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The rich knowledge of operon organization in Escherichia coli,
together with the completed chromosomal sequence of this bac-
terium, enabled us to perform an analysis of distances between
genes and of functional relationships of adjacent genes in the same
operon, as opposed to adjacent genes in different transcription
units. We measured and demonstrated the expected tendencies of
genes within operons to have much shorter intergenic distances
than genes at the borders of transcription units. A clear peak at
short distances between genes in the same operon contrasts with
a flat frequency distribution of genes at the borders of transcrip-
tion units. Also, genes in the same operon tend to have the same
physiological functional class. The results of these analyses were
used to implement a method to predict the genomic organization
of genes into transcription units. The method has a maximum
accuracy of 88% correct identification of pairs of adjacent genes to
be in an operon, or at the borders of transcription units, and
correctly identifies around 75% of the known transcription units
when used to predict the transcription unit organization of the
E. coli genome. Based on the frequency distance distributions, we
estimated a total of 630 to 700 operons in E. coli. This step opens
the possibility of predicting operon organization in other bacteria
whose genome sequences have been finished.

The advent of the genomic era has opened up the doors to the
analysis of complete genome organization, especially in

bacteria. The completion of many bacterial genomes has allowed
the analysis of gene clusters, leading to interesting conclusions
about the tendencies of genes with related functions to remain
together across several genomes (1), particularly in the case of
genes whose protein products physically interact (2) (under-
standing genes as those regions of DNA encoding separate and
distinct polypeptides). The organization of genes in operons is
believed to provide the advantage of coordinated regulation and
production of functionally related genes. Some recent sugges-
tions on the origin of operons emphasize the role of horizontal
transfer and the advantage of transferring complete sets of genes
involved in a pathway to provide a defined phenotype to the
recipient bacteria (3, 4). A recent proposition states that operons
might have arisen in thermophilic organisms, because the orga-
nization of genes into operons facilitates the association of
functionally related protein products, thus protecting each other
from thermal degradation. Such channeling of multienzyme
complexes would also protect thermolabile intermediates in a
pathway (5).

RegulonDB is an exhaustive database, accessible through the
Internet, containing information compiled from the literature
about genetic regulation and operon organization in Escherichia
coli (6, 7). The present work is based on a collection of 361 known
transcription units obtained from RegulonDB. This collection
groups 933 genes, of which 124 are transcribed as single units,
whereas the others are grouped into 237 operons with two or
more cotranscribed genes. Overall, this collection represents
around 25% of all genes in E. coli. Most of these genes have been
classified into the functional classes defined by Monica Riley
(8, 9). This classification constitutes one of the largest attempts
to assign each E. coli gene a cellular function and is used and

updated in the ‘‘Encyclopedia of E. coli Genes and Metabolism’’
or EcoCyc (10), and in the ‘‘E. coli Genome and Proteome
Database’’ GenProtEC (11). All these data provide a substantive
database to analyze and to predict the organization of transcrip-
tion units at a genomic scale.

Based on this collection and on the sequence and annotations
of the E. coli genome (12), we analyzed the common features
shared among pairs of adjacent genes within operons, against
pairs of adjacent genes representing borders between transcrip-
tion units, yet transcribed in the same direction. We evaluated
and demonstrated their differences in terms of distances be-
tween genes, measured in base pairs, and in terms of functional
class relationships. We also showed that such differences can be
used to develop a method to predict operons in the whole E. coli
genome. This method might also be helpful to predict transcrip-
tion unit boundaries in other prokaryotic genomes.

Data Preparation. All of the work was performed by using ad hoc
PERL scripts (13). The data set from RegulonDB used in these
analyses contains 361 transcription units; 237 of them are
polycistronic. In this paper, we refer to the whole collection as
the collection of transcription units, and to the polycistronic
subset as the collection of operons. The latter was divided into
the data set of pairs of adjacent genes belonging to the same
operon.

We also divided the complete M54 version of the E. coli
genome into a data set of codirectional transcriptional groups.
That is, we grouped together every gene transcribed in the same
direction with no intervening gene transcribed in the opposite
one. This was named the ‘‘directons’’ collection. The procedure
yields a collection of 1,292 directons, 812 of which have more
than one gene. The directons collection was divided into the
complete data set of pairs of adjacent genes transcribed in the
same direction. The number of transcription units and directons
diminishes with the number of genes they contain, so that around
80% of all transcription units have fewer than five genes, whereas
80% of all directons have fewer than 10 genes (Fig. 1).

Then, we compared the collection of known transcription
units with the collection of directons to find those directons
containing transcription units with added genes at either side.
Such added genes were used to construct a data set of pairs of
adjacent genes at borders between transcription units, which
constitutes a contrasting data set against the collection of
adjacent genes in operons.

The whole operation results in a set of 572 pairs of adjacent
genes in operons, a set of 346 pairs at the borders of transcription
units, and a set of 3,113 total pairs of adjacent genes transcribed
in the same direction.
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Distance Analyses. Distances between adjacent genes were calcu-
lated from the corresponding coordinates in the M54 version of
the E. coli genome sequence. These distances represent the
number of base pairs between the genes, or the number of base
pairs overlapped [distance 5 gene2_start 2 (gene1_finish 1 1),
with gene1 and gene2 being the first and second gene in the order
they occur in the genome sequence].

As Fig. 2 shows, there is a clear difference in distance
frequency distribution between genes in the same operon and
genes at the boundaries of transcription units. Genes within
operons show a clear peak at short distances. The two most
frequent distances are the overlaps of four bases and of one base.
The former corresponds to the overlapping sequences ATGA
(79 cases), GTGA (9 cases), and TTGA (1 case), in which ATG,
GTG, and TTG are the start codons of the second gene in the
pair, and TGA is the stop codon of the previous one. The latter
most common distance corresponds to the sequences TAATG
(39 cases), TGATG (15 cases), and TAGTG (1 case), with the

stop and start codons sharing the middle base. There is no
prevailing distance between neighboring genes that belong to
different transcription units.

Regulatory elements are usually located at the beginning and
the end of the operon, although there are a few cases of
transcription units inside operons with their own regulatory

Fig. 1. Size distribution, in number of genes contained, of transcription units
in RegulonDB, and size distribution of directons in the M54 version of the E.
coli genome.

Fig. 2. Frequency distance distributions of pairs of adjacent genes in operons
versus those of pairs of adjacent genes at the boundaries between transcrip-
tion units (t.u.). There are clear differences between both distributions, with
genes in operons having peaks very near to distance 0. The highest peaks
correspond to the 24 and 21 overlaps.

Fig. 3. Data used to estimate the total number of operons in the entire E. coli
genome. (a) Distance distributions at 10-bp intervals. (b) Frequency distance
distributions. (c) Frequency distance distributions of adjacent genes in direc-
tons versus the average of those in operons and at transcription unit (t.u.)
boundaries. Notice the nice correspondence of the peaks in c, which also
confirms how well the sample (operons and transcription unit borders) rep-
resents the population (directons, or total adjacent genes transcribed in the
same direction). The estimated total operons, as extrapolated from these
data, goes from 630 to 700.
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elements (eight in RegulonDB). Therefore, there may be no
need for space between genes inside operons, except for that
used to accommodate Shine–Dalgarno elements, although this
analysis shows that such elements are easily overlapped within
coding sequences. Another reason for minimal spacing between
genes could be to protect mRNA from degradation by associa-
tion with ribosomes (14).

Fig. 3 shows the distance distribution, at 10-bp intervals, of all
adjacent genes transcribed in the same direction of the E. coli
genome, compared with that of genes within operons, and of
those at the borders of transcription units. The distance distri-
bution of the complete collection of genes transcribed in the
same direction clearly shows a peak at short distances, coincident
with that of the collection of genes within operons, thus indi-
cating probable yet unidentified operons (Fig. 3a). If we observe
the frequencies instead of the total number of pairs of genes for
each set (Fig. 3b), the peak in operons is higher than that of the
directons population. Nevertheless, as shown in Fig. 3c, the
directon distance distribution overlaps nicely with the distance

distribution obtained by averaging those distributions corre-
sponding to genes within operons, and those at the borders of
transcription units. This result suggests that roughly half of the
total pairs of genes transcribed in the same direction would
belong to operons. The result also shows that the two contrasting
sets represent a good sample, because they accurately recon-
struct the frequency distance distribution of all genes transcribed
in the same direction, highlighting the good quality of the
RegulonDB compilation. If we extrapolate from the contribu-
tion of adjacent genes in operons to each point at the peak in Fig.
3c, we can estimate a total of 629 to 643 operons in the E. coli
genome. For instance, genes in operons contribute around
0.1442 to the 0.1558 value at the highest point at the peak
(distances between 210 and 0 bp, Fig. 3 b and c). The contri-
bution from genes in operons would be 0.1442y0.1558 or
'0.9255. Now, 0.9255 3 474 (number of pairs within directons
at the same point, Fig. 3a) is '438. One hundred sixty-five pairs
of genes within operons have distances between 210 and 0 bp,
and they come from a collection of 237 operons. Thus, the total
operon estimate is 438 3 237y165 or '629]. If we extrapolate
from all of the points in the curve, the estimate goes to around
700.

To use this information to predict the operon organization in
the complete genome, we calculated distance log-likelihoods for
adjacent pairs of genes to be in the same operon. Fig. 4 shows the
frequency distance distributions at intervals of 10 bp of pairs of
genes at operons, and of pairs at the boundaries of transcription
units, as well as the log-likelihoods for each interval. The
log-likelihood of a pair of neighboring genes being in the same
operon as a function of distance was calculated with the formula:

LL~dist! 5 log
Nop~dist!/TNop

Nnop~dist!/TNnop
,

where Nop and Nnop are pairs of genes in operons and at
transcriptional boundaries, respectively, at a distance [dist] (in
10-bp intervals), whereas TNop and TNnop are the total number
of pairs of genes in operons and at the transcription unit
boundaries, respectively. The discrimination resulting from the
use of these log-likelihoods, and those described in the next
section, between adjacent genes in operons and adjacent genes
at the boundaries of transcription units is depicted in Fig. 5.

Fig. 4. Frequency distance distributions as obtained by adding the frequen-
cies at 10-bp intervals, and the log-likelihoods for a pair of genes to be in an
operon at each distance interval.

Fig. 5. Discrimination of known pairs of genes in operons by the use of distance log-likelihoods alone (dllh), and of distance and functional class log-likelihoods
(tllh), at different thresholds. (a) Fraction of right and wrong positives at different thresholds. (b) Sensitivity (right pairs in operons detectedytotal pairs in
operons), specificity (right pairs at bordersytotal pairs at borders), and accuracy (average of sensitivity and specificity) at different thresholds. The correct
identifications are slightly better when functional classes are used.
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Analysis of Functional Classes. The clustering of functionally re-
lated genes in the chromosome was one of the motivations for the
definition of operons in bacteria (15), and, as already mentioned,
previous analyses have shown the tendency of genes to remain
in clusters when their products have a related function (1). To
perform a functional analysis of adjacent genes, we relied in the
functional classes of Monica Riley (8, 9). In this classification,
each gene is assigned a number corresponding to one of 120
functional classes.

Table 1 shows the most frequent functional classes, in pairs of
genes within operons and in pairs of genes at the borders of
transcription units. Four hundred eleven of 519 pairs of adjacent
genes within operons with assigned functional class belong to the

same class (79.2%). For instance, the most frequent functional
class appearing in neighboring genes in operons is 2.72, meaning
‘‘anaerobic respiration; energy metabolism, carbon; metabolism
of small molecules.’’ On the other hand, only 26 of 172 pairs, or
20.5%, of genes at the boundaries of transcription units share
their functional class. These distributions generate a log-
likelihood of 0.7192 for adjacent genes to be in an operon when
they share their functional classification, and of 20.6106 if they
belong to different functional classes.

It is important to note that almost all of the genes in the
operon data set have a defined functional class, whereas 1808, or
slightly less than half of all genes in the genome, have such class
description. Thus, contrary to neighbor distances between genes,
which are available for all genes in the genome, the functional
class provides partial information for operon prediction. Hence,
the functional log-likelihood would not be a prediction param-
eter by itself, although, as discussed below, its addition to
distance log-likelihoods improves predictions. The discrimina-
tion between pairs of genes in operons and pairs of genes at the
borders of transcription units, at different thresholds, by using
functional classes in addition to distance log-likelihoods is
depicted in Fig. 5.

Prediction of Transcription Units in the E. coli Genome. To test the
performance of a method based on distance and functional class
log-likelihoods to detect transcription units, the data set of
directons was scanned, and hypothetical transcription units were
generated. Pairs of contiguous genes are joined into the same
operon as long as their log-likelihood score is not lower than a
given threshold. Table 2 displays the number of operons and
total transcription units generated at different thresholds. The
best result is obtained at the same point of maximal accuracy
(from Fig. 5b). At this point, the method recuperates around
75% of the set of known transcription units, although about 8%
of them are generated as a result of partitioning the genome into
directons. Table 3 shows the same results, but this time by using
the collection of directons with known transcription units with
added genes at either side. The use of distance and functional
class log-likelihoods increases the rescue of complete known
operons by about 10% when compared with the use of distance
log-likelihoods alone (Tables 2 and 3).

Fig. 6 displays the size of the transcription units generated at
the best performing threshold (in the sense of known operons
recuperated). It yields a collection of 2,748 transcription units
(270 known). Among them, 795 would be operons (151 known).

Table 1. Most frequent pairs of functional classes between
adjacent genes within operons, and between those at
transcription unit boundaries

Pairs in operons Pairs not in operons

Functional classes No. of pairs Functional classes No. of pairs

2.72y2.72 37 6y51 5
50.3y50.3 32 40.1y40.1 5
40.1y40.1 28 53y58.5 3

53y53 22 50.3y50.3 3
2.71y2.71 22 40.1y40.5 3

52y52 18 1.1y53 3
1.1y1.1 17 1.1y2.72 3
51y51 16 1.1y1.1 3

1.1y53 13 9.81y53 2
6y6 9 60.3y60.3 2

Functional classes have a designated number as provided by Monica Riley.
The numbers in this table mean: 1.1, Carbon compounds; degradation of small
molecules; metabolism of small molecules. 2.71, aerobic respiration; energy
metabolism, carbon; metabolism of small molecules. 2.72, anaerobic respira-
tion; energy metabolism, carbon; metabolism of small molecules. 6, global
regulatory functions; global functions. 9.81, isoleucine; amino acid biosynthe-
sis; metabolism of small molecules. 40.1, ribosomal proteins–synthesis, mod-
ification; ribosome constituents; structural elements. 40.5, DNA–replication,
repair, restrictionymodification; macromolecule synthesis, modification. 50.3,
surface structures; cell exterior constituents; structural elements. 51, amino
acids, amines; transport of small molecules; cell processes. 52, cations; trans-
port of small molecules; cell processes. 53, carbohydrates, organic acids,
alcohols; transport of small molecules; cell processes. 58.5, osmotic adapta-
tion; adaptation; processes. 60.3, colicin-related functions; laterally acquired
elements; elements of external origin.

Table 2. Transcription units generated at different thresholds using the complete directons
collection from the genome of E. coli

Threshold

Transcription units Operons

Total % of known Total % of known

Using distance and functional class log-likelihoods
0.0225 2,646 73.96 827 64.14
0.0357 2,661 73.41 831 63.29
0.0493 2,703 73.96 814 63.29
0.0603 2,748 74.79 795 63.71
0.0907 2,751 74.24 795 62.87
0.0950 2,761 73.13 793 61.18
0.1639 2,796 70.08 784 56.54

Using only distance log-likelihoods
0.0357 2717 64.54 842 51.05
0.0493 2784 65.10 814 49.37
0.4794 2852 65.37 791 48.95
0.6097 2976 63.71 784 46.41
0.7012 3123 61.50 717 42.62
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This distribution is shown together with that of the known
transcription units from RegulonDB.

Given the constant increase in information gathered from the
literature in RegulonDB, we could compare some predictions
with new experimental evidence. The operon named tdcABC is
a good example that highlights the power and the limitations of
the method to predict transcription units. This operon has
recently been shown to contain more members (16), changing
the name of the operon to tdcABCDEFG. The genes tdcA and
tdcB are kept together at high thresholds despite a distance of 98
bp between them (log-likelihood of 0.0493 to be in the same
operon), because they belong to the same functional class
(log-likelihood of 0.7192). On the other hand, despite a short
distance separating gene tdcB from tdcC (21 bp, which corre-
sponds to a log-likelihood of 0.6097 to be in the same operon),
at thresholds above 0, the operon is cut, separating genes tdcB
from tdcC because of their different functional class (log-
likelihood of 20.6106). The functional class pair is 1.2y51,
meaning ‘‘amino acids; degradation of small molecules; metab-
olism of small molecules’’, and ‘‘amino acids, amines; transport
of small molecules; cell processes,’’ respectively, which shows
that some recategorization might improve the method, i.e., both

classifications are coincident in the words ‘‘amino acids,’’ and
both mean there is an action on ‘‘small molecules.’’ Genes tdcD
and tdcF are kept together by distance log-likelihood alone,
because the latter one does not have a functional class assigned
(it is annotated as the predicted ORF yhaR). The gene tdcG is
never added, because the distance between tdcF and tdcG is 65
bp, corresponding to a log-likelihood of 20.1652 to be in the
same operon, and the annotation of both genes as predicted
ORFs (tdcG is yahQ) does not provide the advantage of func-
tional class comparison.

The predictions of probable operon organization here pre-
sented are based on distance distributions, and on preservation
of functional class in pairs of genes within operons. Each
log-likelihood estimate provides a number that can be added to
log-likelihood estimates based on independent information. We
therefore foresee an important space for improvement for the
method. For instance, the presence of promoter regulatory
motifs (17–19), ribosome binding sites (20), and terminators (21)
should help in the operon identifications. Another source of
improvement should come from the complement of functional
assignment of genes and their products with the help of exper-
imental work [proteome, transcriptome (22, 23), specific exper-
iments], and that of predictive methods [homologyystructurey
function predictions (24–26)]. Specifically from transcriptome
experiments, if the expression levels between pairs of genes in
operons are more conserved than those at the borders of
transcription units, then the quality of operon predictions may
improve by adding the respective log-likelihood terms.

Neighboring gene distance analyses in conjunction with ho-
mologue characterization should be applicable to other bacterial
genomes. These analyses will in turn provide additional regula-
tory, functional, and evolutionary insights. Because genes in
operons have a clear tendency to share their functional classi-
fication, operon predictions may also improve and guide func-
tional annotations in the future. The predicted transcription
units will be added to the new release of RegulonDB (http:yy
www.cifn.unam.mxyComputationaloBiologyyregulondby).
Work is needed in evaluating and expanding this method to
predict operons in other bacterial genomes.
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Table 3. Transcription units generated at different thresholds using a directons subset
containing known transcription units with added genes at either side

Threshold

Transcription units Operons

Total % of known Total % of known

Using distance and functional class log-likelihoods
0.0225 776 69.68 309 60.11
0.0357 788 69.31 313 59.57
0.0493 797 70.04 309 59.57
0.0603 810 71.12 305 60.11
0.0907 813 70.40 305 59.04
0.0950 820 69.68 303 57.98
0.1639 840 67.87 296 55.32

Using only distance log-likelihoods
0.0357 816 59.93 318 47.34
0.0493 843 61.01 307 45.74
0.4794 875 62.09 301 46.28
0.6097 915 60.29 308 43.62
0.7012 968 58.12 290 39.89

Fig. 6. Size distribution of known and predicted transcription units. As
expected, the number of transcription units diminishes with their size in genes
in a Poisson distribution style.
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