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Organisms are equipped with regulatory systems that display a
variety of dynamical behavior ranging from simple stable steady
states, to switching and multistability, to oscillations. Earlier work
has shown that oscillations in protein concentrations or gene
expression levels are related to the presence of at least one
negative feedback loop in the regulatory network. Here, we study
the dynamics of a very general class of negative feedback loops.
Our main result is that, when a single negative feedback loop
dominates the dynamical behavior, the sequence of maxima and
minima of the concentrations exhibit a pattern that uniquely
identifies the interactions of the loop. This allows us to devise an
algorithm to (i) test whether observed oscillating time series are
consistent with a single underlying negative feedback loop, and if
so, (ii) reconstruct the precise structure of the loop, i.e., the
activating/repressing nature of each interaction. This method ap-
plies even when some variables are missing from the data set, or
if the time series shows transients, like damped oscillations. We
illustrate the relevance and the limits of validity of our method
with three examples: p53-Mdm2 oscillations, circadian gene ex-
pression in cyanobacteria, and cyclic binding of cofactors at the
estrogen-sensitive pS2 promoter.

Physiological processes in living cells exhibit a wide range of
dynamical behavior, ranging from stable steady states [e.g.,

iron regulation (1) and response to DNA damage (2) in bacteria],
multistability [e.g., lysis–lysogeny decision in temperate phage
(3)], to oscillations. The most obvious examples of the latter are
cell division and circadian (24 h) rhythms. Cellular processes are
often coupled to the circadian clock, e.g., respiration and
carbohydrate synthesis in cyanobacteria (4), which makes them
periodic. Recently, faster ‘‘ultradian’’ oscillations with time
periods of the order of hours have been found in several systems
of interacting proteins, which influence the immune system
(NF-�B; refs. 5 and 6), apoptosis (p53; ref. 7), and development
(Hes; ref. 8).

Theoretical studies of these oscillatory systems (9–12) de-
scribe the dynamics of the relevant variables (usually protein
concentrations or gene expression levels) using differential
equations. Very often, these models share two properties: the
first is that the interactions between variables are monotone:
proteins that activate a particular process will not change to
repress that process at a different concentration, and vice versa.
This is related to the properties of the biochemical processes
acting on these slow timescales, most notably (but not only)
transcription regulation. The second feature is that the system
contains at least one negative feedback loop (i.e., a loop with an
odd number of repressors). Indeed, a conjecture by Thomas (13),
rigorously proven in refs. 14 and 15, states that, in a monotone
system, at least one positive feedback loop is needed to have
multistability (i.e., existence of multiple steady states), and at
least one negative feedback loop is needed to have periodic
behavior.

Feedback loops may thus be seen as the building blocks of the
nontrivial dynamical behaviors of these systems; a network
without loops can only reach a unique fixed point, regardless of
the initial conditions. However, in general, oscillations in a
particular system could depend on several factors, e.g., multiple
feedback loops, time delays (11, 12), noise (16), or spatial effects
(17). Oscillating time series observed in experiments may not

have the precision or length required to discriminate between
different models. For example, the p53-Mdmd2 oscillations
observed in single-cell f luorescence experiments, shown in Fig.
1a, are consistent with several different models (7, 11). Never-
theless, we are going to show that oscillations like those of Fig.
1a contain precious information about the real system.

Here, we propose a simple algorithm that can be used to
deduce whether an oscillating time series is consistent with a
single underlying negative feedback loop with no cross-links, and
if it is, it can also deduce whether each interaction is activating
or repressing. This algorithm, described below, is based on the
fact that the time order of the maxima and minima of the con-
centrations has a periodic pattern that uniquely identifies the
interactions between variables, provided that the oscillations are
produced by just one underlying negative feedback loop. The
mathematical basis for the algorithm is laid out in the subsequent
two sections. In the final section, we apply our algorithm to
reconstruct the feedback loop from oscillating time series of two
more biological systems; the examples also clarify the scope and
limitations of the algorithm.

Extracting the Feedback Loop
As mentioned above, the time series in Fig. 1a shows a specific
order of maxima and minima of the concentrations. We can
investigate this pattern by dividing the data set into intervals
whose ends are determined by the occurrence of an extremal
value (maximum or minimum) of a variable. In all of these
intervals, marked by vertical dotted lines in Fig. 1a, each variable
shows an unchanging trend, either increasing or decreasing with
time. We can therefore uniquely associate to each interval a
‘‘symbol’’ of the form (�, �,�, . . . ), containing one sign for each
variable, with a ‘‘�’’ meaning that that variable is increasing and
a ‘‘�’’ meaning it is decreasing. In Fig. 1a, each box corresponds
to one such symbol (for convenience the signs are arranged
vertically in all figures, but horizontally in the text). Thus, the
continuous time series is converted into a discrete sequence of
symbols, which we term the ‘‘symbolic dynamics’’ (18). The
algorithm listed below can then determine whether the sequence
is consistent with the dynamics of a single negative feedback
loop, and if so, the precise order of activators and repressors in
that loop. We emphasize that this algorithm is not at all specific
to the p53-Mdm2 example of Fig. 1; it can be applied to any
oscillating time series, with any number of dynamical variables.

The algorithm:

1. List the order in which the maxima and minima of the
variables occur. For example, in Fig. 1a, the order is p53 max,
Mdm2 max, p53 min, Mdmd2 min, p53 max, Mdm2 max, . . .
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2. If the variables occur in this list in an unchanging cyclic order,
then this fixes the order of species in the loop, i.e., a variable
activates or represses the one immediately following it in the
list. Otherwise, a single negative feedback loop is inconsistent
with the time series. Furthermore, if any variable changes sign
more than twice in one period then, too, a single loop is
inconsistent with the time series.

3. Construct the symbolic dynamics for the time series, with �/�
symbols listed in the order obtained in step 2.

4. If the symbolic dynamics is not periodic, a single negative
feedback loop is inconsistent with the time series. Otherwise,
start with any variable and the one pointing to it (say, variables
B and A) and note the steps where B changes sign. If at the
previous step (before B changed), A had the same sign as B
then A represses B, otherwise it activates B (see Fig. 1b).

5. This procedure is repeated for each variable to obtain the
effect of the preceding variable. For example, in Fig. 1, we
conclude that p53 activates Mdm2, and Mdm2 represses p53.
If the various sign changes of any variable give inconsistent
conclusions, then a single negative feedback loop is incon-
sistent with the time series.

6. If the number of repressors in the loop is even, then a single
negative feedback loop is inconsistent with the time series.

For p53-Mdm2 oscillations, there are only two possibilities for
a single negative feedback loop involving only these two. Either
p53 activates Mdm2, which represses p53, or p53 represses

Mdm2, which activates p53. The above algorithm applied to Fig.
1a picks the former, for which experimental evidence already
existed (19) (discussed further in Examples and Discussion). This
is a particularly simple case because it involves only two vari-
ables. Our algorithm aids model selection much more when there
are more than two variables involved, as shown in the two other
examples discussed in the final section of the paper. First, we
establish the mathematical basis for this algorithm.

A General Class of Negative Feedback Loops
Consider a feedback loop composed of an arbitrary number, N,
of nodes, where each node can be either an activator or a
repressor (see Fig. 2c). Nodes could be genes, proteins, metab-
olites, or any other chemical species that could, directly or
indirectly, activate or repress other nodes in the system. The
equations we study are of the form

dxi

dt
� gi

�A, R��xi, xi�1� i � 1, . . . , N. [1]

xi is a dynamical variable associated to node i, e.g., the concen-
tration of the chemical species i, or the expression level of gene
i. Henceforth, we will call i a chemical species and xi its
concentration. The vector field, whose components are gi(x, y),
contains all of the basal production, degradation, and possibly
self-catalytic terms, and specifies the interaction between vari-
ables. We denote explicitly with the superscript that each species
i is either activated (A) or repressed (R) by the species i � 1
immediately preceding it in the loop. We allow for heterogeneity,
meaning that the different species can be characterized by
different production and degradation rates, and different inter-
action strengths, i.e., different functions gi for each i. The
functions can also be nonlinear. For instance, one way of
implementing the three-repressor loop in Fig. 2b would be

dxi

dt
� c � �xi � �

1
1 � �xi�1/K�h , [2]

for i � 1, 2, 3 (with i � 0 the same as i � 3). These equations
model the basal production of each protein (c), the uniform
dilution of each proteins by cell growth (�) and the production
of each protein (�) that is repressed by the one behind it in the
circuit. The repression we have chosen to be of a standard
Michaelis–Menten form, with half-maximum at K. The Hill
coefficient, h, models the cooperative prevention of transcrip-
tion by h molecules of i � 1 binding at the promoter of i. This
is a simplified version of the repressilator (20).

This example provides a single illustration of possible gi
functions. In fact, we do not constrain the gi to be like Eq. 1. The
only restrictions on the functions gi are the following two
conditions:

1. All trajectories should be bounded and persistent, meaning
that all of the concentrations should stay positive and finite
in the time evolution.
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Fig. 1. Oscillations in the p53-Mdm2 system. (a) p53-Mdm2 oscillations as
recorded in a fluorescence microscopy experiment (7) and the reconstructed
symbolic dynamics. (Inset) The negative feedback loop extracted using the
algorithm in the text; the process is shown in b. Here and in subsequent
figures, ordinary arrows represent activation, whereas barred arrows repre-
sent repression.

Fig. 2. Examples of negative feedback loops. (a) The simplest case consisting
of one activator and one repressor. (b) A three-repressor loop. (c) A general
loop with N variables and an odd number of repressors.
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2. Monotonicity: all of the gi(x, y) have to be monotonically
decreasing functions of the first argument. Moreover, the
gR(x, y) are decreasing functions of the second argument,
whereas the gA(x, y) are increasing functions of the second
argument.

Condition 1 is imposed to ensure that concentrations of the
species are well defined and cannot grow infinitely, a biologically
plausible constraint: typically for regulatory networks, gi is
bounded from above (i.e., there is a maximum possible rate of
production) and is dominated by the degradation terms for
sufficiently large concentrations, thus ensuring condition 1.
Condition 2 implies that activators of a specific process are
activators at all concentrations (and similarly for repressors). In
other words, we exclude regulation like CI in lambda phage
which can activate the PRM promoter at low concentrations, but
repress it at high concentrations (21). Another example is the
galactose regulator GalR, which at high concentrations of ga-
lactose is an activator of the promoter galP2 but in the absence
of galactose forms a DNA loop, in which state galP2 is com-
pletely repressed (22). However, such examples are relatively
rare, and we exclude them from the class of networks we study.

The monotonicity condition can be used to prove that, if the
number of repressors in the loop is even, there can be multiple
fixed points. This is necessary for bistable or multistable systems,
as previously analyzed in ref. 23. In the following, we focus on
the case of an odd number of repressors, i.e., negative feedback.
Then, as shown in supplementary material, there is one and only
one fixed point. Furthermore, a linear stability analysis shows
that the transition to instability is necessarily a Hopf bifurcation,
which implies that near the transition point there exists a
periodic orbit [see supporting information (SI) Appendix]. How-
ever, this stability analysis allows one to study the dynamics only
locally, both in the phase space, i.e., close to the fixed point, and
in parameter space, i.e., close to the bifurcation value. In the next
section, we show that in general, whether the fixed point is stable
or unstable, there are restrictions on the trajectory of the system.

Symbolic Dynamics
Our argument is the direct consequence of how the nullclines,
i.e., the N manifolds defined by the equations gi(xi, xi�1) � 0,
partition the phase space (the positive orthant xi � 0 @i). Each
nullcline separates two fully connected regions, one in which the
ith component of the field, gi, is positive and one in which it is
negative. Furthermore, all these manifolds have exactly one
point in common, the unique fixed point x*. The phase space is
thus the union of 2N sectors, each characterized by the signs of
the components of the field. These sectors correspond precisely
to the symbols (�, �, �,�, . . . , �) defined previously.

Note that there cannot be an attractor entirely contained in
the interior of a sector because the field does not change sign, the
trajectory is bounded and there is only one fixed point. Thus,
either the trajectory of the system spirals in toward a stable fixed
point, or, if the fixed point is unstable, it will keep crossing from
one sector to another indefinitely. In the first case, the symbolic
dynamics is a finite sequence of symbols, which ends when the
trajectory stops crossing sector boundaries. In the latter case, it
will be an infinite sequence of symbols. In either case, adjacent
symbols in the sequence will differ by only one sign change.

The key point of our argument is that any of the boundaries
can be crossed in just one specific direction, due to the mono-
tonicity of the functions gi(xi, xi�1). This means that not all
possible sign changes are allowed. In Fig. 3, we illustrate this
using the example of the two-species negative feedback loop of
Fig. 2a, one repressor and one activator. Fig. 3b shows the only
four transitions possible in this system. Thus, starting from any
initial condition, the symbolic dynamics will follow the order
shown in Fig. 3b until the trajectory converges to the stable fixed

point and there are no further sign changes. This example gives
a good pictorial idea of the fact that the nullclines behave like
one-way doors.

In the general N-species case, the same phenomenon occurs,
with the symbolic dynamics obeying the following rules:

Y If the variable (i � 1) represses i, the nullcline i can be crossed
if gi and gi�1 have the same sign.

Y If the variable (i � 1) activates i, the nullcline i can be crossed
if gi and gi�1 have opposite signs.

This is the main mathematical result of this paper, and leads
directly to the algorithm described earlier; its derivation is
described in more detail in supplementary material. To empha-
size the point further, the direction in which the nullcline gi � 0
can be crossed at a given point depends on the position of that
point relative to only one other nullcline, gi�1 � 0. It does not
depend on any other nullcline. In simple words, the rules encode
the fact that an increasing activator can make the affected
concentration increase (but not decrease), whereas an increasing
repressor can make the affected concentration decrease (but not
increase). Note that the allowed transitions apply to any trajec-
tory, even transients. Thus, if one is analyzing oscillatory time
series it doesn’t matter whether the oscillations are sustained, or
the measurement is of transients or damped oscillations.

To determine the general scenario which is compatible with
these rules, consider that when a nullcline is crossed, the
symbolic dynamics makes a transition between two states dif-
fering by just a single sign. We say that there is a mismatch
between two adjacent signs if the nullcline depending on these
two variables can be crossed according to the rules defined
above. The effect of crossing the nullcline i is to remove the
mismatch between i and i � 1. If there was also a mismatch
between i and i � 1, it too is removed, otherwise it is created. For
a negative feedback loop, we can show that the number of
mismatches has to be odd, and cannot increase.

Now consider what happens if the fixed point is unstable. If
there is just one mismatch, it can only keep traveling around the
loop, in the direction of the loop arrows. This means that the
symbolic trajectory is periodic of period N. In the general case,
we can visualize the symbolic dynamics as several mismatches

Fig. 3. Qualitative analysis of a two-species negative feedback loop. (a)
Schematic diagram of the phase-space of the two-variable negative feedback
loop of Fig. 2a. Solid lines show the two nullclines, which intersect and divide
the space into four sectors, labeled by the signs of g1 (Upper) and g2 (Lower)
in that sector. Arrows on the nullclines show the local direction of the vector
field, which determines the direction in which the nullcline can be crossed by
a trajectory. The dotted line is an example trajectory that follows these rules,
while spiralling in toward the stable fixed point. (b) The allowed transitions for
moving from one sector to another. The symbolic dynamics of any trajectory
has to be consistent with these rules.
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traveling around the loop in the same direction. Whenever two
mismatches ‘‘hit’’ each other, they annihilate. Eventually, the
number of mismatches will reach some limit, where each mis-
match stays safely distant from the others. The length of the loop
limits how many mismatches can, in principle, coexist; for
example, only one mismatch can survive if N � 4. In practice,
even in long loops, it is likely that only one mismatch survives,
and we will restrict to this case in the following.

An interesting consequence of this periodicity is that any of
the N nullclines can be used to define a Poincaré map for the
dynamical system. Periodic oscillations in the symbolic dynamics
translate into a fixed point or a stable periodic orbit of the
Poincaré map (ref. 24 proves that quasiperiodicity and chaos are
impossible for such systems). In this general class of systems,
when the fixed point is unstable, the dynamics is oscillatory with
well defined properties: each of the concentrations has exactly
one maximum and one minimum during a time period of the
symbolic dynamics, and the fact that the mismatch travels in the
direction of the feedback loop implies that the sequence of
maxima and minima has to follow the order of the species in the
loop. From the particular order observed, it is also possible to
argue which species acts as an activator and which as a repressor.
Furthermore, the observation of a time series which is incom-
patible with the symbolic dynamics rules allows one to exclude
a dynamics of the form of Eq. 2, generally suggesting a topology
more complicated than a simple feedback loop or more subtle
effects like time delays and nonmonotonic regulation. In other
words, the algorithm described previously is a straightforward
consequence of the rules followed by the symbolic dynamics

Note that our method works even if one does not measure the
time series of all of the species belonging to the loop. The
algorithm gives a coherent conclusion about the overall sign
between the variables: for example, a variable A will appear as
an activator of a variable B if there is an even number of
‘‘unobserved’’ repressing links between them (see SI Appendix).
The following examples will further clarify these points.

Examples and Discussion
We now apply the above ideas to extract information about the
loop structure from experimentally observed time series of three
systems: p53-Mdm2 oscillations in mammalian cells, circadian
expression of kai genes in Synechocystis cyanobacteria, and cyclic
binding of protein cofactors with DNA at the estrogen-sensitive
pS2 promoter in human breast cancer cells.

Our first example is the well known p53-Mdm2 negative
feedback loop, already discussed in the introduction. The tumor
repressor protein, p53, activates transcription of the mdm2 gene
(19). Mdm2, once produced, binds to p53 preventing it from
acting as a transcription factor, and subsequently ubiquitinates it,
which enhances its proteolytic breakdown (19). This negative
feedback loop is precisely the structure our algorithm predicts
from the oscillating concentrations of p53 and Mdm2 in Fig. 1.
In a couple of cases, there is some ambiguity about the order of
maxima and minima. However, the pattern is clarified by com-
paring two separate time intervals in which the symbolic se-
quence is unambiguous. Note that both regions exhibit the same
periodic symbolic sequence. Thus, the observed oscillations are
consistent with a dynamics of the form of Eq. 2. However, there
must be at least one other unobserved species taking part in the
loop, because the fixed point is always stable for N � 2. Indeed,
several three-variable models of p53–Mdmd2 oscillations have
been examined, which assume the third variable to be either an
Mdm2 precursor (e.g., Mdm2 mRNA) or a third protein that
interacts with p53 or Mdm2 (7). Although time delays (11) and
other feedback loops (25) present in this system could also be
important, we can conclude that a model like Eq. 2 is a serious
candidate for a zero-order model, being simple and reproducing

correctly the qualitative behavior of the components with the
correct interaction signs.

The next example involves circadian oscillations of gene
expression in cyanobacteria. Cyanobacteria are the only bacterial
species with a circadian clock and several of their cellular
functions appear to be under circadian control (4). In Synecho-
coccus elongatus, a cluster of three genes, kaiA,B,C, were found
to be essential: deletion of any of these genes eliminated the
oscillations (26). Fig. 4a shows circadian rhythms in the expres-
sion levels of genes coding for homologues of the KaiA,B,C
proteins in one Synechocystis strain. The symbolic dynamics is
consistent with a three-variable feedback loop (Fig. 4a Inset),
where kaiA activates kaiC1, which represses kaiB3, which, in
turn, activates kaiA. The first two of these predicted interactions
exist in Synechococcus (26), whereas the third is a new prediction
for how kaiA is brought into the loop. Note that our analysis only
provides the sign of this interaction. It does not reveal the
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Fig. 4. Examples of the algorithm in action. (a) Circadian rhythms of three kai
genes in a Synechocystis cyanobacterial strain (data from ref. 27). (b) Periodic
binding of four proteins to the pS2 promoter after addition of estradiol (data
from ref. 29, based on ref. 28). In each case the corresponding symbolic
dynamics is also shown, with symbols in the same order as the legend (where
maxima/minima of two variables occur very close we have exaggerated the
separation between the dotted lines for visual clarity). (Insets) Loop structure
deduced from the symbolic dynamics.
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molecular mechanism of the interaction, nor whether the inter-
action is direct or through intermediate steps.

Finally, we consider the cyclic binding of cofactors to the
estrogen-sensitive pS2 promoter. A coordinated sequence of
binding and unbinding events modifies the DNA packing and
nucleosome structure to enable transcription to proceed (28).
This is a case where no model exists and not all of the proteins
involved have been identified. Our method is particularly suited
for such a case because it does not matter whether the dynamics
of only a subset of the proteins involved is available. Fig. 4b shows
oscillations in the binding of 4 proteins, after the addition of
estradiol (28). Estradiol receptor (ER) binds estradiol and is
required for initiating transcription. Pol II is the RNA polymer-
ase that transcribes the gene. TRIP1 is a component of the APIS
proteasome subunit, whereas HDAC1 is involved in deacetyla-
tion of histones (28). The symbolic dynamics is consistent with

the model shown in Fig. 4b Inset. In this case, each variable
measures the amount (in arbitrary units) of bound protein at the
pS2 promoter. The predicted links indicate how a bound protein
affects the probability of binding (or of remaining bound) of
another one in the sequence. For example, the link from ER to
Pol II indicates that ER, when bound at the promoter, increases
the recruitment probability of Pol II. Ref. 29 models the
dynamics of Fig. 4b using a positive feedback loop, requiring
�200 intermediate steps, which has only activating links. Our
analysis suggests, however, that a negative feedback loop is a
plausible hypothesis as the cause of oscillations, and predicts the
existence of a repressive link between HDAC1 and ER.
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Research Foundation.
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