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ABSTRACT We study the origin of robustness of yeast cell cycle cellular network through uncovering its underlying energy
landscape. This is realized from the information of the steady-state probabilities by solving a discrete set of kinetic master
equations for the network. We discovered that the potential landscape of yeast cell cycle network is funneled toward the global
minimum, G1 state. The ratio of the energy gap between G1 and average versus roughness of the landscape termed as
robustness ratio (RR) becomes a quantitative measure of the robustness and stability for the network. The funneled landscape
is quite robust against random perturbations from the inherent wiring or connections of the network. There exists a global phase
transition between the more sensitive response or less self-degradation phase leading to underlying funneled global landscape
with large RR, and insensitive response or more self-degradation phase leading to shallower underlying landscape of the
network with small RR. Furthermore, we show that the more robust landscape also leads to less dissipation cost of the network.
Least dissipation and robust landscape might be a realization of Darwinian principle of natural selection at cellular network level.
It may provide an optimal criterion for network wiring connections and design.

INTRODUCTION

Energy landscape and cellular network

To understand the biological function and robustness of the

cellular network, it is crucial to uncover the underlying

global principle (1–3). The natures of the cellular network

have been explored by many experimental techniques (4). It

is found that the cellular networks are in general quite robust

against genetic and environmental perturbations. There have

been an increasing number of studies on the global topolog-

ical structures of the networks recently (5–8). However, there

are so far very few studies of why the network should be

robust and perform the biological function from the physical

point of view (9–22).

Theoretical models of the cellular networks have often

been formulated with a set of deterministic chemical rate

equations. These dynamical descriptions are inherently local.

To probe the global properties, one often has to change the

parameters. The parameter space is huge. The global robust-

ness therefore is hard to see from this approach.

Here we will explore the nature of the network from

another angle: formulate the problem in terms of the poten-

tial function or potential landscape. If the potential landscape

of the cellular network is known, the global properties can be

explored (13,15–18,20–24). This is in analogy with the fact

that the global thermodynamic properties can be explored

when knowing the inherent interaction potentials in the

system. In the cell, statistical fluctuations coming from the

finite number of molecules (typically on the order of 1–1000)

provide the source of intrinsic internal noise and the fluctuations

from highly dynamical and inhomogeneous environments of

the interior of the cell provide the source of the external noise

for the networks (25–30). Both the internal and external

noise play important roles in determining the properties of

the network.

In general, one should study the chemical reaction net-

work equations in the noisy conditions to model the cellular

environments more realistically. In other words, instead of

following the deterministic evolution of the concentrations

of proteins in the network by the normal chemical rate equa-

tions, one should describe the dynamics of protein concen-

trations probabilistically. We can realize this through the kinetic

master equations. We can study the steady-state probability

distributions of these chemical concentrations under noisy

environments. The generalized potential function for steady

state of the network is closely associated with the steady-

state probability (13,15–18,20–22,31). Once the network

problem is formulated in terms of the generalized potential

function or the potential landscape, the issue of the global

stability or robustness is much easier to address. In fact, an

explicit illustration of energy landscape and robustness for

MAP Kinase signal transduction network has been given

recently (20–22).

It is the purpose of this article to study the global robust-

ness problem directly from the properties of the potential

landscape for the budding yeast cell cycle network. Further-

more, cellular network is an open nonequilibrium system due

to the interactions with the environments. There is a dis-

sipation cost associated with the network. It will also be

interesting to see for our model system how the dissipation

cost is related to the features of the landscape reflecting the
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Budding yeast cell cycle

To explore the nature of the underlying potential landscape

of the cellular network, we will study the budding yeast cell

cycle network. One of the most important functions of the

cell is the reproduction and growth. It is therefore crucial to

understand the cell cycle and its underlying process. The cell

cycles during the development are usually divided in several

phases: G1 phase, in which cell starts to grow under appro-

priate conditions; S phase, in which DNA synthesis and

chromosome replication occurs; G2 phase, where the cell is

in the stage of preparation for mitosis; and M phase, in which

chromosome separation and cell division occurs. After pass-

ing through the M phase, the cell enters back to G1 phase and

thus completes a cell cycle. In most of the eukaryotic cells,

the elaborate control mechanisms over DNA synthesis and

mitosis make sure the crucial events in the cell cycle are

carried out properly and precisely. Physiologically, there are

usually several check points (where cells are in the quiescent

phase waiting for the signal and suitable conditions for

further progress in the cell cycle) for controlling and coor-

dination: G1 before the new round of division; G2 before the

mitotic process begins; and M before segregation.

Recently, many of the underlying controlling mechanisms

are revealed by the genetic techniques such as mutations or

gene knockouts. It is found that control has been centered

around cyclin-dependent protein kinases (CDKs), which

trigger the major events of the eukaryotic cell cycle. For

example, the activation of cyclin/CDK dimer drives the cells

at both G1 and G2 checkpoints for further progress. During

other phases, check points CDK/cyclin are activated. Al-

though molecular interactions regulating the CDK activities

are known, the mechanisms of the checkpoint controls are

still uncertain (9–12).

The cell cycle process has been studied in details in the

budding yeast Saccharomyces cerevisiae (4,9–12,14). There

are many genes involved in controlling the cell cycle pro-

cesses. However, the number of the crucial regulators is

much less. A network-wiring diagram based on the crucial

regulators can be constructed (9–12,14) as shown in Fig. 1.

Under the rich nutrient conditions, when the cell size

grows large enough, a cyclin Cln3 will be turned on. Thus,

the cell-cycle sequence starts when the cell commits to

division through the activation of Cln3 (the START). The

Cln3/Cdc28 will be activated. This in turn activates through

phosphorylation a pair of transcription factor groups, SBF

and MBF, which activate the genes of the cyclins Cln1 and

Cln2 and Clb5 and Clb6, respectively. The subsequent

activity of Clb5 drives the cell into the S phase where DNA

replication begins. The entry into the M phase for segrega-

tion is controlled by the activation of Clb2 through the

transcription factor MCM1/SFF activation. The exit of the M

phase is controlled by the inhibition and degradation of Clb2

through the Sic1, Cdh1, and Cdc20. Clb2 phosphorylates

Swi5 to prevent its entry into the nucleus. After the M phase,

the cell comes back to the stationary G1 phase, waiting for

the signal for another round of division. Thus, the cell-cycle

process starts with the excitation from the stationary G1 state

by the cell-size signal and evolves back to the stationary G1

state through a well-defined sequence of states.

Mathematical models of the cell cycle controls have been

formulated with a set of ordinary first-order (in time) diff-

erential equations mimicking the underlined biochemical

processes (9–12,14). The models have been applied to the

budding yeast cycle and explained many qualitative phys-

iological behaviors. The checkpoints can be viewed as the

steady states or stationary fixed points. Since the intracellular

and intercellular signals are transduced into the changes in

the regulatory networks, the cell cycle becomes the dynamics

in and out of the fixed points. Although detailed simulations

give some insights toward the issues, due to the limitation of

the parameter space search, it is difficult to perceive the

global or universal properties of the cycle networks (for ex-

ample, for different species). It is the purpose of the current

study to address this issue.

We will study the global stability by exploring the underly-

ing potential landscape for yeast cell cycle network.

MATERIALS AND METHODS

The average dynamics of the network can be usually described by a set of

chemical rate equations for concentrations where both the concentrations

and the links among them through binding rates with typically quite different

timescales are treated in a continuous fashion. In the cycle, most of the

biological functions seem to be from the on- and off-properties of the net-

work components. Further more, the global properties of the network might

FIGURE 1 The yeast cell cycle network scheme: wiring diagram, the

arrow sign (/) represents positive activating regulations (1); the inhibition

sign (a) represents negative suppressing regulations (�1); and the loop sign

(d d dj) represents self-degradation.
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depend less sensitively on the details of the model. Therefore, a simplified

representation (14) can be proposed with each node i having only two states,

Si¼ 1 and Si¼ 0, representing the active and the inactive state of the protein,

or high concentration and low concentration of proteins, respectively. As

illustrated in Fig. 1, we have 11 protein nodes in the network wiring

diagram; altogether, we have 211 states, each state represented by S, with a

distinct combination of the on and off of the 11 protein nodes of Cln3, MBF,

SBF, Cln1-2, Cdh1, Swi5, Cdc20, Clb5-6, Sic1, Clb1-2, and Mcm1

represented by fS1, S2, S3, . . .S11g ¼ S. The arrows (/) represent positive

regulations or activations (1). Inhibition sign (—j) represent negative

regulations or repressions (�1). The loop (—j) represents self-degradations

to the nodes which are not regulated by others. We can then define some

rules to follow the subsequent dynamics of the network. Therefore, the

evolution of the network is deterministic.

As mentioned, in the cell the average dynamics of the cellular network

might not give a good description of the system. This is due to the intrinsic

fluctuations from the limited number of the proteins in the cell and extrinsic

fluctuations from the environments in the interior of the cell. It is then more

appropriate to approach the network dynamics based on statistical descrip-

tion. In other words, we should replace the deterministic or average descrip-

tion of the dynamics of states in cellular network to a probabilistic description

of the evolution of the cellular network dynamics. Therefore, instead of

following the on- and off-state switching in the network, we follow the

probability of on and off for each state in the network.

To follow the evolution of the states in the cellular network, we need to

first figure out the transition probability from one state S1 at present time to

another state S2 at the next moment. This is difficult to solve and in general

almost impossible. We therefore will make some simplifications so that we

can handle the case without the loss of the generality by assuming that the

transition probability T from one state to another can be split into the product

of the transition probability for each individual flip (or no flip) of the on- or

off-state from this moment to the next moment. The transition probability

from one state at current state to another at next moment will be assumed not

to depend on the earlier times (no memory). This leads to the Markovian

process (32–34). The transition matrix T can thus be written as

TfS1ðt9Þ;S2ðt9Þ;...;S11ðt9ÞjS1ðtÞ;S2ðtÞ;...;S11ðtÞg ¼ P
11

i¼1TfSiðt9ÞjS1ðtÞ;S2ðtÞ;...S11ðtÞg;

(1)

where t is the current time and t9 is the next moment. So the whole transition

probability from current state to the next is split into the product of the

transition probability of each individual flip (or no flip) of the node i. For

each individual flip, the transition probability for a particular node can be

modeled as a nonlinear switching function as shown in Fig. 2, A and B, from

the input through the interactions to the output, which is often used in neural

science (35):

TfSiðt9ÞjS1ðtÞ;S2ðtÞ;...S11ðtÞg ¼
1

2
6

1

2
tanh m +

11

j¼1

aijSjðtÞ
" #

: (2)

When the input +11

j¼1
aijSjðtÞ.0 is positive (activation), the transition probability

to the on-state is higher (close to 1). When the input is negative (repression), the

transition probability to the on-state is lower (close to zero). Furthermore

TSiðt9ÞjS1ðtÞ;S2ðtÞ;...S11ðtÞ ¼ 1� c; (3)

when there is no input of activation or repression (+11

j¼1
aijSjðtÞ ¼ 0), and c is

a small number mimicking the effect of self-degradation. Here aij is the

arrow or link representing the activating (11) or suppressing (�1) inter-

actions between ith and jth protein node in the network, which is explicitly

shown in the wiring diagram of Fig. 1. The value m is a parameter

controlling the width of the switching function from the input to the output.

The physical meaning is clear. If the inputs through the interactions among

proteins to a specific protein node in the network are large enough, then the

state will flip, otherwise the state will stay without the flip. The positive

(negative) sign in the T expression gives probability of flipping from 0(1) to

1(0) state as well as from 1(0) to 1(0). If m is small (large), the transition

width is large (small), the transition is smooth (sharp or sensitive) from the

original state to the output state. Therefore, we have an analytical expression

of the transition probability.

With the transition probability among different states specified, finally we

can write down the master equation for each of the 211 states as

dPi=dt ¼ �+
j

TijPi 1 +
j

TjiPj; (4)

where Tij (Tji) represents the transition probability from state i( j) to state j(i)

specified in details above. Here i and j are from 1 to 211 ¼ 2048 states and

+i¼211

i¼1
Pi ¼ 1:

We solved the 211 ¼ 2048 master equations numerically of the yeast cell

cycle (by using iterative method) to follow the evolution of the probability

distribution of each state, with the initial condition of equal small probability

of all the cell states (Pi ¼ 1/2048). Both the time-dependent evolution and

the steady-state probability distribution for each state are obtained.

Let us focus on the steady-state probability distribution. For each state,

there is a probability associated with it. One can write the probability distri-

bution for a particular state as Pi ¼ exp[ – Ui] (+i¼211

i¼1
Pi ¼ 1) or Ui ¼ – lnPi.

One can immediately see that Ui acquires the meaning of generalized

potential energy (from Boltzmann distribution). This is the key point:

although there is no potential energy function directly from the normal

deterministic averaged chemical reaction rate equations for the network, a

generalized potential energy function does exist and can be constructed from

the probabilistic description of the network instead of the deterministic

FIGURE 2 Nonlinear response function versus inputs: Fig. 2 A is for y ¼ 1/2 1 1/2tanh(mx) when m ¼ 0.5, 1, 5 and Fig. 2 B is for y ¼ 1/2 – 1/2tanh(mx)

when m ¼ 0.5, 1, 5.
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averaged one. This generalized potential energy function is inversely related

to the steady-state probability. When the probability is large, the potential

energy is lower and when probability is small, the potential energy is higher.

The dynamics of the cell cycle thus can be visualized as passing through

mountains and ridges of the energy landscape in state space of the cell cycle

network to the final destiny. The advantage of introducing the concept of

energy is that once we have the potential landscape, we can discuss the

global stability of the protein cellular networks. Otherwise, it is almost

impossible to address the global issues without going through the parameter

space locally, which is often cosmologically big.

The network is an open system in nonequilibrium state. Even at steady

state, the system is not necessarily in equilibrium. This is clear from the fact

that although we can obtain the steady-state probability and can define an

equilibrium-like quantity such as steady-state probability, the flux is not

necessarily equal to zero (Fijsteady-state ¼ � TijPisteady-state 1 TjiPjsteady-state).

This is different from the equilibrium situation where the local flux is equal

to zero (detailed balance condition). The flux defines a generalized force for

the nonequilibrium steady state along with the associated generalized

chemical potential (37). The nonequilibrium steady state dissipates energy.

In the steady state, the heat loss rate is equivalent to entropy production rate,

where entropy S0 is defined as S0 ¼ �+
i
PilnPi and entropy production rate

(per unit time) S is given by

S ¼ +
ij

TjiPjln
TjiPj

TijPi

� �
: (5)

Entropy production rate is a characterization of the global properties of

the network. We can study how the entropy production rate or dissipation

cost of the network changes with the global structure and underlying land-

scape of the network, as well as how it varies with the changes of internal

and external perturbations. We can explore the global natures of the network

such as stability, robustness, and dissipation cost and their interrelationships.

In each of the simulations, we study the robustness of the network by

exploring different values of switching and self-degradation parameters m

and c, as well as the mutations of the links or interactions in the network.

RESULTS AND DISCUSSION

Since the potential energy is a multidimensional function in

protein states, it is difficult to visualize U. Therefore, we

directly look at the energy spectrum (Fig. 3) and explore the

nature of the underlying potential landscape U.

Fig. 3 A shows the spectrum as well as the histogram of U.

We can see that the distribution is approximately Gaussian.

The lowest potential U is the global minimum of the

potential landscape. It is important to notice this global

minimum of U is found to be the same state as the steady

state or fixed point (the stationary G1 state ¼ (0;0;0;0;1;

0;0;0;1;0;0)) of the deterministic averaged chemical reaction

network equations for the yeast cell cycle. It is clear that the

global minimum of the potential is significantly separated

from the average of the potential spectrum or distribution.

To quantify this, we define the robustness ratio RR for the

network as the ratio of the gap dU, the difference between

this global minimum of G1 state Uglobal-minimum and the

average of U, ÆUæ versus the spread or the half-width of the

distribution of U, DU, RR ¼ ðdUÞ=ðDUÞ as shown in Fig. 3

A. The value dU is a measure of the bias or the slope toward

the global minimum (G1 state) of the potential landscape.

DU is a measure of the averaged roughness or the local

trapping of the potential landscape. When RR is significantly

.1, the gap is significantly larger than the roughness or local

trapping of the underlying landscape, then the global mini-

mum (G1 state) is well separated and distinct from the average

of the network potential spectrum. Since Pi ¼ expf�U(x)g,
the weight or population of the global minimum (G1 state)

will be dominated by the one with large RR. The populations

of the other possible states are much less significant. This leads

to the global stability or robustness discriminating against

others. The RR value for the yeast cell cycle network is RR¼ 3

(for m ¼ 5 and c ¼ 0.001) as shown in Fig. 3 A, significantly

larger than 1. This shows a funnel picture of energy going

downhill toward G1 state in the evolution of network states,

as illustrated in Fig. 3 B. Therefore, RR gives a quantitative

FIGURE 3 The global structures and properties of the underlying potential landscape of the yeast cell cycle network. (A) The spectrum and the histogram or

the distribution of the potential energy U. (B) An illustration of the funneled landscape of the yeast cell cycle network. The global minimum of the energy is at

G1 state. (C) The spectrum of the potential energy U for a random network.
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measure of the property of the underlying landscape

spectrum.

We found the typical values for random networks are close

to 2 (RR cannot be ,1). A typical random network with RR 2

is illustrated in Fig. 3 C for a random network. The ground

state, however, is not necessarily the G1 state any more. The

probability of G1 is smaller for the random network com-

pared with the biological one and therefore less stable.

Comparing the two potential energy spectra, we found the

spread or the dispersion DU for the random network in Fig. 3

C is larger than the biological network in Fig. 3 A. Thus, the

robustness ratio RR ¼ dU/DU for random network is smaller

than the biological one. Only the cellular network landscape

with a large value of RR will be able to form a stable global

minimum G1 state, be robust, perform biological functions,

and survive the natural evolution.

We identified the preferential global pathway toward the

global minimum G1 by following the most probable tra-

jectory in each step of the kinetic moves from the kinetic

master equations toward G1. The protein can be either 1 or 0

representing active or inactive. The 11 proteins are arranged

in a vector form to represent the state of the system as (Cln3;

MBF; SBF; Cln1,2; Cdh1; Swi5; Cdc20; Clb5, 6; Sic1;

Clb1,2; Mcm1).

The most probable global path follows the states 1/13

sequentially toward G1 from the start signal, where:

The start signal is in state sequence 1, as given by

(1;0;0;0;1;0;0;0;1;0;0).

Three excited G1 states are in sequences 2–4, given,

respectively, by (0;1;1;0;1;0;0;0;1;0;0), (0;1;1;1;1;0;0;

0;1;0;0), and (0;1;1;1;0;0;0;0;0;0;0).

The S phase is in a state with sequence 5 given by (0;1;1;

1;0;0;0;1;0;0;0).

The G2 phase is in a state with sequence 6 given by

(0;1;1;1;0;0;0;1;0;1;1).

The M phase is in states with sequences 7–11, given,

respectively, by (0;0;0;1;0;0;1;1;0;1;1), (0;0;0;0;0;1;1;

0;0;1;1), (0;0;0;0;0;1;1;0;1;1;1), (0;0;0;0;0;1;1;0;1;0;1),

and (0;0;0;0;1;1;1;0;1;0;0).

The other excited G1 state is in sequence 12, given by

(0;0;0;0;1;1;0;0;1;0;0).

Finally, stationary G1 phase is in state sequence 13, given

by (0;0;0;0;1;0;0;0;1;0;0).

The most probable path turns out to be the biological path

going through G1/S/G2/M/G1.

We arranged the state space into the two-dimensional

grids with the constraints of minimal overlapping or cross-

ings of the state connectivity for the purpose of clear visuali-

zation. Each point on the two-dimensional grid represents a

state (one of 2048 states). The energy landscape on the two-

dimensional grids is shown in Fig. 4. The lowest energy state

corresponds to the stationary G1 state. The global biological

path is represented by the narrow green band on the projected

two-dimensional-state space plane with small arrows con-

necting each relevant state. It is sequentially from state 1–13

as mentioned in the above text (sequences 1/13). As we

can see, the global biological path lies in the low energy valley

of the landscape toward G1. In addition, we can also see some

other off-pathway traps (states with low energies).

Fig. 5 A shows robustness ratio, RR of the cell cycle

network versus the steady-state probability of the G1 (with

m ¼ 5 and c ¼ 0.001) against various perturbations. These

perturbations are through deleting an interaction arrow,

adding an activating or repressing arrow between the nodes

that are not yet connected in the network wiring diagram in

Fig. 1, or switching an activating arrow to a repressing arrow

or vice versa, and deleting an individual node. There is a

monotonic relationship between the G1 probability and

robustness ratio RR. When RR is larger (smaller), the

landscape is more (less) robust, the network is more (less)

stable with G1 state dominating (less significant). Therefore,

RR is indeed a robustness measure for the network.

Fig. 5 B shows the robustness ratio RR versus steady-state

probability of the global biological path with important bio-

logical states including G1 (14). We see again that network

with large RR characterizing the funneled landscape leads to

higher steady-state probability and therefore more stable

biological path. Random networks typically have smaller RR
and smaller probability of G1 compared with the biological

one. They are less stable. The biological functioning network

is quite different from the random ones in terms of the un-

derlying energy landscape and stability.

Fig. 6 A shows the robustness ratio of the underlying energy

landscape versus different switching parameters m (c¼ 0.001).

FIGURE 4 The potential energy landscape of the yeast cell cycle network

and biological path to stationary G1: The lowest energy state corresponds to

stationary G1 state. The green band with arrows corresponds to the bio-

logical path (sequentially from state 1 to 13 described in the text).
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We see that when m is large (small) indicating a sharp

(smooth) transition or response from input to output for a

single flip of the protein states, the robustness ratio increases

with m increases. This means a sharper transition or response

from input to output gives more a robust network compared

with the smoother transition or response. The value m can also

be seen as a measure or characterization of the strengths of the

noise from the intrinsic or extrinsic statistical fluctuations in

the cellular environments (36). The m could then be related to

the inverse of the temperature (temperature here is a measure

of the strength of the noise level). The energy U we defined in

this article is in units of m. Therefore, U is a dimensionless

quantity. When m is not changing, the two definitions of U
(U ¼ �mlogP and U ¼ �logP) are only different by a con-

stant. The RR is not influenced by the above two definitions of

U since it involves the ratio of the U-values.

When m is large, the transition is sharp. This corresponds

to all-or-none deterministic behavior for the response or

transition (0 or 1). This is the situation when the underlying

statistical fluctuations are small. When m is small, the

response or the transition is no longer all-or-none (1 or 0) but

a smooth function in between 0 and 1. This is due to the fact

the statistical fluctuations lead to the states more distributed

and with less sharp response. Therefore, the associated prob-

ability of distributed states has more chances being between

0 and 1. In other words, less (more) statistical fluctuations or

shaper response with larger m (less sensitive response with

smaller m) leads to more (less) robust network characterized

by large (small) RR. Then, there exist two phases for the

network: a robust phase with RR is significantly larger than

2, where the network is stable and the underlying energy

landscape is funneled toward G1; and a fragile phase with RR
drops to #2, where the network is less stable and the

underlying energy landscape is shallower toward G1.

Fig. 6 B shows probability of stationary G1 state as well as

the probability of the global path toward G1 versus m. We

can see a global transition phase transition at m ; 1, below

which PG1 and Ppath significantly drops. From Fig. 6, A and

B, we see when PG1 and Ppath is small, RR is also small,

implying the system is less stable. Therefore, the network

loses the stability below m ; 1. Significantly above m ; 1,

the network becomes stable. We can interpret this as the

phase transition from the weak noise limit where the under-

lying landscape and the associated global path are not

influenced much by the noise level to the limit where under-

lying landscape and associated global path are disturbed

significantly or disrupted by the strong noise. We can also

interpret this as the transition from hypersensitive response

leading to the robustness of the landscape and the associated

global path, to the inert or insensitive response leading to the

fragile landscape and associated global path to G1. We can

see a sharper response or more sensitivity of the individual

protein nodes to the rest of the protein network through

interactions usually leads to more robustness of the network

with stable G1 and biological path.

The low m corresponds to strong noise limit or insensitive

response for the node to the input. The landscape has low RR
and is less stable or robust. The landscape is more flat and

less biased toward G1. When m increases, the noise level

decreases, the response to the input is more sensitive for

each node. This results in a more funneled topography to-

ward G1 and a more robust landscape. The maximal funnel is

found at ;m ¼ 2. There is a sharp change of the shape of the

landscape near m ¼ 2 from the m , 2 side. When m . 2, the

RR value is slightly lower and quickly approaches to a

constant as m becomes larger, corresponding to smaller noise

and a more sensitive response from a node to the input. The

landscape becomes stabilized with a definite robustness ratio

and probability of PG1. The peak value of the RR, PG1 as well

as Ppath implies that traps might exist in the landscape (deep

energy states other than G1 and not on biological path). Large

noise will destroy landscape, which leads to low RR, PG1 as

FIGURE 5 Robustness against mutation perturbations. (A) Robustness ratio versus steady-state probability of G1, PG1 for different mutations of the links.

(B) Robustness ratio RR versus steady-state probability of biological path, Ppath for different mutations of the links.
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well as Ppath. Zero noise leads to relatively stable network with

relatively large RR, PG1 as well as Ppath. In the presence of

traps, adding a small amount of noise helps the system to reach

the global minimum without getting caught or trapped in the

intermediate off-pathway trapping states. This increases the

probability and enhances the stability of G1 and biological

path. Therefore, the presence of the peak of RR, PG1 as well as

Ppath is an indication of the existence of traps in the landscape.

We found six major off-pathway traps responsible for the

peak in RR, PG1 as well as Ppath (some are shown in Fig. 4).

Fig. 7 A shows the robustness ratio of the underlying energy

landscape versus different self-degradation parameters c (at

m¼ 5). We see that when c is large (small) indicating a large

(small) self-degradation, the robustness ratio increases with c
decreases. This means less degradation gives a more robust

network. Fig. 7 B shows the probability of stationary G1 as

well as biological path versus different self-degradation

parameters c (at m ¼ 5). We see that when c is large (small)

indicating a large (small) self-degradation, the probability of

stationary G1 phase and biological path increases with

decrease of c parameters. This means less degradation gives

a more probable and stable stationary G1 phase and biological

path, and therefore a more robust network.

In Fig. 8, we plotted the entropy production (per unit time)

or the dissipation cost of the network, S, versus RR for

different m. We can see the entropy production rate decreases

as RR increases. This implies the more robust the network is,

the less entropy production or heat loss the network has. This

can be very important for the network design. The nature

might evolve such that the network is robust against internal

(intrinsic) and environmental perturbations, and perform

specific biological functions with minimum dissipation cost.

The fact that robustness is linked with the entropy production

rate may reflect that fewer fluctuations and perturbations lead

to more robust and stable networks as well as more energy

saved, and therefore lower costs in mean time. This might

provide us a design principle of optimizing the connections

of the network with minimum dissipation cost for the

network. In this study, it is also the equivalent of optimizing

the robustness or stability of the network.

FIGURE 6 Robustness against the sharpness of the response or the inverse noise level. (A) Robustness ratio versus sharpness of the response or inverse of

noise level m. (B) Steady-state probability of stationary G1, PG1 and biological path, Ppath versus m.

FIGURE 7 Robustness against self-degradation. (A) Robustness ratio RR versus degree of self-degradation, c. (B) Steady-state probability of stationary PG1

and biological path Ppath versus c.
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In Fig. 9, we define an order parameter Q for this model,

based on how many nodes there are in the same state relative

to the stationary G1 phase, normalized to 1. So Q ¼ 1 when

the network is in stationary G1 phase, and Q ¼ 0 when the

network is in a state, which is completely uncorrelated with

the stationary G1 phase. We plotted the projection of energy

U to the order parameter Q. We can see that there are two

minimum or two basins of attraction. One is at Q¼ 1. It is the

global minimum corresponding to the global stationary G1

phase. The other is near Q ¼ 0, corresponding to the G2

phase. The existence of different basins of attraction is reason-

able in the cell cycle network with several checkpoints. One

of the major checkpoints in the experiments turns out to be

G2. So checkpoints could be seen as on pathway ‘‘trap-

ping.’’ The robustness network will be able to pull out itself

from the on pathway ‘‘trapping’’ to precede the normal cell

cycle function to G1.

CONCLUSIONS

The energy landscape is a statistical-based approach, which

is good in two ways: It is an approach capturing the global

properties; and, on the other hand, the statistical approach

can be very useful and informative when the data are rapidly

accumulating. In this picture, there are many possible energy

states of the network corresponding to different patterns of

combinations of activation and inhibition of the protein

states. Each checkpoint can be viewed as basins of attraction

of globally low energy states. The G1 phase states have the

lowest global energy since they are at the end of the cycle.

We believe it might be possible to describe the cell cycle as

the dynamic motion in the energy-landscape-state space

from one basin to another. This kinetic search cannot be

entirely random but directed since the random search takes

cosmological time. The direction or gradient of the landscape

is provided from the bias in terms of the energy gap toward

the G1 phase. Therefore, the landscape picture is one is

which there is a funnel toward the G1 state (the bottom of the

funnel, which we can call native state). At the end of G1

phase, the network is pumped upon receiving the new start

signal through further nutrition supply, without which the

system will stay at G1 and network cannot continue the cy-

cling process) to high energy excited states at the top of the

funnel (cycling). Then the cell cycle follows as it cascades

through the configurational state space (or energy landscape)

in a directed way passing several checkpoints (basins of

attraction) and finally reach the bottom of the funnel-G1

phase before being pumped again for another cycle (Fig. 4).

We can see from the above discussions that maximizing

the ratio of the potential gap (or the slope) versus the rough-

ness of the underlying potential landscape is the criterion for

the global stability or robustness of the network. Only the

cellular network landscape satisfying this criterion will be

able to form a thermodynamically stable global steady state,

be robust (Fig. 5–7), perform the biological functions with

minimal dissipation cost (Fig. 8), and survive the natural

evolution. Similar to a protein folding and binding problem

(38,39), a funneled potential landscape of cellular network

emerges. The landscape biases toward the global minimum

G1 state and dominates the fluctuations or wiggles in the

configurational space. From this picture, at the initial stage of

the yeast cell cycle network process, there could be multiple

parallel paths leading toward the global minimum G1 state.

As the kinetic process progresses, the discrete paths might

emerge and give dominant contributions (biological path)

when the roughness of the underlying landscape becomes

significant (Fig. 4).

The cellular network with too-rough an underlying poten-

tial landscape can neither guarantee the global robustness nor

perform specific biological functions. They are more likely

to phase out from evolution. The funneled landscape there-

fore is a realization of Darwinian principle of natural selec-

tion at the cellular network level. As we see, the funneled

FIGURE 8 Dissipation cost versus robustness of the network: entropy

production rate S versus robustness ratio RR.

FIGURE 9 One-dimensional projection of the energy landscape: potential

U versus fraction of protein nodes consistent with the stationary G1 phase, Q.
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landscape provides an optimal criterion to select the suitable

parameter subspace of cellular networks, guarantees the robust-

ness, and performs specific biological functions with less dis-

sipation cost. This will lead to an optimal way for the network

connections and is potentially useful for the network design.

It is worth pointing out that the approach described here is

general and can be applied to many cellular networks such as

a signaling transduction network (2) and a metabolic network

(40), where there might be only one funnel dominating, and a

gene regulatory network where multiple (yet finite number

of) funnels or basins of attraction emerge (13,16,22).
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