å bins from 8 Å to 15 Å, and included the distances ,2 Å in a

separate bin. The interaction in each bin was obtained using Eq. 4. When the

frequency of the atom pair i, j in a distance bin was zero, the value of the

interaction was set to 10 kBT to ensure that these ‘‘impossible’’ interactions

have higher potential than possible collisions. Additionally, we excluded the

extremely local contacts (including the contacts between atoms within the

same residue or in neighboring residues) from the scoring, as a reference

state based merely on the backbone geometrical features may not be accurate

in these circumstances and these contacts do not contribute much to the

folding.

RESULTS

Decoy group 1 (single decoy sets)

Publicly available decoy sets were used to test FRCBP and

SACBP. In the first group, each native structure has one or

more incorrect decoys and different potentials were applied

to discriminate the native ones. For the first four decoy sets in

this group, most atom-level potentials achieved 100%

correct identification. The fifth decoy set ‘‘ifu’’ (independent

folding units) was more difficult as the correct conformations

of these isolated peptide fragments were differentiated by a

small number of atom pairs (3). The best performance on this

set was previously achieved by the Ron Elber’s potential

T32S3 (10) with an 80% discrimination rate (or success rate),

while the other three potentials, which were made by similar

methods, only achieved a success rate of 71% on average. In

this decoy set, the performance of FRCBP was slightly better

than the other potentials with an 82% discrimination rate,

while the 75% success rate of SAVBP was similar to the

other potentials (Table 1).

Decoy group 2 (Decoy ‘R’ Us)

The second group of decoy sets is a group of multiple de-

coys, which are widely used in the assessment of potentials.

In multiple decoy sets, each native structure has a set of

approximate conformations. The two primary criteria to

evaluate the ability of a potential to discriminate the native

structures are success rate and Z-score. The success rate

indicates the percentage of first-ranked native structures in

the decoy sets. The Z-score is defined as ÆGæ� Gnative=s;
where ÆGæ and s denote the mean and standard deviation of

the free energy values of the decoys, and Gnative denotes the

free energy of the native structure. Here, we did not include

the quaternary structures in our scoring to facilitate compar-

ison with the original atom-level potentials that did not

incorporate the quaternary structures. The performance of

FRCBP was slightly better than other potentials with a better

success rate of 87.5% (28/32) and a comparable average

Z-score of 4.5. The structures, which were not identified

correctly, include: 1fc2(fisa), 1bba(lmds), 1fc2(lmds), and

3icb(4state). The performance of SACBP was comparable to

the other potentials with a Z-score of 4.7 and a success rate of

81.3% (26/32, Tables 2 and 3).

The incorrect sets included the four decoy sets missed by

FRCBP and 1b0n-B in lmds and 1hdd-C in fisa. Among

these structures, the performances of SACBP on 3icb, 1b0n-

B, and 1hdd-C were much better with Z-scores of 2.0, 2.2,

and 2.5 and ranks of native structures of 2, 2, and 4,

respectively. The other three proteins are all short chains that

other potentials also failed to recognize without quaternary

structures. The recognition of the local conformations may

be attributed to their contacts with larger subunits.

Decoy group 3 (Rosetta decoys)

The proteins in the third group are associated with ;1000

alternative structures (except 1acf with 2000 decoys) gen-

erated by the Rosetta structure prediction method (Table 4).

In this group, the FRCBP and SACBP outperformed all the

other atomic detailed potentials. The success rate of SACBP

was 78% while the percentage of decoy sets with a Z-score

of .1 was 93% (Table 5). The nine missed decoys include

1ajj, 1cc5, 1gvp, 1msi, 1nxb, 1orc, 1ptq, 2erl, and 2fdn. The

success rate of FRCBP was 76% while the missed decoys

include the nine presented above and 1tul.

DISCUSSION

Comparison with other potentials

McConkey’s potential (8) is an atom-atom and atom-solvent

contact scoring function that performs well on the Decoy ’R’

TABLE 1 Discrimination rate by different potentials for the

first group decoy set

Source RAPDF* KBP*

DFIRE

(7)

T32S3

(10) FRCBP SAVBP

Misfold 100% 100% 100% 100% 100% 100%

Pdberr, sgpa,

and asilomar

100% 100% 100% NA 100% 100%

Ifu 73% 75% 75% 80% 82% 75%

*These results were calculated based on the same database as DFIRE to

compare the performance of RAPDF, KBP, and DFIRE (7).
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Us and Rosetta decoy sets. We tested FRCBP and SACBP

on the reduced multiple decoy sets used in their assessment

(see Table 1(a) in Supplementary Material). Our two

potentials slightly outperformed McConkey’s potential for

Z-scores with a similar success rate. The DFIRE-SCM (29) is

a coarse-grained potential based on the distance-scaled, finite

ideal gas reference state with 20 residue types located at the

side-chain center of mass (SCM). The performance of this

potential on groups 2 and 3 was even better than DFIRE-all-

atom and was comparable to SACBP and FRCBP (see Table

1(b) in Supplementary Material).

In comparison with the atom-level potentials that are

based on physical reference states, the FRCBP had the

highest success rate and average Z-scores of all of these

potentials. The SACBP is performed better than DFIRE and

only slightly worse than FRCBP with respect to Z-scores.

The ability of FRCBP and SACBP to recognize native

structures is comparable to those potentials, which have been

considered to perform well. The two physical reference

states presented here yield good performances with reason-

able physical models. Comparing FRCBP and SACBP,

FRCBP performed slightly better even though the latter

orthogonalizes the local potential. Our attempt to involve the

local self-avoidance did not, however, improve the perfor-

mance significantly. There are two possible reasons:

1. The potential of the mean force method could be based

on nonorthogonal pairwise potential and, thus, does not

require orthogonalization;

2. The orthogonalization is not thorough enough to cause an

effect.

Improvement of the potentials would occur only when most

interference has been eliminated without the loss of true

potential.

Comparison between the local and
nonlocal potentials

As the real physical interaction between two atoms is a

function of the spatial distance (except when the distance is

extremely short or the interaction also relates to orientation),

the potential of a given atomic pair should be independent of

the sequence distance. That is, the local atomic pairs and the

nonlocal atomic pairs should have the same potential in the

same distance bin. The local potentials with different

sequence distances are distinct from the nonlocal potentials

for two reasons. First, the energy functions for some atom

pairs suffer from the lack of statistics. Second, the local

potential might incorporate more sequence information, and

this difference causes the potential to differ from the real

physical interaction. The high frequency of regular second-

ary structure in proteins results in the high frequency of local

atom pairs at a fixed distance. The potential well generated

by this high frequency may be partially attributed to the sta-

bility of the secondary structures. This stability may deepen

the minimum on the energy curve. As a result, the fluc-

tuations of local energy functions are generally more drastic

than those of nonlocal functions. Comparing to DFIRE, a

potential derived from the same database, our nonlocal

potential was smoother while the local potentials (both

FRCBP and SACBP) seemed to amplify the fluctuation on

DFIRE (Fig. 4). Another significant difference between these

two local potentials and DFIRE is that the local potentials

only had one obvious minimum. In DFIRE, the two minima

could be attributed to the two leading types of secondary

structures; however, in local FRCBP and SACBP, the

minimum corresponding to the b-sheets was smoothed by

the local reference states. In fact, as the nonlocal interactions

always dominantly contribute to the stability of b-sheets, the

TABLE 2 Targets in the second group decoy set missed by FRCBP and SACBP

Source Target (PDB ID) Target missed by FRCBP Target missed by SACBP

4state 1ctf, 1r69, 1sn3, 2cro, 3icb, 4pri, 4rxn 3icb 3icb

Fisa 1fc2, 1hdd-C, 2cro, 4icb 1fc2 1hdd-C, 1fc2

fisa_casp 1bg8-A, 1bl0, 1jwe

Lmds 1b0n-B, 1bba, 1fc2, 1ctf, 1dtk, 1igd, 1shf-A, 2cro, 2ovo, 4pti 1bba, 1fc2 1bba, 1fc2

lattice_ssfit 1bco, 1ctf, 1dkt-A, 1fca, 1nkl, 1pgb, 1trl-A, 4icb

TABLE 3 Success rates and Z-scores for the second group decoy set

RAPDF* KBP* DFIRE (7) FRCBP SACBP

Source Z-score Rank 1 Z-score Rank 1 Z-score Rank 1 Z-score Rank 1 Z-score Rank 1

4state 3.0 7/7 3.2 7/7 3.5 6/7 3.4 6/7 3.4 6/7

Fisa 1.3 1/4 1.2 0/4 4.8 3/4 3.1 3/4 2.7 2/4

fisa_casp 4.1 3/3 2.1 0/3 5.4 3/3 5.8 3/3 5.6 3/3

Lmds �0.5 3/10 0.5 3/10 0.9 7/10 3.7 8/10 3.8 7/10

lattice_ssfit 7.2 8/8 6.6 8/8 9.5 8/8 6.7 8/8 7.5 8/8

Total 2.8 22/32 2.9 18/32 4.5 27/32 4.5 28/32 4.7 26/32

*These results were calculated based on the same database as DFIRE to compare the performance of RAPDF, KBP, and DFIRE (7).
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local potential should not possess a minimum corresponding

to b-sheet.

a-value

In Eq. 2, the exponent a is a key parameter for the nonlocal

potential. From the linear fit statistically derived from the

database, we set the a-parameter to 2.7 to match the

distribution in proteins. This assumption was also supported

by our simulation using a self-avoiding chain. The extent that

the performance of the nonlocal potential relies on the a-

value remains unknown. In addition, it is not known whether

the parameter that fit the statistics best would render the best

performance. This question is important for determining

whether a more accurate reference state results in a more

accurate potential. Therefore, a was varied from 2.2 to 3.5 to

study the performance of the potential (Fig. 5). To quantify

this relationship, the average Z-scores of the multiple decoy

sets were applied as the criteria for the performance of the

potential. These new nonlocal potentials cooperated with the

local potential FRCBP in scoring. No difference occurs

when the new potentials were used with the SACBP. The

best performance coincided with the most reasonable param-

eter, but the performance did not rely heavily on the value of

parameter a. When a lies in the range between 2.3 and 3.3,

the average Z-score is .4 (85% of the highest Z-score).

Conversely, the dependence of DFIRE on a was stronger as

the Z-score declined to 3.88 (86%) as a decreased from 1.61

to 1.50. The weaker reliance on this parameter is attributed to

the influence of the local potentials, which were derived from

theoretical calculations (FRCBP) or Monte Carlo simulation

(SACBP).

Additionally, the value of a is a symbol of the self-

avoiding effect. At an a of 2.7, the reference state has incor-

porated nonlocal self-avoidance and ruled out the influence

from the potential. At an a of 2, the reference state did not

include this effect and incorporated the influence of avoid-

ance in the potential. In the case presented here, when a is 2,

the average Z-score is 2.4, which is less than for all other

potentials. Therefore, the incorporation of nonlocal self-

avoidance in the reference state obviously improves the per-

formance of the potential, and the attempt to orthogonalize

the nonlocal potential seems successful.

Comparison of two types of reference state

The spatial distribution predicted by the self-avoiding chain

is similar to the distribution obtained from our database (Fig.

2); however, several details indicate that the distribution

observed in proteins might not represent a noninteracting

state. We focused on the spatial distribution of atom pairs

with a sequence length of 9. The distribution curve of the

self-avoiding chain was smoother than that of proteins, since

the distribution curve of the self-avoiding chain reflects one

probability barrier and that of proteins reflects three barriers.

The other two barriers correspond to the structure features in

the proteins. An artificial local potential was used to rep-

resent the mean of all pairwise interactions from the distri-

bution regardless of atomic types while the self-avoiding

chain was used as a reference state (see Fig. 1 in Supple-

mentary Material). On the distribution curve for proteins

(Fig. 2), the probability barrier between 2.5 and 3.5 Å

generates a potential minimum in this bin, which coincides

with the occurrence of a hydrogen bond. The probability

barrier between 4 and 5 Å causes a potential well, and this

distance relates to the occurrence of a-helices as the distance

between two atoms on an a-helix with a sequence length of 9

is ;4.5. As a result, the existence of these probability bar-

riers is attributed to the protein structure preference and also

reflects the frequency of a-helix and hydrogen bonds; ,3 Å

indicates a van der Waals interaction at short range. Thus, the

distribution at a certain length is not completely independent

of energy, although the distribution is independent of atomic

types. The database-dependent reference states in many

TABLE 4 Targets in the third group decoy set missed by FRCBP and SACBP

Source Target (PDB ID) Target missed by FRCPB Target missed by SACPB

Rosetta 1aa2, 1acf, 1aho, 1ajj, 1bdo, 1cc5, 1csp,

1ctf, 1eca, 1erv, 1gvp, 1hle, 1kte, 1lfb,

1lis, 1mbd, 1msi, 1mzm, 1nxb, 1orc,

1pal, 1pdo, 1pgx, 1ptq, 1r69, 1ris, 1tul,

1utg, 1vls, 1who, 2acy, 2erl, 2fdn, 2fha,

2gdm, 2sn3, 4fgf, 5icb, 5pti

1ajj, 1cc5, 1gvp, 1msi, 1nxb, 1orc,

1ptq, 1tul, 2erl, 2fdn

1ajj, 1cc5, 1gvp, 1msi, 1nxb, 1orc,

1ptq, 2fdn, 2erl

TABLE 5 Success rates and Z-scores for the third group decoy set

RAPDF* KBP* DFIRE (7) FRCBP SACBP

Source Z-score Rank 1 Z-score Rank 1 Z-score Rank 1 Z-score Rank 1 Z-score Rank 1

Rosetta 3.2 24/41 3.2 23/41 3.9 31/41 4.9 31/41 4.7 32/41

2 and 3 3.0 46/73 3.1 41/73 4.1 58/73 4.7 59/73 4.7 58/73

*These results were calculated based on the same database as DFIRE to compare the performance of RAPDF, KBP, and DFIRE (7).
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methods may not be an absolute noninteracting state. How-

ever, potentials based on database-dependent reference states

exhibits an acceptable performance, as the mean interaction is

relatively insignificant compared to the interaction of a given

atom pair.

Incompatibility in reference state

Even though our work has incorporated new factors into the

reference state and the performance on protein fold recog-

nition was acceptable, our theory also deliberately neglected

some important factors to make the model understandable.

The solvent atoms were simplified to a hard sphere, which

indicates that the potential cannot include the interaction

with solvent like in other previous studies (8,53). In addition,

the influence from quaternary structures or the environment,

which might contribute to the local conformation, is not

considered (8,53). The potentials are only dependent on

distance and have no orientation information (54,55). The

performance of these two potentials may be better due to the

combination of physical effective energy (56). Incorporating

these factors may improve the potentials both theoretically

and practically. Besides, our attempts to include some

neighboring influences in the reference state to eliminate

them from potentials were not particularly successful. The

potential for an atom pair is still the combination of the true

potential and statistical bias and does not reflect the real

interaction independent of other pairs (37). To generate an

orthogonal potential, the reference state should consider the

statistical bias or the outside influence on each atom pair. A

uniform density reference state may cause difficulty in achiev-

ing this goal. Perhaps, only the reference state involving

detailed information about the atoms is able to exclude influ-

ences such as interactions with other atoms, distribution incli-

nation, etc. For example, atoms in hydrophobic residues are

often buried in the center of proteins, and this location may

result in potentials with a repulsive tail in the long range

(3,7,37). An absolutely orthogonal potential requires the ref-

erence state for atoms in hydrophobic residues to have a hydro-

phobic distribution inclination, and only with this reference

state can the potential cut the long-range repulsive tail.

Such a reference state implicitly contains some energy

information and thus cannot reflect absolutely zero interac-

tion. If the reference state of hydrophobic atoms is a peptide

inclined to cluster at the center, the reference state has

inevitably possessed interaction with solvent. Therefore, the

reference state focused on orthogonalization may not be strictly

zero interaction at the same time. As a typical example, the

self-avoiding chain reference state, which intends to orthog-

onalize the local potential, certainly contains a little more

energy information than the free-rotating chain. Generally,

the reference state based on the distribution observed in

proteins may do more in orthogonalization and less in zero

interaction. From this point of view, orthogonalization and

zero interaction cannot be completely achieved at the same

time. In our work, we attempted to maximize the orthogo-

nalization and zero interaction as much as possible. The

results showed that the orthogonalization of the nonlocal

potential obviously improves the performance of the poten-

tial. The FRCBP and SACBP achieved the highest Z-score

when the parameter represented the intensity of the self-

avoiding effect while the incorporation of the local self-

avoiding effect did not significantly influence the behavior of

the potential.

Compared with other physical reference states, SACBP

and FRCBP identified more native structures with higher

Z-scores as these two reference states are more complete and

accurate. In fact, these two reference states do not differ and

also have some relation with former physical reference

FIGURE 4 Distance dependence of the nonlocal potential, local FRCBP

(sequence distance of 4), local SACBP (sequence distance of 4), and DFIRE

between Cb atoms in ILE and LEU residues.

FIGURE 5 The average Z-score of the second and third groups of decoy

sets using different a-values.
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states. A comparison between the reference states demon-

strates that the physical model of finite ideal gas reference

state is close to the free-rotating chain-based reference state

while the self-avoiding chain reference state, which is derived

from simulation, has some similarities with the database-

dependent reference states.

These similarities could, in part, explain why the potential

of mean force, an energy function quite different from the

real physical interaction, could be widely applied to protein

studies. Our study also shows that focusing on the orthog-

onalization as well as on zero interaction in the reference

state improves the performance of potentials. Thus, a reference

state, which can simultaneously achieve zero interaction and

orthogonalization at the largest extent, would likely contrib-

ute to great progress in the study of statistical potential, fold

recognition, and other protein.

SUPPLEMENTARY MATERIAL

A more detailed description of the method and comparison

results with other potentials can be found on the journal

website. The numerical values of the two potentials can

be downloaded at ftp://mdl.ipc.pku.edu.cn/pub/software/

SACBP-FRCBP/SACBP-FRCBP.tar.gz.
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