Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1995 Feb;146(2):329–334.

Alterations in glucose transporter proteins in alcoholic liver disease in the rat.

A A Nanji 1, F Fogt 1, B Griniuviene 1
PMCID: PMC1869838  PMID: 7856745

Abstract

We used the intragastric feeding rat model for alcoholic liver disease to investigate alterations in glucose transporter isoforms GLUT 1 and GLUT 2 in response to different dietary fats and ethanol. Six groups of rats (three rats/group) were fed ethanol or dextrose with either saturated fat, corn oil, or fish (menhaden) oil. All control animals were pair fed the same diets as ethanol-fed rats except that ethanol was isocalorically replaced by dextrose. In all animals, the following were assessed: pathological changes in the liver, immunohistochemical and Western blot analysis of GLUT 1 and GLUT 2 isoforms, and glycogen distribution. The most severe pathological changes were seen in fish oil/ethanol fed rats, moderate changes were seen in the corn oil/ethanol group and no changes were observed in the dextrose-fed or saturated fat/ethanol groups. In the groups of rats showing pathological liver injury (corn oil/ethanol and fish oil/ethanol), the depletion in liver glycogen was accompanied by decreased GLUT 2 expression and increased GLUT 1 expression. A decrease in glycogen and GLUT 2 expression was also seen in the fish oil/dextrose-fed rats. We hypothesize that the shift in glucose transporters from GLUT 2 to GLUT 1 probably reflects a compensatory response to attenuated gluconeogenic activity and to meet the increased intracellular demand for glucose. This demand for glucose in the presence of depleted glycogen may serve to provide a source for ATP synthesis in the centrilobular zone where hypoxia occurs secondary to ethanol metabolism.

Full text

PDF
332

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avogaro A., Tiengo A. Alcohol, glucose metabolism and diabetes. Diabetes Metab Rev. 1993 Jul;9(2):129–146. doi: 10.1002/dmr.5610090205. [DOI] [PubMed] [Google Scholar]
  2. Bell G. I., Burant C. F., Takeda J., Gould G. W. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993 Sep 15;268(26):19161–19164. [PubMed] [Google Scholar]
  3. Bode C., Kugler V., Bode J. C. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol. 1987 Feb;4(1):8–14. doi: 10.1016/s0168-8278(87)80003-x. [DOI] [PubMed] [Google Scholar]
  4. Boden G., Chen X., Desantis R., White J., Mozzoli M. Effects of ethanol on carbohydrate metabolism in the elderly. Diabetes. 1993 Jan;42(1):28–34. [PubMed] [Google Scholar]
  5. Clandinin M. T., Cheema S., Field C. J., Garg M. L., Venkatraman J., Clandinin T. R. Dietary fat: exogenous determination of membrane structure and cell function. FASEB J. 1991 Oct;5(13):2761–2769. doi: 10.1096/fasebj.5.13.1916101. [DOI] [PubMed] [Google Scholar]
  6. French S. W. Biochemistry of alcoholic liver disease. Crit Rev Clin Lab Sci. 1992;29(2):83–115. doi: 10.3109/10408369209114597. [DOI] [PubMed] [Google Scholar]
  7. French S. W., Miyamoto K., Tsukamoto H. Ethanol-induced hepatic fibrosis in the rat: role of the amount of dietary fat. Alcohol Clin Exp Res. 1986;10(6 Suppl):13S–19S. doi: 10.1111/j.1530-0277.1986.tb05175.x. [DOI] [PubMed] [Google Scholar]
  8. French S. W. Nutrition in the pathogenesis of alcoholic liver disease. Alcohol Alcohol. 1993 Jan;28(1):97–109. [PubMed] [Google Scholar]
  9. Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herzberg G. R., Rogerson M. Hepatic fatty acid synthesis and triglyceride secretion in rats fed fructose- or glucose-based diets containing corn oil, tallow or marine oil. J Nutr. 1988 Sep;118(9):1061–1067. doi: 10.1093/jn/118.9.1061. [DOI] [PubMed] [Google Scholar]
  11. ISSELBACHER K. J., GREENBERGER N. J. METABOLIC EFFECTS OF ALCOHOL ON THE LIVER. N Engl J Med. 1964 Feb 13;270:351–CONTD. doi: 10.1056/NEJM196402132700707. [DOI] [PubMed] [Google Scholar]
  12. Krebs H. A., Freedland R. A., Hems R., Stubbs M. Inhibition of hepatic gluconeogenesis by ethanol. Biochem J. 1969 Mar;112(1):117–124. doi: 10.1042/bj1120117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lieber C. S. Biochemical and molecular basis of alcohol-induced injury to liver and other tissues. N Engl J Med. 1988 Dec 22;319(25):1639–1650. doi: 10.1056/NEJM198812223192505. [DOI] [PubMed] [Google Scholar]
  14. Loike J. D., Cao L., Brett J., Ogawa S., Silverstein S. C., Stern D. Hypoxia induces glucose transporter expression in endothelial cells. Am J Physiol. 1992 Aug;263(2 Pt 1):C326–C333. doi: 10.1152/ajpcell.1992.263.2.C326. [DOI] [PubMed] [Google Scholar]
  15. McClain C. J., Cohen D. A. Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology. 1989 Mar;9(3):349–351. doi: 10.1002/hep.1840090302. [DOI] [PubMed] [Google Scholar]
  16. Miyamoto K., French S. W. Hepatic adenine nucleotide metabolism measured in vivo in rats fed ethanol and a high fat-low protein diet. Hepatology. 1988 Jan-Feb;8(1):53–60. doi: 10.1002/hep.1840080111. [DOI] [PubMed] [Google Scholar]
  17. Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994 Feb 1;219(3):713–725. doi: 10.1111/j.1432-1033.1994.tb18550.x. [DOI] [PubMed] [Google Scholar]
  18. Nanji A. A., French S. W. Dietary factors and alcoholic cirrhosis. Alcohol Clin Exp Res. 1986 Jun;10(3):271–273. doi: 10.1111/j.1530-0277.1986.tb05088.x. [DOI] [PubMed] [Google Scholar]
  19. Nanji A. A., French S. W. Dietary linoleic acid is required for development of experimentally induced alcoholic liver injury. Life Sci. 1989;44(3):223–227. doi: 10.1016/0024-3205(89)90599-7. [DOI] [PubMed] [Google Scholar]
  20. Nanji A. A., French S. W. Relationship between pork consumption and cirrhosis. Lancet. 1985 Mar 23;1(8430):681–683. doi: 10.1016/s0140-6736(85)91338-8. [DOI] [PubMed] [Google Scholar]
  21. Nanji A. A., Khettry U., Sadrzadeh S. M., Yamanaka T. Severity of liver injury in experimental alcoholic liver disease. Correlation with plasma endotoxin, prostaglandin E2, leukotriene B4, and thromboxane B2. Am J Pathol. 1993 Feb;142(2):367–373. [PMC free article] [PubMed] [Google Scholar]
  22. Nanji A. A., Mendenhall C. L., French S. W. Beef fat prevents alcoholic liver disease in the rat. Alcohol Clin Exp Res. 1989 Feb;13(1):15–19. doi: 10.1111/j.1530-0277.1989.tb00276.x. [DOI] [PubMed] [Google Scholar]
  23. Nanji A. A., Sadrzadeh S. M., Thomas P., Yamanaka T. Eicosanoid profile and evidence for endotoxin tolerance in chronic ethanol-fed rats. Life Sci. 1994;55(8):611–620. doi: 10.1016/0024-3205(94)00487-0. [DOI] [PubMed] [Google Scholar]
  24. Nanji A. A., Zhao S., Sadrzadeh S. M., Waxman D. J. Use of reverse transcription-polymerase chain reaction to evaluate in vivo cytokine gene expression in rats fed ethanol for long periods. Hepatology. 1994 Jun;19(6):1483–1487. [PubMed] [Google Scholar]
  25. Spolarics Z., Pekala P. H., Bagby G. J., Spitzer J. J. Brief endotoxemia markedly increases expression of GLUT1 glucose transporter in Kupffer, hepatic endothelial and parenchymal cells. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1211–1215. doi: 10.1006/bbrc.1993.1754. [DOI] [PubMed] [Google Scholar]
  26. Stephens J. M., Carter B. Z., Pekala P. H., Malter J. S. Tumor necrosis factor alpha-induced glucose transporter (GLUT-1) mRNA stabilization in 3T3-L1 preadipocytes. Regulation by the adenosine-uridine binding factor. J Biol Chem. 1992 Apr 25;267(12):8336–8341. [PubMed] [Google Scholar]
  27. Takahashi H., Geoffrion Y., Butler K. W., French S. W. In vivo hepatic energy metabolism during the progression of alcoholic liver disease: a noninvasive 31P nuclear magnetic resonance study in rats. Hepatology. 1990 Jan;11(1):65–73. doi: 10.1002/hep.1840110113. [DOI] [PubMed] [Google Scholar]
  28. Tal M., Schneider D. L., Thorens B., Lodish H. F. Restricted expression of the erythroid/brain glucose transporter isoform to perivenous hepatocytes in rats. Modulation by glucose. J Clin Invest. 1990 Sep;86(3):986–992. doi: 10.1172/JCI114801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thomson A. B., Keelan M., Clandinin M. T. Feeding rats a diet enriched with saturated fatty acids prevents the inhibitory effects of acute and chronic ethanol exposure on the in vitro uptake of hexoses and lipids. Biochim Biophys Acta. 1991 Jul 9;1084(2):122–128. doi: 10.1016/0005-2760(91)90210-9. [DOI] [PubMed] [Google Scholar]
  30. Tsukamoto H., Gaal K., French S. W. Insights into the pathogenesis of alcoholic liver necrosis and fibrosis: status report. Hepatology. 1990 Sep;12(3 Pt 1):599–608. doi: 10.1002/hep.1840120325. [DOI] [PubMed] [Google Scholar]
  31. Tsukamoto H., Gaal K., French S. W. Insights into the pathogenesis of alcoholic liver necrosis and fibrosis: status report. Hepatology. 1990 Sep;12(3 Pt 1):599–608. doi: 10.1002/hep.1840120325. [DOI] [PubMed] [Google Scholar]
  32. Tsukamoto H., Towner S. J., Ciofalo L. M., French S. W. Ethanol-induced liver fibrosis in rats fed high fat diet. Hepatology. 1986 Sep-Oct;6(5):814–822. doi: 10.1002/hep.1840060503. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES