
BioMed CentralBMC Bioinformatics

ss
Open AcceReport
Identifying gene and protein mentions in text using conditional
random fields
Ryan McDonald* and Fernando Pereira

Address: Department of Computer and Information Science, University of Pennsylvania, Levine Hall, 3330 Walnut Street, Philadelphia,
Pennsylvania, USA, 19104

Email: Ryan McDonald* - ryantm@cis.upenn.edu; Fernando Pereira - pereira@cis.upenn.edu

* Corresponding author

Abstract
Background: We present a model for tagging gene and protein mentions from text using the
probabilistic sequence tagging framework of conditional random fields (CRFs). Conditional random
fields model the probability P(t|o) of a tag sequence given an observation sequence directly, and
have previously been employed successfully for other tagging tasks. The mechanics of CRFs and
their relationship to maximum entropy are discussed in detail.

Results: We employ a diverse feature set containing standard orthographic features combined
with expert features in the form of gene and biological term lexicons to achieve a precision of 86.4%
and recall of 78.7%. An analysis of the contribution of the various features of the model is provided.

Background
Information extraction from biomedical text has attracted
increasing research interest over the past few years. Several
large scale annotated corpora have been developed [1] or
are being developed [2] to facilitate this process. The first
step in most information extraction systems is to identify
the named entities that are relevant to the concepts, rela-
tions and events described in the text. In molecular biol-
ogy, named entities related to genes, proteins or other
biologically-active molecules are especially important.

Approaches to biological entity detection span a broad
range from linguistic rule-based [3] to pure machine
learning [4], as well as hybrids such as the system of Tan-
abe and Wilbur [5] that integrates an initial stochastic
part-of-speech tagger to identify candidate genes using a
special 'GENE' part-of-speech with a set of post-processing
rules based on collected lexicons.

We present here a method for identifying gene and pro-
tein mentions in text with conditional random fields
(CRFs) [6], which are discussed in the next section. Naray-

anaswamy et al. [3] suggest that rule-based systems make
decisions on sets of textual indicator features and that
these features may easily be exploited by supervised statis-
tical approaches. Our method does just this by turning
many of the post-processing steps of Tanabe and Wilbur
[5] into features used in the extraction CRF. This is a single
probabilistic tagging model with no application-specific
pre- or post-processing steps or voting over multiple
classifiers.

This makes the model quite general in that it may be
extended to various other biological entities, provided
appropriate lexicons are available.

The training, development and evaluation data for our
system was provided by the organizers of BioCreative
2004 [7].

Implementation
Presented here is an outline of conditional random fields
and the implementation specifics of the model we use.

from A critical assessment of text mining methods in molecular biology

Published: 24 May 2005

BMC Bioinformatics 2005, 6(Suppl 1):S6 doi:10.1186/1471-2105-6-S1-S6
<supplement> <title> <p>A critical assessment of text mining methods in molecular biology</p> </title> <editor>Christian Blaschke, Lynette Hirschman, Alfonso Valencia, Alexander Yeh</editor> <note>Report</note> </supplement>
Page 1 of 7
(page number not for citation purposes)

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:S6
Conditional random fields
The identification of gene mentions in text can be imple-
mented as a tagging task, in which each text token is
labeled with a tag indicating whether the token begins
(B), continues (I), or is outside (O) of a gene mention (see
Figure 1).

Conditional random fields are probabilistic tagging mod-
els that give the conditional probability of a possible tag
sequence t = t1, ... tn given the input token sequence o = o1,
..., on:

In this definition, we assume that the jth input token is
represented by a set oj of predicates that hold of the token
or its neighborhood in the input sequence. The state sj(t)
= (tj-k+1, ..., tj) encodes the tag k-gram ending at position j,
for a suitable choice of k. We use k = 3 in this work, but
some feature functions may ignore tj-1 or tj-2 and tj-1 to pro-
vide a form of back-off for rarely occurring tag trigrams or
bigrams. Each feature function fi specifies an association
between the predicates that hold at a position and the
state for that position, and the feature weight λi specifies
whether that association should be favored or disfavored.

The most probable tag sequence for a given input
sequence o can be obtained by applying a Viterbi-style
algorithm [6,8] to the maximization

because Z(o) is constant for the given input.

The predicate set oj used to represent the jth input token
picks out useful properties of the token and its context.
For instance, if token j is the word "Kinase" and token j -
1 is the word "the", then oj might contain the predicates
WORD = kinase, WORD-1 = the, and WordIsCapitalized,

among others. The tag sequence uses the possible tags B-
GENE, I-GENE and O, representing the beginning, inside
and outside of a gene mention respectively. As noted
before, each feature function relates input properties and
a k-gram of tags. We use only binary features, for instance:

where tag-k((..., tj-k,...)) = tj-k.

The weight λi for each feature should ideally be highly
positive if the feature tends to be on for the correct labe-
ling, highly negative if the feature tends to be off for the
correct labeling, and around zero if the feature is unin-
formative. To achieve this, the model is trained so that the
weights maximize the log-likelihood of the training data,

:

To avoid degeneracy when some features are perfectly cor-
related and to reduce overfitting for rarely occurring fea-
tures, we penalize the likelihood with a spherical
Gaussian prior over feature weights [9]:

The variance hyper-parameter σ2 determines the modeling
trade-off between fitting exactly the observed feature
frequencies and the squared norm of the weight vector. If
we force the weights to be relatively small by choosing an
appropriate small variance, the possibility of a single large
weight dominating a decision is reduced. The value σ =
1.0 was chosen to maximize tagging accuracy on the
development set. The log-likelihood function of condi-
tional random fields, which generalizes the well-known
case of logistic regression, is easily seen to be concave [6],
as is the penalized likelihood (3). To maximize the penal-

Gene identification as a tagging problemFigure 1
Gene identification as a tagging problem. A sample tagging of a sentence using the beginning, inside and outside tag
labels. The sentence has two gene mentions, Varicella-zoster virus (VZV) glycoprotein gI and type 1 transmembrane gylcoprotein.

Varicella−zoster virus (VZV) glycoprotein gI is a type 1 transmembrane glycoprotein .

B I I I I I I O O B I I I O

P
f s o

Z

i iij i j
(|)

exp ((),)

()
()t o

t

o
=

∑∑ λ
1

Z f s oi i
ij

i j() exp ((),) ()o t
t

= ′∑∑∑
′

λ 2

argmax exp ((),)
t

tλi i
ij

i jf s o∑∑

f s o

o

s si(,)

,

() , ()=
∈

= =−

1

1 0

if ’WORD=kinase’

tag B-GENE tag I-GENE;;

0 otherwise.

() log (|)
()

=
∈

∑ P t o
t,o

() log (|) ()
()

= − +
∈

∑ ∑P i

i

t o
t,o

λ

σ

2

22
3

Page 2 of 7
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S6
ized log-likelihood, we compute its partial derivatives
with respect to the weights:

where is the empirical feature count of feature fi and
E[fi] is the model expectation of feature fi.

Maximizing concave functions has been well studied in
numerical programming producing many iterative algo-
rithms for finding the optimal weight settings. These
include iterative scaling techniques [10] and gradient-
based techniques [11,12]. All these methods require the
calculation of the empirical and model expectations at
each iteration.

The empirical expectations are trivially calculated by
counting in the training data the number of times each
feature occurs. The model expectations are given by:

Computing this sum directly is impractical because the
number of possible tag sequences is exponential on train-
ing instance length. This is not a problem for maximum
entropy models [13] because they model only single-label
decisions so their expectations are just over the next label,
not whole label sequences. However, the Markovian struc-
ture of the CRF model allows us to use an efficient
dynamic programming algorithm to compute expecta-
tions over label sequences. First, we define a function that
maps a single state at input position j to a set of allowed
next states at position j + 1, Tj(s). To handle correctly the
transitions at the start and end of a sequence, it is conven-
ient to introduce a start state ⊥ and an end state. For
instance, for the state s = (O, B-GENE):

Tj(s) = {(B-GENE, I-GENE), (B-GENE, B-GENE), (B-
GENE, O)} 1 ≤ j ≤ |o|

T0(⊥) = {(⊥, O), (⊥, B-GENE)}

However s' = (O, O) ∉ Tj(s) because s defines the current
tag to be B-GENE, whereas s' defines the previous tag to be
O, making it impossible for s' to follow s.

The expectation of a feature can then be computed as
follows:

where αj(s|o) is the unnormalized forward score of being
in state s at position j given all observations before posi-
tion j and βj+1(s|o) is the unnormalized backward score of
being in state s at position j + 1 given all the observations
after position j + 1. These values are calculated by the fol-
lowing recurrences:

where iff s ∈ Tj-1(s'). The computation given by

these recurrences is commonly called the forward-back-
ward algorithm [8] and has O(S2n) running time, where S
is the number of states and n the length of the sequence.

Having calculated the model expectations it is then possi-
ble to calculate the gradient of the objective function. This
allows for the use of many gradient based optimization
algorithms, the most simple of which is gradient ascent:

The gradient provides a search direction and a step size η,
which can be chosen statically or be maximized dynami-
cally by a line search. If chosen statically it must be suffi-
ciently small to guarantee convergence. However, the
smaller η is, the slower the algorithm will converge. Fur-
thermore, gradient ascent does not take into account the
curvature of the function, which also fundamentally slows
its convergence speed. In order to consider the function's
curvature, we require second order derivative information
in the form of a Hessian. However, this matrix is far too
large to invert (for use in Newton's method) or even store
in memory, and the computation of individual elements
is quite expensive [12].

Limited-memory quasi-Newton methods [14] approxi-
mate the Hessian by storing a history of update directions
previously taken by the algorithm and combines them lin-
early with the current gradient to create the new search
direction. These methods have been shown to be quite
effective [11,12] for training log-linear models like CRFs.
We use a history with four previous update directions, and
train until the change in log-likelihood is sufficiently
small.

CRFs require O(| |S2kn) training time, and O(S2n)
decoding time, where k is the number of training itera-

∂
∂

= − − ()
[] []

λ
λ

σi
i i

if fE E
2

E[]fi

E[] (|) ((),)
()

| |

f P f s oi i j j
j

= ′ ′
′∈ =

∑∑ ∑t o t
tt,o

o

 1

E[]
()

(|)
(,) ()

| |
(,)

f
Z

s ei j
s T ssj

f s o

j

i i j=
∈ ′∈=

′∑ ∑∑∑ +1

1

1

o
o

t o

o

α λii

j s∑ ′+β 1(|)o

α α

α

λ
j j

s T s

f s o
s s e j

j

i ii j(|) (|) | |

(|)

()

(,)o o o

o

= ′ ∑ ≤ ≤ +

⊥

−
′∈ −
∑ 1

0

1

1 1

==

= ′ ∑ ≤ ≤+
′∈

+

∑
1

01

1

β β

β

λ
j j

s T s

f s o
s s e j

j

ii i j(|) (|) | |

(

()

(,)

| |

o o o

o �||)

() (|)

o

o o

=

= ⊥

1

0Z β

′ ∈ −s T sj
1()

λ λ η
λi

t
i
t

i
= + ∂

∂
−1 ()

Page 3 of 7
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S6
tions required for convergence, n is the length of a obser-

vation sequence, S the number of states, and | | the size
of the training set [6].

We used the MALLET [15] implementation of CRFs and
limited-memory quasi-Newton training. In addition, we
relied on MALLET's feature induction capability [16], which
is discussed in the next section.

Relationship with maximum entropy
Conditional random fields are closely related to other
conditional formalisms in the literature. The strongest
connection is between CRFs and maximum entropy clas-
sification models [13]. Maximum entropy models and
conditional random fields as well as other conditional
models have become increasingly employed for tagging
and shallow parsing due in large part to their ability to
incorporate millions of rich and highly dependant fea-
tures, unlike generative tagging approaches such as hid-
den Markov models [8], which can only handle sets of
features that are independent of each other.

Maximum entropy models give the conditional probabil-
ity of a class given an observation by:

To apply maximum entropy classification to tagging, we
see the problem as a sequence of probabilistic decisions in
which tag tj is chosen depending on previous tags and the
input sequence. In the notation of the previous section,
we would have:

Such a model is trained by taking each tag occurrence and
its conditioning context in the training data as a separate
training instance [17]. This training process is simpler
than that for CRFs as it does not require forward-backward
computations. For testing, a Viterbi-like algorithm finds
the tagging sequence that maximizes (5).

While these models are easy to train, they are independ-
ently normalized at each position j (equation 4). That is,
for each j, P (tj|...) has its own separate Σt exp Σi λifi((...),oj)
normalizing expression in equation 4's denominator. In
contrast, conditional random fields have a single com-
bined normalizing denominator of Z(o) for the entire tag
sequence t (equations 1 and 2). This independent nor-
malization prevents decisions at different positions from

being weighed against each other. This label bias problem
[6] motivated the development of CRFs, and has been
shown to adversely affect accuracy in realistic tagging tasks
[12].

It might be argued that the lower accuracy of maximum
entropy taggers is compensated by their faster training,
which allows more complex models to be considered, for
instance models with higher Markov order or more fea-
ture types. Indeed, tagging methods based on locally
trained classifiers [18,19] need to exploit more context to
alleviate label bias. However, any changes to a maximum
entropy tagging model can be trivially applied to the cor-
responding CRF model, including changes in model order
and feature choice. For all the tagging tasks that we have
attempted, CRF models can be trained in under 20 hours
(and in most cases under 10 hours), which is quite practi-
cal since training is done only a few times. This seems a
small cost to pay for significant accuracy increases, such as
a 10% relative reduction in error rate [12]. Applying the
trained model uses exactly the same Viterbi algorithm for
CRFs as for maximum-entropy classification. It would be
useful to compare directly the two approaches for gene
and protein identification, although there are already
results for similar tagging tasks [12]. However, our exper-
iments rely on feature induction (described later), so the
comparison would need extending feature induction to
maximum entropy tagging, which is conceptually
straightfoward but would require a significant implemen-
tation effort.

P c o
f c o

Z o
ii i

(|)
exp (,)

()
=

∑ λ

P t t t
f t t o

j j j k
ii i j k j j

t

(| , ,...,)
exp ((,...,),)

exp
o − − +

− +=
∑

∑1 1
1λ

λλi ii j k j jf t t o∑ − +((,...,),)
()

1
4

P t P t t t t tj j j k k
j

(|) (| , ,...,) ()
| |

o o
o

= = = = ⊥− − + − +
=
∏ 1 1 0 1

1

5

Table 1: Orthographic features.

Orthographic Feature Reg. Exp.

Init Caps [A-Z].*
Init Caps Alpha [A-Z] [a-z]*

All Caps [A-Z]+
Caps Mix [A-Za-z]+
Has Digit .*[0-9].*

Single Digit [0-9]
Double Digit [0-9][0-9]

Natural Number [0-9]+
Real Number [-0-9]+ [.,]+[0-9].,]+
Alpha-Num [A-Za-z0-9]+

Roman [ivxdlcm]+ or
[IVXDLCM]+

Has Dash .*-.*
Init Dash -.*
End Dash .*-

Punctuation [,.;:?!-+'"']

This defines the complete set of orthographic predicate used by the
system. The observation list for each token will include a predicate
for every regular expression that token matches.
Page 4 of 7
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S6
Feature set
Feature-based models like CRFs are attractive because they
reduce each problem to that of finding a feature set that
adequately represents the task at hand. We used features
based on word as well as orthographic predicates, shown
in Table 1, as well as character-n-gram predicates for 2 ≤ n
≤ 4. These predicates help the system recognize informa-
tive substrings (e.g. 'homeo' or 'ase') in words that were
not seen in training. We also included word prefix and
suffix predicates, also of lengths 2 ≤ n ≤ 4. This may seem
redundant, but prefix and suffix predicates also take into
account the position of the n-gram in the word, which can
often be informative. For example ase occurring at the end
of a word is much more informative then just knowing ase
is contained in the word (i.e laser vs. kinase). We include
predicates that indicate whether the current token occurs
within brackets or inside quotations. Finally, we used {-1,
0, +1} as our predicate window, meaning that for token j
we included all predicates about tokens j-1 and j+1 as well
as all predicates for token j.

Even with this very simple set of predicate-based features,
performance on the development data was reasonable
(see Table 2 row A). In order to add expert knowledge to
the model, we focused our attention on the gene and pro-
tein tagger ABGene [5]. ABGene is a hybrid model that
uses a statistical part-of-speech tagger to identify candi-
date genes by labeling them with a special part-of-speech
'GENE'. Once the candidate genes are found a series of
post processing rules are initiated to improve the results.
Specifically, ABGene uses a set of lexicons to remove false
positives and recover false negatives. These include gen-
eral biological terms, amino acids, restriction enzymes,
cell lines, organism names and non-biological terms
meant to identify tokens that have been mislabeled as
'GENE'. To recover false negatives, ABGene utilizes large
gene lexicons coupled with context lists to identify possi-
ble mentions. Another post-processing step identifies
tokens that contain low frequency trigrams, compiled
from MEDLINE, to identify possible gene candidates,
since gene and proteins names often contain unusual
character trigrams.

A straightforward method of integrating these post-
processing steps into our model is to create predicates
indicating whether a token occurs in one of the ABGene
lexicons. For multi-token entries, we required that all
tokens of the entry were matched. We used the window {-
1, 0, +1} for these predicates too. Table 2 rows C through
F summarizes the effect of adding these lexicons to the sys-
tem. Rows C through F assume the use of feature induc-
tion, which is explored in the next section.

Feature induction
So far we have only described features over a single predi-
cate. Often it is useful to create features based on the
conjunction of several predicates. For instance, the follow-
ing feature would be useful:

This is because the token p-53 can either be in a gene men-
tion (when it is followed by the word 'mutant') or be in a
mutation mention (when it is followed by the word
'mutations'). Hence the following feature would also be
useful:

The system already has tens of thousands of singleton fea-
tures, making it infeasible to create all such conjunctions.
Even if it were computationally feasible to train a model
with all conjunctions, it would be difficult to gather suffi-
cient statistics on them since most conjunctions occur
rarely if ever.

f s o

o

o

sk(,)

,

’ ’

() ;
=

= − ∈
+ = ∈

=

1

1

0

if ’WORD p 53’

WORD mutant

tag B-GENE

00 otherwise.

f s o

o

o

sk′ =

= − ∈
+ = ∈

=
(,)

,

’ ’ ,

() ;

1

1

0

if ’WORD p 53’

WORD mutations

tag O

00 otherwise.

Table 2: Effect of system components on development data

System Precision Recall F-Measure

A. No Lex, No Feat. Ind. 0.793 0.731 0.761
B. No Lexicons 0.807 0.744 0.774
C. Trigrams 0.811 0.759 0.784
D. Non-gene Lexicons 0.818 0.743 0.778
E. Gene Lexicons 0.812 0.775 0.793
F. All Lexicons 0.817 0.782 0.799

A) System containing no lexicon features and does not use feature induction. B) Same as A, except feature induction is used. C) Same as B, except
features using the infrequent trigram lexicon are used. D) Same as B, except features using the non-gene lexicons are used. E) Same as B, except
features using the gene lexicon are used. F) Same as B, except features using all lexicons are used.
Page 5 of 7
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S6
To solve this problem, McCallum [16] describes an imple-
mentation of feature induction for CRFs that automati-
cally creates a set of useful features and feature
conjunctions. The method scores candidate features f with
their log-likelihood gain:

where F is the current set of model features, the
log-likelihood of the data using feature set F and

 the log-likelihood of the data with the model

extended with feature f.

Feature induction works by iteratively considering sets of
candidate singleton and conjunction features that are cre-
ated from the initially defined set of singleton features as
well as the set of current model features. Only those can-
didates causing the highest gain are included into the cur-
rent set of model features. Intuitively, features causing
high gain provide strong evidence for many decisions.
Thus, feature induction tends to discard infrequent fea-
tures or non-discriminating features since, independently,
their overall effect on the likelihood of the entire training
set is usually marginal. There are serious computation
issues with feature induction, primarily due to the fact
that for each iteration and for each feature considered, the
normalization term for every training sequence must be
recomputed. However, the problem can be somewhat
alleviated by making certain independence assumptions
on the parameters as well as only including statistics on
positions in the sequence that are mislabeled by the cur-
rent parameter settings. McCallum [16] describes the pro-
cedure in more detail.

Table 2 rows A and B show the difference in performance
using feature induction instead of just the predefined sin-
gleton features.

Results
Our system was initially trained on 7500 annotated
MEDLINE sentences with a development set of 2500 sen-
tences. Training with feature induction took approxi-
mately 15 hours, which is substantially longer than
training without feature induction. Once trained, the sys-
tem can annotate sentences in less than a second. In terms
of labor, the system took only a few days to build. This
was primarily due to the availability of MALLET [15],
which includes effcient implementations of both condi-
tional random fields and feature induction. Once the
basic tagger was implemented, the remaining effort
focused on testing various spelling, contextual and lexicon
features on the development data to improve
performance.

For evaluation, we added the development set to the train-
ing data and evaluated on 5000 new unannotated sen-
tences. The results are shown in Table 3. Entities were
correctly identified by the system if and only if all and
only the tokens of the entity were correctly detected.

Discussion
Adding the ABGene lexicons made a significant improve-
ment to both precision and recall. This is a very good indi-
cator that additional domain knowledge may help to
further improve the accuracy of the system. To determine
which lexicons gave the best performance, we conducted
experiments examining the effect of adding each type of
lexicon individually to the model and tested the model on
the development data. These results are outlined in Table
2. Each list made a small improvement to the overall
accuracy of the system, with the gene lexicon contributing
the largest improvement. Table 2 also shows the perform-
ance of the system without lexicons and feature induction.

An examination of system errors on the development data
shows that a primary source of error came from properly
labeled mentions that are off by one or more tokens. If the
score is relaxed so that tagged entities are considered true
positives if and only if one or more tokens overlap with a
correct entry, then performance on the development data
increases 7.5% absolute from 79.9% to 87.4% F1
measure. For an extreme example, consider the string
interleukin-1 [IL-1], tumor necrosis factor-alpha [TNF-alpha],
which the tagger incorrectly returns as being one entity.
The gold standard identifies 4 different entities within this
string, interleukin-1, IL-1, tumor necrosis factor-alpha and
TNF-alpha. The net result is that recall is penalized four
times and precision is penalized once due to the four false
negatives and one false positive. It appears that it is rela-
tively easy to find pieces of text mentioning genes, but
much harder to determine the exact boundaries of that
mention. This hurts the system performance significantly
since the scoring metric requires exact matches. However,

∆L f L T L TG F f F() () (){ }= −∪

L T F()

L T F f() { }∪

Table 3: Precision and recall numbers for the system on the
unseen evaluation data

System Precision Recall F-Measure

No Lexicons 0.830 0.773 0.801
Lexicons 0.864 0.787 0.824

Precision and recall numbers for the system on the unseen evaluation
data. Precision is measured by the fraction of predicted gene
mentions that are correct and recall by the fraction of actual gene
mentions that were identified. Two system results are provided. The
first is for the system that contains only features extracted from the
training data. These results are presented in the row No Lexicons. The
second set of results are for the system that also contains features
extracted from external lexicons. These results are presented in the
row Lexicons.
Page 6 of 7
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S6
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

entity tagging primarily exists to give some structure to
text for higher level information extraction systems such
as relation detection, fact generation and question
answering. For these problems, having an entity correctly
identified with improper spans can potentially still be
useful.

Conclusion
Overall, our experiments show that CRF models with care-
fully designed features can identify gene and protein men-
tions with fairly high accuracy even without features
containing domain specific knowledge. However, such
features, which in our case take the form of lexicon mem-
bership, can lead to improved system performance.

Acknowledgements
The authors would like to thank our collaborators Mark Liberman, Andy
Schein, Pete White and Scott Winters for useful discussions and sugges-
tions. We would also like to thank Lorraine Tanabe for making the ABGene
lexicons available to us. Finally we are particularly appreciative of Andrew
McCallum for providing us with an early version of MALLET. This work was
supported in part by NSF grant ITR 0205448.

References
1. Ohta T, Tateisi Y, Kim J, Lee S, Tsujii J: GENIA corpus: A seman-

tically annotated corpus in molecular biology domain. Pro-
ceedings of the ninth International Conference on Intelligent Systems for
Molecular Biology 2001.

2. Kulick S, Bies A, Liberman M, Mandel M, McDonald R, Palmer M, Pan-
coast E, Schein A, Ungar L, White P, Winters S: Integrated anno-
tation for biomedical information extraction. Proceedings of
Biolink 2004 2004.

3. Narayanaswamy M, Ravikumar KE, Vijay-Shanker K: A Biological
Named Entity Recognizer. Proceedings of Pacific Symposium on
Biocomputing 2003.

4. Kazama J, Makino T, Ohta Y, Tsujii J: Tuning Support Vector
Machines for Biomedical Named Entity Recognition. Proceed-
ings of Natural Language Processing in the Biomedical Domain, ACL 2002.

5. Tanabe L, Wilbur WJ: Tagging gene and protein names in bio-
medical text. Bioinformatics 2002, 18(8):.

6. Lafferty J, McCallum A, Pereira F: Conditional random fields:
Probabilistic models for segmenting and labeling sequence
data. Proceedings of ICML 2001.

7. A critical assessment of text mining methods in molecular
biology workshop 2004 [http://www.pdg.cnb.uam.es/BioLINK/
workshop_BioCreative_04].

8. Rabiner LR: A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE 1989,
77(2):257-285.

9. Chen SF, Rosenfeld R: A Survey of Smoothing Techniques for
ME Models. IEEE Transactions on Speech and Audio Processing 2000,
8:37-50.

10. Darroch JN, Ratcliff D: Generalized iterative scaling for log-lin-
ear models. The Annals of Mathematical Statistics 1972,
43:1470-1480.

11. Malouf R: A comparison of algorithms for maximum entropy
parameter estimation. Proceedings of Sixth Conference on Natural
Language Learning 2002.

12. Sha F, Pereira F: Shallow parsing with conditional random
fields. Proceedings of HLT-NAACL 2003:213-220.

13. Berger AL, Della Pietra SA, Della Pietra VJ: A maximum entropy
approach to natural language processing. Computational
Linguistics 1996, 22:.

14. Nocedal J, Wright SJ: Numerical Optimization Springer; 1999.
15. McCallum AK: MALLET: A Machine Learning for Language

Toolkit. 2002 [http://mallet.cs.umass.edu].

16. McCallum A: Effciently inducing features of conditional ran-
dom fields. Proceedings of Conference on Uncertainty in Artificial
Intelligence 2003.

17. McCallum A, Freitag D, Pereira F: Maximum entropy Markov
models for information extraction and segmentation. Pro-
ceedings of ICML 2000.

18. Kudo T, Matsumoto Y: Chunking with Support Vector
Machines. Proc NAACL 2001 ACL 2001.

19. Toutanova K, Klein D, Manning CD, Singer Y: Feature-Rich Part-
of-Speech Tagging with a Cyclic Dependency Network. Pro-
ceedings of Human Language Technology and North American Chapter of
the Association for Computatitonal Linguists 2003.
Page 7 of 7
(page number not for citation purposes)

http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04
http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04
http://mallet.cs.umass.edu
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

