
Neuro-Oncology

Glioblastomas, like other solid tumors, have exten-
sive areas of hypoxia and necrosis. The importance of 
hypoxia in driving tumor growth is receiving increased 
attention. Hypoxia-inducible factor 1 (HIF-1) is one 
of the master regulators that orchestrate the cellular 
responses to hypoxia. It is a heterodimeric transcrip-
tion factor composed of � and � subunits. The � subunit 
is stable in hypoxic conditions but is rapidly degraded 
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in normoxia. The function of HIF-1 is also modulated 
by several molecular mechanisms that regulate its syn-
thesis, degradation, and transcriptional activity. Upon 
stabilization or activation, HIF-1 translocates to the 
nucleus and induces transcription of its downstream tar-
get genes. Most important to gliomagenesis, HIF-1 is a 
potent activator of angiogenesis and invasion through its 
upregulation of target genes critical for these functions. 
Activation of the HIF-1 pathway is a common feature of 
gliomas and may explain the intense vascular hyperplasia 
often seen in glioblastoma multiforme. Activation of HIF 
results in the activation of vascular endothelial growth 
factors, vascular endothelial growth factor receptors, 
matrix metalloproteinases, plasminogen activator inhib-
itor, transforming growth factors � and �, angiopoietin 
and Tie receptors, endothelin-1, inducible nitric oxide 
synthase, adrenomedullin, and erythropoietin, which 
all affect glioma angiogenesis. In conclusion, HIF is a 
critical regulatory factor in the tumor microenvironment 
because of its central role in promoting proangiogenic 
and invasive properties. While HIF activation strongly 
promotes angiogenesis, the emerging vasculature is often 
abnormal, leading to a vicious cycle that causes further 
hypoxia and HIF upregulation. Neuro-Oncology 7, 
134–153, 2005 (Posted to Neuro-Oncology [serial online], 
Doc. 04-111, March 10, 2005. URL http://neuro-oncology
.mc.duke.edu; DOI: 10.1215/S1152851704001115)

Gliomas are the most common primary tumors 
arising in the central nervous system. After 
decades of advances in detection, surgery, and 

therapies, the median survival after initial diagnosis of 
their most aggressive form, glioblastoma multiforme 
(GBM)3 (WHO grade IV), is still only 50 weeks (Salvati 
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et al., 1998), and less than 2% of patients survive three 
years postdiagnosis (Senger et al., 2003). Glioblastoma 
multiforme can occur as the result of progression from 
lower grade astrocytomas or can arise de novo. Patho-
logical examination of low-grade astrocytomas (WHO 
grade II) demonstrates diffusely infi ltrating tumor cells in 
the normal brain, which begin as nonangiogenic tumors 
that have the ability to co-opt a blood supply from exist-
ing vasculature. When grade II astrocytomas progress 
to grade III (anaplastic astrocytoma), tumor cell density 
increases, nuclear anaplasia and cellular proliferation are 
apparent, and there is a mild increase in vascular density. 
The most dramatic histological changes occur with the 

transition to GBM and refl ect a profound alteration in 
the tumor’s vascular biology. Tufted aggregates of rap-
idly dividing endothelial cells, referred to as glomeruloid 
bodies, and areas of necrosis surrounded by pseudopali-
sading cells develop in the tumor (Brat and Van Meir, 
2001; Brat et al., 2004). On MRI scans, GBMs appear 
as contrast-enhancing spheres with a central necrotic cen-
ter, while microscopic analysis exposes more widespread 
invasion and multiple hypoxic regions in the growing 
periphery of these tumors. Recent investigations indicate 
that hypoxia is responsible for the appearance of necrosis 
associated with the pseudopalisading cells seen in GBM 
(Fig. 1). Hypoxia-initiated angiogenesis leads to the elab-

Fig. 1. HIF stabilization in hypoxic areas. HIF-1� is stabilized in cells distant from a blood vessel. A–C: Adjacent sections of subcutaneously 
grown tumor xenografts of human LN229 glioma cells. Panel A shows stain Factor VIII, highlighting a vessel. Panel B is pimonidazole 
staining showing hypoxic areas in brown (arrowhead). Panel C is HIF-1� immunostain (arrow), showing nuclear staining of HIF. D–E: U87 
glioma xenografts from a rat orthotopic brain tumor model. Panel D is pimonidazole staining that shows a rim of viable hypoxic cells at the 
periphery of vascularized regions (arrowhead). Panel E shows the corresponding H & E staining. Note large areas of necrosis (light blue). 
F–G: Human GBM specimen. Panel F highlights the HIF-1�-positive staining cells localized in the pseudopalisading cells (arrow), and Panel 
G is the corresponding H & E of the adjacent section showing the necrotic area (asterisk). 
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orate microvascular proliferation that heralds a phase 
of more malignant tumor growth (Barker et al., 1996). 
Central to the cascade of events that occur as gliomas 
progress is the response of a tumor cell to low-oxygen 
conditions, which is elicited via the stabilization and acti-
vation of hypoxia-inducible factor (HIF), a transcription 
factor critical for adaptive response to reduced oxygen. 
Both hypoxic and HIF staining can be observed best at 
a distance from blood vessels and is absent immediately 
adjacent to the vasculature, where tissue oxygenation is 
adequate (Fig. 1). Activation of HIF leads to upregula-
tion of factors essential for blood vessel formation and is 
one of the primary forces driving both physiological and 
pathological angiogenesis. 

Hypoxia-Inducible Factor

One of the main early cellular events evoked upon expo-
sure to hypoxia is activation of HIF-1, a key heterodi-
meric transcription factor. In reduced oxygen conditions, 
HIF-1 binds to hypoxia-responsive elements (HREs) and 
induces transcription of various target genes involved 
in tumor angiogenesis, invasion, cell survival, and glu-
cose metabolism. The concept of a transcription factor 
being activated in limiting oxygen conditions was put 
forth in 1992 to explain upregulation of erythropoietin 
(Epo), a hormone stimulating red blood cell production 
in response to hypoxia (Semenza and Wang, 1992). 
HIF-1� and HIF-1� were identified as proteins that 
contain a basic helix-loop-helix and a Per/ARNT/Sim 
(PAS) domain and were determined to be responsible for 
hypoxic induction of Epo. These subunits must associ-
ate to form the active HIF heterodimer responsible for 
transcriptional activation (Wang et al., 1995). HIF-1� 
is the aryl hydrocarbon receptor nuclear translocator 
(ARNT) and is constitutively expressed. ARNT2 and 
ARNT3 are highly homologous proteins to ARNT, and 
all three are implicated in forming dimers with the vari-
ous HIF-� subunits (Maynard and Ohh, 2004). HIF-1� 
has two closely related homologs, HIF-2� and HIF-3�. 
HIF-2� (also known as endothelial PAS domain protein, 
or EPAS1) is 48% identical to HIF-1�, is induced by 
hypoxia, and binds to HIF-1� to activate transcription 
of hypoxia-responsive genes (Tian et al., 1997). HIF-
3� appears to be a dominant negative regulator of HIF, 
as it dimerizes with HIF-1� to generate a transcription-
ally inactive heterodimer. Knockout mice homozygously 
deleted for HIF-1� exhibit embryonic lethality, dying at 
postcoitus day 10 with gross abnormalities in cardiac 
development and vasculature, underscoring the impor-
tance of HIF-1� in vascular development (Kline et al., 
2002). Mice lacking HIF-2� die mid-gestation and 
show defects of cardiac development and reduced cat-
echolamine levels (Tian et al., 1998). In normoxic condi-
tions, HIF-1� is expressed ubiquitously at low levels in 
all organs, and HIF-2� is most abundantly expressed in 
the lung, followed by the heart, brain, liver, and various 
other organs. Despite their similarities in mediating tran-
scriptional responses to hypoxia, HIF-1� and HIF-2� 
have distinct, nonredundant functions (reviewed in 
Semenza [2004]). 

Domain Structure of the � Subunits of HIF

The domain structures of HIF-1� and its homologs 
are depicted in Fig. 2. Both HIF-1� and HIF-2� have a 
similar domain organization containing an N-terminal 
transactivation domain and a C-terminal transactivation 
domain (CAD). Six different splice variants of HIF-1� 
have been reported. Both HIF-1�785 and HIF-1�736 have 
the ability to transactivate downstream targets. HIF-1�785 
is induced by 6-phorbol-12-myristate-13-acetate and 
heat shock and is relatively stable in normoxic condi-
tions (Chun et al., 2003). HIF-1�736 is regulated by 
oxy gen conditions in a manner similar to the way in 
which the full-length HIF-1� is regulated (Gothie et 
al., 2000). HIF-1�557 and HIF-1�516 function as domi-
nant negative regulators of HIF activity by binding to 
and sequestering HIF-1� from the functionally active 
HIF-1� (Chun et al., 2001, 2002). HIF-1�417, the short-
est variant, lacks a transcriptional activation domain 
but can bind to HIF-1� and then promote its nuclear 
translocation and transactivation by using the trans-
activation domain within HIF-1� (Lee et al., 2004). 
HIF-3� is the least-studied member of the family and 
has multiple splice variants (HIF-3�-1–6) (reviewed in 
Maynard and Ohh [2004]). All of the HIF-3� isomers 
contain the N-terminal transactivation domain but 
lack the CAD domain (Hara et al., 2001). HIF-3�-1 
was the fi rst identifi ed human HIF-3� isoform and has 
been shown to repress the hypoxic activation of target 
genes by sequestering HIF-1� from HIF-1/2� (Hara et 
al., 2001). HIF-3�-1 is notable among the other HIF-
3� isoforms by the presence of a leucine zipper domain 
(LZIP) at its C-terminal in place of a CAD. Leucine zip-
pers are motifs involved in DNA binding and protein-
protein interactions, which indicates that this isoform 
may be involved in the activation of other yet-unknown 
genes (Maynard and Ohh, 2004). HIF-3�-2, also called 
inhibitory PAS domain protein (IPAS), binds to HIF-1� 
and prevents the formation of a functional HIF-1�/� 
complex, and it thus prevents HIF target gene activa-
tion (Makino et al., 2001). HIF-3�-2 (IPAS) is primarily 
expressed in the brain and eye and may have a specifi c 
role in negatively regulating HIF-induced gene expres-
sion in these tissues. The function of the other HIF-3� 
variants remains to be elucidated.

Regulation of HIF-1/2� Protein Stability 
Under Hypoxia

In response to changes in oxygen availability, mamma-
lian cells launch a host of responses, most of which are 
mediated by HIF. Regulation of HIF by partial oxygen 
pressure is orchestrated by many molecular players that 
affect HIF-1/2� protein stability or the ability of these 
proteins to bind to cofactors essential for transcrip-
tional activity. In normoxia, HIF � subunits carrying 
an oxygen-dependent degradation (ODD) domain are 
highly labile proteins that are rapidly ubiquitinated and 
degraded by the proteasome (Fig. 3) (Crews, 1998). This 
ubiquitination is mediated by the von Hippel-Lindau 
protein (pVHL), the recognition component of an E3 
ubiquitin ligase (Semenza, 2002). Mutations in the 
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VHL gene result in the autosomal dominant von Hippel-
Lindau syndrome that is characterized by the presence 
of highly vascularized tumors overexpressing vascu-
lar endothelial growth factor (VEGF) (Kaelin, 2002). 
The recognition of HIF-1/2� by pVHL is augmented by 
hydroxylation of two proline residues (P402 and P564) 
within the ODD domain by specifi c prolyl hydroxylases 
(PHD1, PHD2, PHD3) (Bruick and McKnight, 2001; 
Epstein et al., 2001). The PHDs are iron-dependent 
enzymes also requiring oxygen, 2-oxoglutarate, and 
ascorbate for activity. The catalytic activity of all three 
PHDs is reduced in hypoxia, with their respective rates 
of catalysis in normoxia being PHD2 � PHD3 � PHD1 
(Tuckerman et al., 2004). In hypoxia, PHD1 and PHD3 
are rapidly degraded by the proteasome pathway, which 
adds another layer of control to the system (Nakayama 
et al., 2004). On the contrary, PHD2 levels are upreg-
ulated by HIF-1 in hypoxic conditions and may be a 
mechanism to rapidly stop hypoxic signaling upon tissue 
reoxygenation (Metzen et al., 2004). Overexpression of 
any of the three PHDs destabilizes HIF-1� protein in 
COS-1 cells (Tuckerman et al., 2004). On the contrary, 
short interfering RNA studies have demonstrated that 
specifi c silencing of only PHD2 and not PHD1 or PHD3 
in a battery of immortalized human cell lines and pri-

mary cell cultures led to increased HIF stability, which 
suggests that PHD2 may be the only physiologically rel-
evant hydroxylase involved in HIF regulation (Berra et 
al., 2003). This dilemma may be explained if the con-
tribution of each isoform to HIF hydroxylation depends 
on its relative abundance in a given cell type and a given 
culture condition, and if all three function in a nonre-
dundant fashion (Appelhoff et al., 2004). Clearly, trans-
genic and knockout studies currently ongoing will help 
verify this assumption. 

The arrest defective 1 protein (ARD1) is an acetyl-
transferase that acetylates HIF-1� at Lys532 within the 
ODD domain. ARD1 stimulates HIF-1�–pVHL associa-
tion, ubiquitination, and subsequent proteasomal deg-
radation (Jeong et al., 2002). Unlike HIF-1� hydrox-
ylation, the acetylation reaction itself is not thought to 
be an oxygen-dependent process. However, the level 
of HIF acetylation is still influenced by hypoxia, as 
ARD1 mRNA levels are reduced in hypoxia (Jeong et 
al., 2002). Thus, ARD1-mediated acetylation adds to 
the regulation of HIF-1� protein stability in response to 
oxygenation. 

Small ubiquitin-like modifi er-1 (SUMO-1) is an 18-kDa 
protein that shares 18% identity with ubiquitin and 
uses an ubiquitin-like conjugation system to affect pro-

Fig. 2. Domain structure of HIF-1�1–6 (shown as HIF-1�–HIF-1�417), HIF-2�, and HIF-3�1–6. Functional domains are abbreviated as 
follows: bHLH, basic helix-loop-helix; PAS, Per/Arnt/Sim; PAC, PAS-associated motifs; NAD, N-terminal transactivation domain; ODD, 
oxygen-dependent domain; CAD, C-terminal activation domain; and LZIP, leucine zipper domain. Position of modifi ed amino acids are 
indicated as follows: *, hydroxylated proline; @, acetylated lysine; �, hydroxylated asparagines. (Adapted from Maynard et al. [2003] and 
Lee et al. [2004].) 
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tein localization. In certain circumstances, sumoylation 
may counter the effects of ubiquitination (Seeler and 
Dejean, 2003). SUMO-1 has been shown to co-localize 
and interact with HIF-1� in response to hypoxia in neu-
rons and cardiomyocytes (Shao et al., 2004). SUMO-1 
induces sumoylation of HIF-1� at Lys391/Lys477, lead-
ing to its stabilization and increased transcriptional 
activity (Shao et al., 2004). Given that HIF-1 activation 
increases VEGF expression and that VEGF is a survival 
factor for neurons, this sumoylation may have a neuro-
protective function in the CNS (Wang et al., 2004a). 

Hypoxia-Mediated HIF Activation

Besides regulating HIF stability, pO2 concentrations 
also affect HIF transcriptional activity (Fig. 4). In addi-
tion to hydroxylation of key proline residues by PHDs, 
HIF-1/2� are hydroxylated at asparagine residues (803 
in HIF-1� and 851 in HIF-2�). This is mediated by an 
asparaginyl hydroxylase, FIH-1, or factor-inhibiting 
HIF-1, which is an Fe(II) -dependent enzyme that 
requires molecular oxygen to modify its substrate 
(Lando et al., 2002a, b). Hydroxylation at this residue 
decreases the ability of HIF to bind to its transcriptional 
coactivators CREB-binding protein (CBP)/p300, result-
ing in decreased transcriptional activity in the presence 
of molecular oxygen (Lando et al., 2002a, b). CBP, ste-
roid receptor coactivator-1, transcription intermediary 

factor-2, and p300 are proteins that act as general tran-
scriptional coactivators. HIF-1� binds to the cysteine/
histidine-rich (CH1) domain of CBP/p300, and this 
interaction is necessary for HIF transcriptional activity 
(Paul et al., 2004). Inhibition of HIF interaction with 
CBP/p300 using small molecules (chetomin) interferes 
with the induction of HIF target genes under hypoxia 
and inhibits tumor growth (Kung et al., 2004). The 
interaction between HIF and CBP/p300 is under further 
physiological regulation by the CBP/p300-interacting 
transactivator with Glu/Asp-rich- C-terminal domain 2 
(CITED2). CITED2 was identifi ed as a 35-kDa protein 
that associates with the CH1 region of CBP/p300 and 
is also referred to as p35srj (Bhattacharya et al., 1999). 
CITED2/p35srj can negatively regulate HIF-1 activity 
under hypoxia by competing with HIF-1� for binding 
to CBP/p300 (Freedman et al., 2003). CITED2/p35srj 
likely represents a negative feedback regulatory loop, as 
it is upregulated by hypoxia and HIF (Bhattacharya et 
al., 1999). 

Another level of regulation of HIF activity is medi-
ated by Ref-1, a dual-function protein having both DNA 
endonuclease– and cysteine–reducing activities. Ref-1 
reduces a unique cysteine in the basic helix-loop-helix 
domain of HIF-2�, which leads to its increased activa-
tion (Lando et al., 2000). Ref-1 also positively modu-
lates the transactivation ability of HIF-1�, possibly by 
enhancing the recruitment of its coactivator complex 

Fig. 3. Factors affecting HIF-1� protein stability. PHD-mediated hydroxylations and ARD-mediated acetylation of specifi c residues within 
HIF-1� increase its affi nity for pVHL, which leads to its ubiquitination (Ub) and degradation by the proteasomal pathway under normoxia 
(solid arrows). PHD1, 2, and 3 have a reduced catalytic activity in the absence of oxygen. Further, PHD1 and 3 and ARD have reduced 
levels in hypoxia (dashed arrows), adding another level of control. SUMO-1-mediated sumoylation in hypoxia leads to HIF-1� stabiliza-
tion (S) and activation, causing transactivation of specifi c downstream target genes. PHD2 is induced by HIF, which indicates a negative 
feedback loop. 
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(Carrero et al., 2000). Ref-1 has been shown to be a 
critical component of the HIF transcriptional complex 
required for the high-affi nity association between HIF-1 
and VEGF HRE (Ziel et al., 2004).

Signaling Pathways Affecting HIF-1� Regulation

Hypoxia-inducible factor can be activated by physi-
ological or pathological activation of growth factor and 
cell adhesion pathways (Fig. 5). Growth-factor-induced 
activation of receptor tyrosine kinases (RTKs) leads to 
HIF1-� stabilization and activation. Upon ligand bind-
ing, these receptors dimerize and autophosphorylate, 
which leads to their activation. Activated RTKs interact 
with p85, the regulatory subunit of phosphatidylinositol 
3-kinase (PI3K), which leads to its activation. PI3K is a 
lipid kinase that generates the signaling molecule phos-
phatidylinositol 3,4,5-triphosphate by phosphorylating 
its precursor phosphatidylinositol 4,5-biphosphate. Acti-
vated PI3K triggers a phosphorylation cascade that results 
in the phosphorylation/activation of AKT, a serine/
threonine kinase that promotes antiapoptotic and pro-

survival responses of a cell (Newton, 2004). Activation 
of AKT has been shown to lead to an increase in HIF-1� 
protein translation by the AKT/FRAP/mTOR pathway 
(Fig. 5) (Laughner et al., 2001; Zhong et al., 2000). Inhi-
bition of this pathway using LY294002, a selective inhib-
itor of PI3K, and with rapamycin, a selective inhibitor of 
mTOR, a downstream target of AKT, causes a reduction 
in HIF-1� amount and activity (Blancher et al., 2001). 

Induction of HIF by growth factor receptors such 
as epidermal growth factor receptor (EGFR) or Her 2 
(neu) is blocked by inhibitors of PI3K (LY294002 and 
wortmannin), which indicates the requirement of the 
PI3K pathway (Zhong et al., 2000). Activated RTKs 
also signal through the MAPK pathway, and phosphory-
lated p38 and extracellular-signal-regulated kinase 1/2 
(ERK1/2) can further phosphorylate and activate HIF-1� 
(Wang et al., 2004b). Inhibition of ERK activity leads to 
inhibition of HIF activity without affecting HIF stabili-
zation (Fig. 5) (Hur et al., 2001). 

In addition to growth factor–mediated RTK activa-
tion, the PI3K/AKT pathway is also activated by extra-
cellular matrix (ECM) adhesion mediated by integrins 

Fig. 4. HIF-1� is differentially regulated under normoxia versus hypoxia. In normoxia (solid arrows), hydroxylation of HIF-1� mediated by 
asparaginyl hydroxylase FIH-1 interferes with its ability to bind co-activator CBP/p300, which is necessary to form an active HIF complex. 
Under hypoxia (dashed arrows), HIF-1� is stabilized and translocates to the nucleus after binding to HIF-1�, where Ref-1 aids in the recruit-
ment of CBP/p300 to the HIF-1� complex, leading to transcriptional activation of genes containing the HREs. CITED2/p35srj negatively 
regulates HIF activity by competing with HIF-1� for binding to the CH1 region of CBP/p300. It is also upregulated by HIF, which indicates 
a possible negative feedback regulation. 
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(Friedrich et al., 2004). Integrin ligation causes an acti-
vation of the integrin-linked kinase (ILK) leading to 
increased HIF-1�, as well as increased VEGF production 
by the PI3K/AKT/FRAP/mTOR pathway (Tan et al., 
2004). Increased activity of integrin-linked kinase has 
been reported in gliomas (Obara et al., 2004). Addition-
ally, activation of PI3K/AKT also leads to an increase 
in steady-state concentrations of heat shock proteins 90 
and 70, both of which interact with and stabilize HIF-1� 
(Zhou et al., 2004).

Genetic Alterations That Lead to HIF 
Activation in Gliomas

Both the activation of oncogenes (EGFR) and the loss 
of tumor suppressor function (p53, PTEN) that are 
common in gliomas can affect HIF expression through 
several mechanisms. EGFR gene amplifi cation and/or 
overexpression is seen frequently in a variety of tumors, 
including GBM, and is associated with a poor progno-
sis (Frederick et al., 2000). The most common EGFR 
gene mutation (EGFRvIII) is a deletion of exons 2–7, 

resulting in a truncated but constitutively active, ligand-
independent receptor (Holland et al., 1998). Activation 
of EGFR (EGFR/EGFRvIII) by ligand binding or gene 
amplifi cation results in activation of the PI3K pathway, 
which increases HIF-1� by the PI3K/AKT/FRAP/mTOR 
pathway (Clarke et al., 2001). 

Glioblastomas have a 20% to 40% incidence of PTEN 
(phosphatase and tensin homolog deleted on chromo-
some 10) mutations, including both gene deletions and 
point mutations. PTEN loss of function has been exper-
imentally shown to be associated with increased HIF-1� 
expression and tumor vascularization in gliomas. Over-
expression of recombinant PTEN in glioma cells leads 
to marked reduction in HIF-1� expression (Zundel et 
al., 2000). PTEN is a dual-specifi city phosphatase that 
can dephosphorylate both protein and lipid substrates. 
It dephosphorylates 3,4,5-triphosphate, the molecu-
lar messenger generated by PI3K and thus opposes its 
activity. Thus the loss of PTEN function during glioma 
progression results in dysregulation of the PI3K/AKT 
pathway as well as loss of control over HIF-regulated 
transcription (reviewed in Sansal and Sellers [2004]). 

Fig. 5. Molecular signals affecting HIF-1� regulation. Induction of Ras, PI3K, and AKT phosphorylation mediated by RTK activation or integ-
rin ligation leads to increased HIF-1� by modulating its stability and increased translation by the PI3K/AKT/mTOR pathway. TP53 negatively 
modulates this process by inducing MDM2, which can ubiquitinate and lead to HIF-1� degradation by the proteasome pathway. 
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The tumor suppressor p53 is a transcription factor 
that is frequently mutated in low-grade astrocytomas. 
Expression of wild-type p53 leads to an inhibition of 
angiogenesis, in part because of downregulation of the 
expression of VEGF (Hunter et al., 2003). It has been 
proposed that p53 may lead to inhibition of HIF activity 
in hypoxia by promoting MDM2-mediated ubiquitina-
tion and degradation of HIF-1� (Ravi et al., 2000).

HIF as a Proangiogenic Master Switch

Through multiple regulatory mechanisms, HIF acts as 
a delicate sensor enabling a cell to respond rapidly to 
changes in levels of oxygenation in the environment. It 
acts as a potent activator of angiogenesis by stimulating 
the production of VEGF and many other factors that ini-
tiate endothelial cell proliferation, invasion, and migra-
tion. Loss-of-function studies using HIF-1� null embry-
onic stem cells and gain-of-function studies using a 
constitutively active form of HIF-1� have demonstrated 
that apart from VEGF, HIF-1 controls the expression 
of many other angiogenic factors, such as placenta-like 
growth factor, platelet-derived growth factor �, and 
angiopoietin (Ang)-1 and -2 (Kelly et al., 2003). Apart 
from its role in angiogenesis, HIF-1� also promotes inva-
sion by regulating the expression of cathepsin D; matrix 
metalloproteinase (MMP)-2; urokinase plasminogen 
activator receptor; fi bronectin 1; keratins 14, 18, and 
19; vimentin; transforming growth factor (TGF)-�; and 
autocrine motility factor (Krishnamachary et al., 2003). 
In fact, HIF-1� expression is found at the invasive front 
of glioblastomas and correlates with glioma grade and 
vessel density, which emphasizes its role in brain tumor 
progression and angiogenesis (Zagzag et al., 2000). 
These features have rendered HIF an attractive target 
for anticancer therapy (Post, 2004; Tan et al., 2005). 
Following is a discussion of the angiogenic factors that 
are induced by HIF in response to hypoxia and their 
contributions to glioma angiogenesis. 

Vascular Endothelial Growth Factor

Vascular endothelial growth factor belongs to a fam-
ily of growth factors that includes VEGF-A, VEGF-B, 
VEGF-C, VEGF-D, VEGF-E, and placenta-like growth 
factor (reviewed in Kaur et al. [2004]). VEGF-A was 
the fi rst secreted growth factor that was found to have 
endothelial-cell-specifi c mitogenic effects. It has fi ve dif-
ferent isoforms: VEGF121, VEGF145, VEGF165, VEGF189, 
and VEGF206, which are produced by alternative splic-
ing. In addition to endothelial cell proliferation, it also 
promotes endothelial cell migration, vascular perme-
ability, and invasiveness, which are required for angio-
genesis. Targeted gene disruption experiments in mice 
have revealed that loss of even a single allele of VEGF 
(hemizygosity) induces an embryonic lethal phenotype 
with gross vascular abnormalities demonstrating a dose-
dependent requirement for VEGF in vasculogenesis (Fer-
rara, 2004). 

Expression of VEGF is increased in response to 
hypoxia, and this is mediated by two mechanisms. First, 

hypoxia induces the activation of VEGF gene transcrip-
tion through an HIF-dependent mechanism, mediated 
by HIF-1 binding to an HRE within the VEGF pro-
moter, resulting in increased gene transcription (For-
sythe et al., 1996). The second mechanism upregulates 
VEGF mRNA levels by regulating mRNA stability. This 
effect is mediated by the 3' untranslated region of the 
VEGF mRNA (Onesto et al., 2004). Hypoxic induc-
tion of VEGF is considered to be the major driving force 
behind new vessel development, both during embryo-
genesis and in tumor progression. The production of 
VEGF in gliomas is signifi cant, VEGF levels having been 
found in the cyst fl uid of GBM patients that are 200- to 
300-fold higher than those present in the serum (Takano 
et al., 1996). In situ hybridization of tumor tissue has 
revealed VEGF mRNA to be localized in the pseudopali-
sading cells surrounding hypoxic/necrotic foci in GBM, 
which is likely due to hypoxic induction. The high levels 
of VEGF produced around areas of pseudopalisading 
necrosis are believed to be responsible for the fl orid glo-
meruloid microvascular proliferation that is character-
istic of GBM (reviewed in Brat and Van Meir [2001]). In 
fact, inhibition of VEGF signaling leads to an inhibition 
of tumor growth and angiogenesis.

VEGF Receptors

Vascular endothelial growth factor binds fi ve different 
receptors: VEGFR-1 (Flt-1), VEGFR-2 (Flk-1/KDR), 
VEGFR-3 (Flt-4), neuropilin-1 (NRP-1), and neuropilin-2 
(NRP-2). Each has unique binding properties for the 
various VEGF family members (Fig. 6). VEGFR-1 and 
VEGFR-2 are the major receptors expressed on endothe-
lial cells, whereas VEGFR-3 is expressed mainly on lym-
phatic endothelial cells and is thought to be primarily 
involved in lymphangiogenesis (Fig. 6). VEGFR-2 is con-
sidered to be the main mitogenic signaling receptor for 
VEGF. The precise function of VEGFR-1 has been con-
troversial, and it was originally considered to function as 
a decoy receptor important for sequestering VEGF from 
VEGFR-2. More recent results, however, indicate that 
VEGFR-1 is important for migration and differentiation 
of endothelial cells, a process that is required for angio-
genesis. The importance of VEGFR-1 and VEGFR-2 is 
highlighted by the embryonic lethal phenotype displayed 
by mice lacking either VEGFR-1 or VEGFR-2 (reviewed 
in Ferrara [2004]). VEGFR-1 is induced by HIF-1, and 
an HRE has been located within an enhancer element 
(Gerber et al., 1997). VEGFR-2 and VEGFR-3 are also 
induced by HIF in hypoxia in endothelial cells of vascular 
and lymphatic origin, respectively (Nilsson et al., 2004). 
Recent studies on glioma cell lines and glioma-derived 
cells revealed a low-level expression of VEGFR-1 and -2 
on tumor cells, but the signifi cance of this is yet unclear 
(Mentlein et al., 2004). The expression of VEGFRs on 
endothelial cells derived from glioma samples indicates 
that their expression correlates with glioma grade and 
vascularization and that antagonizing VEGF receptor 
signaling inhibits glioma growth (Broholm and Laursen, 
2004; Millauer et al., 1994; Osada et al., 2004). 

Neuropilin-1 and -2 are isoform-specifi c receptors of 
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VEGF, which function as co-receptors with VEGFR-2 
(Fig. 6) (reviewed in Kaur et al. [2004]). In addition to 
functioning as a co-receptor for VEGFR-2, NRP-1 can 
independently mediate endothelial cell adhesion to ECM 
(Murga et al., 2004). The role of NRP-2 in gliomagen-
esis is not yet clear and needs further elucidation. Both 
endothelial and astrocytic cells express NRP-1, with 
an increase in expression seen in the endothelium and 
neoplastic astrocytes of GBM (Broholm and Laursen, 
2004). Overexpression of NRP-1 in a rat prostate xeno-
graft model demonstrated increased tumor growth and 
angiogenesis (Miao et al., 2000). Expression of NRP-1 
in gliomas correlates with grade and predicts poor prog-
nosis, which underscores the importance of NRP-1 in 
gliomagenesis (Osada et al., 2004). Targeted disruption 
of either of the NRP-1 or NRP-2 genes also results in an 
embryonic lethal phenotype with vascular defects, which 
demonstrates a key role for all of the VEGF receptors in 
blood vessel development (Takashima et al., 2002).

Angiopoietin and Tie Receptors

Tie-1 and Tie-2 are RTKs expressed almost exclusively 
on endothelial cells and are implicated as potent angio-
genic regulators involved in vessel remodeling, vessel 
maturation, and endothelial cell survival (Ziegler et al., 
1993). Angiopoetin-1 is the ligand for Tie-2, and both 
components are required for vascular formation, as dem-
onstrated by similar phenotypes and the resulting embry-
onic lethality of mice engineered to lack either Ang-1 or 
Tie-2 (Suri et al., 1996). Ang-2, Ang-3 (in mice), and 

Ang-4 (in humans) are other related proteins that bind 
to Tie-2 (Valenzuela et al., 1999). Ang-1 binding causes 
Tie-2 receptor phosphorylation and protects endothelial 
cells from apoptosis, and this effect is antagonized by 
Ang-2/Ang-3 (Kim et al., 2000; Xu et al., 2004). Ang-4 
binding to Tie-2 can function similarly to Ang-1 binding 
to induce angiogenesis (Yamakawa et al., 2003). While 
Ang-1 is believed to stabilize and prevent leakiness of 
vessels, Ang-2 destabilizes the existing vasculature, 
causing vessel sprouting and new vessel growth in the 
presence of VEGF, but resulting in regression of vessels 
without the presence of VEGF (Holash et al., 1999). 

The levels of angiopoietins and their receptors are 
barely detectable in the normal brain (Tait and Jones, 
2004). Ang-1, Ang-2, and Tie-2 levels are greatly elevated 
in GBM samples, with Ang-1 protein and mRNA found 
to be expressed mainly by the tumor cells and Ang-2 
and Tie-2 expression to be localized to the tumor vascu-
lature and invasive edge of the tumor. Tie-2 expression 
and activation correlate with increasing grade of astro-
cytomas, and inhibition of Tie-2 signaling decreased gli-
oma cell tumorigenicity in mice (Zadeh et al., 2004a, b). 
Expression of Ang-1 in glioma cells resulted in increased 
tumor vascularization in both subcutaneous and intra-
cranial xenografts (Zadeh et al., 2004a, b). While little is 
known of Ang-1 regulation, Tie-2, Ang-2, and Ang-3/4 
mRNA are induced by hypoxia, and overexpression 
of HIF-1 induced the expression of Ang-2 and Ang-4, 
demonstrating the signifi cance of angiopoietins in the 
hypoxic angiogenic response of endothelial cells (Nils-
son et al., 2004; Yamakawa et al., 2003; Zagzag et 

Fig. 6. VEGF and VEGF-receptor interactions. The various family members of VEGF bind differentially to a variety of receptors. The 
VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1/KDR) have been predominately found in endothelial cells, but expression has also been reported in 
glioma tissues and glioma cell lines. VEGFR-3 is mainly expressed on the endothelial cells in the lymphatics and is thought to be involved 
in lymphangiogenesis. Both NRP-1 and NRP-2 are neuronal and endothelial cell surface glycoproteins that dimerize with VEGFR-2 and are 
expressed in some GBMs and to a lesser extent in low-grade astrocytomas. 
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al., 1999). The role of both Ang-1 and Ang-2 in tumor 
angiogenesis remains to be fully understood, with stud-
ies reporting the overexpression of these proteins to 
yield both proangiogenic and antiangiogenic effects in 
different tissue tumor model systems. Using a rat glioma 
model for tumor growth, however, the overexpression of 
Ang-1 was found to cause a signifi cant increase in tumor 
growth marked by enhanced angiogenesis, while the 
overexpression of Ang-2 inhibited the growth of tumors 
(Machein et al., 2004). Even though both angiopoietins 
are frequently upregulated in gliomas, it appears to be 
the Ang-2:Ang-1 ratio that swings the balance in favor 
of angiogenesis (Tait and Jones, 2004; Zadeh and Guha, 
2003).

Matrix Metalloproteinase

Matrix metalloproteinases are a large family of zinc-
binding endopeptidases that play a major role in ECM 
degradation. They are initially expressed as inactive 
zymogens and become activated by a proteolytic cleav-
age, releasing their active subunit (Osenkowski et al., 
2004). The MMP-mediated digestion of ECM sets the 
stage for the proliferating endothelial cells to migrate 
and invade through the matrix, an essential step for the 
development of new blood vessels. In addition to ECM, 
MMPs can fragment growth factors and cytokines into 
smaller molecules that display an enhanced or reduced 
biological activity on endothelial and tumor cell growth 
and migration. For example, MMP-2 mediates the 
release of fi bronectin fragments from fi bronectin, and 
domain DIII from laminin-5, both of which have potent 
angiogenic properties (Grant et al., 1998; Schenk et al., 
2003). 

MMP-2, as well as membrane-type MMP-1, MMP-
7, and MMP-9, is upregulated by HIF-1-dependent 
pathways in hypoxia (Lolmede et al., 2003). Furthermore, 
in human glioma cells HIF activation induces TGF-�2, 
which further modulates MMP activity by upregulat-
ing MMP-1, -2, and -9 and suppressing tissue inhibi-
tor of metalloprotease expression (Wick et al., 2001). 
Numerous studies have examined the role of these HIF-
1-induced MMPs during cancer progression. Membrane 
type 1 MMP (MMP-14) is upregulated in various tumor 
types, including glioma, where it activates MMP-2 (Van 
Meter et al., 2004). Expression of MMP-2 correlates 
with tumor grade, prognosis, and vascularity in human 
astrocytic and other tumor types (Thorns et al., 2003). 
Pharmacological inhibition of MMPs in mouse glioma 
as well as rat orthotopic models showed decreased tumor 
angiogenesis (Lakka et al., 2004; Yoshida et al., 2004). 
Taken together, these studies underscore the impor-
tance of HIF-induced MMPs in glioma vascularization/
angiogenesis.

Plasminogen Activator Inhibitor-1

Human plasminogen activator inhibitor type 1 (PAI-1) 
is a 45-kDa single-chain glycoprotein, a member of the 
serpin (serine proteinase inhibitors) superfamily, and the 
primary negative regulator of plasminogen activation 

(Mottonen et al., 1992). Plasminogen plays an impor-
tant role in promoting angiogenesis by activating MMPs 
and by releasing growth factors and cytokines trapped 
within the ECM (Rakic et al., 2003). PAI-1 acts as an 
inhibitor of tissue (t-PA) and urokinase (u-PA) plasmino-
gen activators, resulting in downregulation of plasmino-
gen under normal physiological conditions. 

Expression of PAI-1 is increased under hypoxic con-
ditions, and this is HIF-1 mediated. The PAI-1 gene 
contains an HRE within its promoter (Kietzmann et al., 
2003). Hypoxia also leads to a rapid and transient acti-
vation of PI3K/AKT and ERK1/2 that ultimately leads 
to increased PAI-1 expression (Zhang et al., 2004).

Concomitant with its inhibition of plasminogen acti-
vation, PAI-1 inhibits in vivo angiogenesis in the sprout 
formation and in the chicken chorioallantoic membrane 
(CAM) assays (Brodsky et al., 2001; Isogai et al., 2001), 
and PAI-1-defi cient mice have increased angiogenesis 
(Ploplis et al., 2004). In contrast, in tumors PAI-1 regu-
lates invasion, metastasis, and tumor-related angio-
genesis. It stimulates expression and release of VEGF 
in human glioma cell line models that would lead to 
increased angiogenesis in vivo (Hjortland et al., 2004). 
In tumor studies, absence of PAI-1 markedly impairs 
tumor invasion and vascularization (Bajou et al., 2004). 
Additionally, high PAI-1 levels are strongly associated 
with high histologic grade and increased necrosis in 
adult glioma tumors (Muracciole et al., 2002). Further 
studies are needed to elucidate the mechanism by which 
PAI-1 enhances glioma vascularization and migration 
in order to shed light on its seemingly opposing role in 
angiogenesis under physiological versus pathological 
conditions.

Endothelin-1

Endothelins are small, 21 amino acid peptides produced 
by the proteolytic processing of larger precursor proteins 
by endothelin-converting enzymes-1 and -2 (reviewed in 
Bagnato and Spinella [2003]). To date, three endothelins 
have been identifi ed, of which endothelin-1 (ET-1) has 
been extensively linked to the promotion of angiogenesis. 
A potent vasoconstrictor produced by vascular smooth 
muscle cells and endothelial cells, ET-1 elicits its effects 
by binding to two specifi c G-protein-coupled receptors, 
ETRA and ETRB. In a dose-dependent manner, ET-1 
has been shown to enhance the proliferation, migration, 
and invasion of endothelial cells and to promote the for-
mation of vascular structures in Matrigel plugs (BD Bio-
sciences, San Jose, Calif.) (Salani et al., 2000).  

Hypoxia stimulates expression of ET-1, and HIF-1 
binding sites have been identifi ed in the promoter region 
of the ET-1 gene. For induction of ET-1 in hypoxia, the 
transcription modulators AP-1, neurofi bromin-1, and 
GATA-2 were found to be required for the stabiliza-
tion of HIF-1 and recruitment of CBP/p300 (Hu et al., 
1998). Conversely, ET-1 also regulates HIF-1. In ovarian 
carcinoma cell lines, ET-1 caused an increase in HIF-1� 
accumulation through protein stabilization and was 
shown to activate the HIF-1 transcription complex (Spi-
nella et al., 2002). 
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Various studies show the expression of ET-1 in dif-
ferent glioma cell lines and signifi cantly associate an 
increased expression of ET-1 with poor differentiation 
and higher-grade astrocytomas (Li et al., 2002a; Sone et 
al., 2000; Spinella et al., 2002). In human GBMs, ET-1 
and its receptors were consistently found to be expressed 
in the tumor vasculature, but expression of the ETRB 
receptor was the only component localized specifi cally 
on individual tumor cells (Egidy et al., 2000). VEGF and 
MMP-2 have been shown to be upregulated by ET-1, 
and overexpression of ET-1 in a CAM assay produced 
highly vascular nodules, which are greatly reduced 
in the presence of inhibitors targeting either the ET-1 
receptors or the converting enzyme endothelin-convert-
ing enzyme-1 (Cruz et al., 2001; Salani et al., 2000; Spi-
nella et al., 2002). 

ET-1 exhibits both growth-factor-like mitogenic 
effects and antiapoptotic protective effects in endothe-
lial, astrocytic, and glioma cell lines; these effects have 
been attributed to the ET-1-induced increase in both 
PI3K activity and Ca2+ concentration (Asano et al., 
1994; Egidy et al., 2000). However, the relationship 
between ET-1 and HIF activation in GBM remains to be 
fully understood and warrants further study.

Inducible Nitric Oxide Synthase

Nitric oxide is a highly reactive free-radical compound 
with a short half-life known to affect many cellular pro-
cesses, including vasodilation, cytotoxicity in immuno-
logical responses, and neurotransmission. Three identi-
fi ed forms of nitric oxide synthase (NOS) are responsible 
for the production of NO from l-arginine, and these 
enzymes exist either as the cell-specifi c constitutively 
active forms of neuronal NOS and endothelial NOS or as 
inducible NOS (iNOS), which produces the substantial, 
sustained amounts of NO associated with its pathologi-
cal effects (Kroncke et al., 1997). Expression of iNOS 
can be detected after the treatment of mammalian cells 
with cytokines such as tumor necrosis factor-� or inter-
ferons and in the presence of bacterial endotoxins such 
as lipopolysaccharide (Xie et al., 1992). 

In hypoxia, HIF-1� induces the expression of iNOS, 
leading to the increase in NO concentration often found 
in hypoxic environments (Jung et al., 2000; Nilsson et 
al., 2004; Palmer et al., 1998). Nitric oxide has been 
shown to exhibit tumoricidal activity by inducing tumor 
cell cytolysis but paradoxically may also contribute to 
tumor growth by promoting neovascularization of tumor 
masses. Rat C6 glioma cells express high levels of iNOS, 
and iNOS activity has been implicated as a critical fac-
tor for the growth and maintenance of these tumors 
(Yamaguchi et al., 2002). Hypoxia-responsive ele-
ments have been identifi ed in both murine and rat iNOS 
promoters but have yet to be described for the human 
iNOS gene (Yamaguchi et al., 2002). While HIF-1� 
activates iNOS expression and causes an increase in 
NO concentration, the complex relationship between 
HIF-1� and NO has yet to be fully elucidated. Nitric 
oxide can also regulate HIF activity. Nitric oxide–
releasing compounds have been shown to both inhibit 

(sodium nitroprusside) and activate (S-nitroso-N-acetyl-
penicillamine and S-nitroso-glutathione) HIF-1�, and 
these confl icting results have been attributed to differ-
ent pharmacological activities of the various NO donor 
compounds. However, NO produced by iNOS has 
also been shown to inhibit the DNA binding activity 
of HIF-1 in a suggested negative feedback loop (Yin et 
al., 2000). The regulation of HIF activity by NO was 
found to be concentration dependent: At low concentra-
tions, NO destabilizes HIF-1� by increasing local oxy-
gen concentration through inhibition of mitochondrial 
respiration, whereas high NO concentrations stabilize 
HIF-1� through a mitochondrial-independent pathway 
in both high- and low-oxygen concentrations (Mateo et 
al., 2003). The relationship between HIF-1� and NO is 
quite complex and in need of further clarifi cation, espe-
cially in relation to growth of gliomas.

Adrenomedullin

Adrenomedullin (ADM) is a secreted protein that is a 
potent vasodilatory agent with proangiogenic effects 
(Zhao et al., 1998). It also has natriuretic and diuretic 
effects, reduces blood pressure after infusion, inhibits 
bronchodilation, inhibits proliferation in response to 
platelet-derived growth factor, and suppresses apop-
tosis (Jougasaki and Burnett, 2000). Adrenomedullin 
is upregulated by hypoxia in human glioma cell lines 
(Kitamuro et al., 2000), and the human ADM gene pro-
moter region contains three HIF-1 binding consensus 
sites (Garayoa et al., 2000). Multiple tumor cell lines, 
including carcinomas of the lung, breast, prostate, 
colon, and a glioma cell line, demonstrate ADM induc-
tion ranging from 1.3- to 25-fold after hypoxia or CoCl2 
treatment (reviewed in Zudaire et al. [2003]). 

Adrenomedullin has proangiogenic effects and has 
been shown to stimulate proliferation of human umbili-
cal vein endothelial cells (HUVECs) and to stimulate 
blood vessel growth in a CAM assay (Zhao et al., 1998). 
The fi nding that homozygous ADM knockout mice die 
at embryonic day 14 because of severe vascular defects 
supports a role for ADM in vessel formation (Shindo et 
al., 2001). Expression of ADM correlates with vascular-
ity in renal cell, breast, and endometrial carcinomas and 
has been demonstrated to stimulate tumor angiogenesis 
(Oehler et al., 2002). Proadrenomedullin NH2-terminal 
peptide is a 20 amino acid, N-terminal peptide derived 
from the ADM precursor. It is expressed in the adrenal 
gland, vascular system, and the central nervous system, 
with binding sites located in a number of places, includ-
ing the brain (Iwasaki et al., 1996). It displays a more 
potent angiogenic effect, inducing angiogenesis at lower 
concentrations, than ADM (Martinez et al., 2004).

The mechanism of ADM-induced angiogenesis has 
recently been examined in HUVECs. Adrenomedullin 
induces the phosphorylation of AKT, ERK1/2, and focal 
adhesion kinase (p125FAK), in a dose-dependent manner, 
which is partially suppressed by ADM22-52, an inhibitor 
of the ADM receptor (Kim et al., 2003). Additionally, 
levels of AKT and NO are increased in a dose-dependent 
fashion by ADM expression (Iimuro et al., 2004). 
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Adrenomedullin also binds to a complex of calcitonin- 
receptor-like receptor and receptor-activity-modifying 
protein-2 and -3 (CRLR/RAMP2; CRLR/RAMP3), 
and the angiogenic activity of ADM can be blocked by 
neutralizing antibodies to these receptors. 

Adrenomedullin receptors have been identified 
in GBM samples and multiple glioma cell lines, and 
ADM has been shown to be secreted by various glial 
cell tumors (Takahashi et al., 2002; Zimmermann et 
al., 1996). In immunohistochemical studies of human 
glioma, all tumors were positive for the ADM receptor, 
with staining being particularly intense in tumor endo-
thelial cells (Takahashi et al., 2002). Expression of ADM 
mRNA is increased in higher-grade glioma tumors and 
cell lines in comparison with normal brain tissue. The 
addition of ADM-neutralizing antibodies or the ADM 
inhibitor AM22-52 in vitro to U87 cells causes an inhibi-
tion of growth, indicating that ADM may function in an 
autocrine manner to stimulate GBM cell proliferation. 
Additionally, in a xenograft tumor model, treatment 
with anti-ADM antibody greatly reduced both tumor 
growth and vascularity (Ouafi k et al., 2002).

Current evidence indicates that there is a high level of 
expression of ADM in gliomas and that it may be act-
ing in an autocrine fashion to promote growth and in a 
paracrine fashion to stimulate angiogenesis. Xenograft 
tumor data indicates that inhibiting the actions of ADM 
may have a potent antitumor effect and that treatments 
targeting ADM in the brain may have effi cacy against 
gliomas.

Erythropoietin

Erythropoietin is a 30-kDa hormone that is produced and 
secreted by the fetal liver and adult peritubular cells of the 
kidneys (Schuster et al., 1992). The best characterized 
function of Epo is its stimulation of erythropoiesis by pre-
venting apoptosis and inducing differentiation of eryth-
rocytic precursor cells in the bone marrow. While clas-
sically believed to be isolated to hematopoietic tissues, 
functional Epo and its receptor, EpoR, are expressed 
in multiple tissues, including the brain, where they are 
found on neurons, astrocytes, glia, and endothelial cells 
(Siren et al., 2001). Epo expression is controlled at the 
level of mRNA transcription and is strongly upregulated 
by hypoxia and HIF-1 (Siren et al., 2001). There is a 50-
bp enhancer in the 3' fl anking region of the Epo gene 
that is responsible for the regulation of transcription by 
hypoxia (Semenza et al., 1991). This enhancer has three 
binding sites, one of which is a conserved HIF-1 binding 
HRE sequence. 

There is considerable evidence to suggest a role for 
Epo as a proangiogenic factor. Erythropoietin stimulates 
capillary outgrowth in adult myocardial tissue compa-
rable to the effect of VEGF (Jaquet et al., 2002), recom-
binant human Epo (rhEpo) elicits a strong angiogenic 
response in the chick CAM assay (Ribatti et al., 1999), 
and EpoR stimulates the proliferation and migration of 
endothelial cells in vitro (Jelkmann and Wagner, 2004). 
In accordance with its proangiogenic effect, functional 
Epo/EpoR complexes have been linked to increased 

growth rates and vascularization in certain neoplasms. 
For example, human renal carcinoma cells have been 
shown to express Epo and EpoR and to proliferate in a 
dose-dependent response to rhEpo treatment (Westen-
felder and Baranowski, 2000). Also, EpoR levels have 
been correlated to the degree of vascularization and stage 
in gastric carcinoma (Ribatti et al., 2003) and chemically 
induced murine hepatic tumors. It is unknown whether 
Epo and EpoR are expressed by gliomas, and not many 
studies have examined Epo and its effect on gliomas. In a 
study on hemangioblastomas, four GBM samples tested 
negative for EpoR mRNA expression, but the matter has 
not been studied extensively (Krieg et al., 1998). Since the 
Epo/EpoR system has been implicated as a proangiogenic 
and proliferative factor in other cancers, is expressed in 
astrocytes, and is a known target of HIF-1�, it would be 
interesting to investigate the changes in Epo/EpoR status 
in the progression from normal astrocytes to GBMs and 
to investigate possible correlations between EpoR expres-
sion and glioma vascularity.

Transforming Growth Factor �

Transforming growth factor � is a cytokine that shares 
about 40% homology with epidermal growth fac-
tor (EGF) and also binds to the EGF-receptor (EGFR) 
to produce its biologic effects. TGF-� is expressed by 
tumor cells in a large number of carcinomas and has a 
more potent proangiogenic effect than EGF (Schreiber 
et al., 1986). 

Renal cell carcinoma cells that are defi cient for pVHL 
rely on EGFR activation mediated by HIF-induced 
TGF-� for proliferation and survival (Gunaratnam et 
al., 2003). Upon binding to TGF-�, EGFR is activated, 
which can then activate PI3K (Bjorge et al., 1990; Hu 
et al., 1992). Activation of the PI3K/AKT pathway fur-
ther increases HIF-1 expression and activity (Zhong et 
al., 2000). Hence, TGF-� could lead to the activation of 
HIF-1-dependent gene transcription through the PI3K 
pathway. 

Expression of TGF-� correlates with vascularity and 
stage in a number of neoplasms, including gliomas (Cai 
et al., 1997; Eggert et al., 2000; Li et al., 2000b; Schlegel 
et al., 1990). Increased expression of TGF-� and EGFR 
has been reported in a number of neoplasms (Gerosa et 
al., 1989; Nister et al., 1988; Waha et al., 1996; Yung 
et al., 1990). Cells treated with TGF-� induce expres-
sion of VEGF via the transcription factor AP-2 (Detmar 
et al., 1994). TGF-� increases cell motility (El-Obeid 
et al., 1997), proliferation (Kurimoto et al., 1994), and 
invasiveness (Mori et al., 2000) in glioma cells. Addi-
tionally, blocking TGF-� expression inhibits cell growth 
in vitro and also results in a reduced tumorigenicity in 
vivo (Rubenstein et al., 2001; Tang et al., 1999). The 
direct role of TGF-� as a regulator of angiogenesis in 
GBM formation needs to be further elucidated. 

Transforming Growth Factor �

Transforming growth factor � is a cytokine with three 
different isoforms encoded by three separate genes. All 



Kaur et al.: HIF1-� in glioma angiogenesis

146 Neuro-Oncology ■ APRIL 2005

of the TGF-� isoforms are secreted as inactive proteins 
associated with a latency-associated peptide (McMahon 
et al., 1996). TGF-� is secreted by gliomas (Leitlein et al., 
2001) and has a wide variety of both tumor-suppressive 
and tumor-promoting effects (Van Meir, 1995; Wieser, 
2001). TGF-� ligands transmit signals by binding their 
serine/threonine kinase receptors, thus causing the phos-
phorylation and activation of SMAD family proteins. 
Upon ligand binding, dimers of TGF-� type II receptors 
join and phosphorylate TGF-� type I receptor dimers, 
which in turn phosphorylate the SMAD proteins. Upon 
activation, SMADs translocate to the nucleus, where 
they require interaction with various DNA binding co-
factors to specify the cell’s diverse responses to TGF-� 
(Massague and Wotton, 2000). 

HIF-1� stimulates TGF-� production in a cell-type 
and isoform-specifi c manner. HIF-responsive elements 
near the start site of the TGF-�3 gene were identifi ed 
and demonstrated to be responsive to hypoxia and to 
bind HIF-1� (Schaffer et al., 2003). The invasive phe-
notype of trophoblasts in the low-oxygen conditions at 
early pregnancy is mediated by HIF-1-induced TGF-�3 
(Caniggia et al., 2000). HIF-1� regulation of TGF-�1 is 
less clear, where depending on the cell type, TGF-�1 is 
either induced (Leungwattanakij et al., 2003; Norman 
et al., 2000) or reduced (Scheid et al., 2000; Zhang et 
al., 2003) in hypoxia and/or the presence of HIF-1�. To 
date, HREs have not been identifi ed or examined in the 
TGF-�1 promoter. HUVECs express increased levels of 
TGF-�2 in hypoxia, but HREs in the TGF-�2 promoter 
have yet to be identifi ed, so it is unclear whether this is a 
direct, HIF-dependent effect (Zhang et al., 2003). The 
relationships of TGF-�1, 2, and 3 and HIF-1� have not 
yet been studied in gliomas.

All three isoforms of TGF-� have been found in gli-
oma cell cultures, in cerebrospinal fl uid samples, and in 
brain tumor biopsies. Glioblastoma multiforme release 
active TGF-�1 and TGF-�2 (Leitlein et al., 2001), and 
TGF-�1 and TGF-�2 are secreted by both astrocytes 
and GBM. The receptors for TGF-� are also upregulated 
in GBM, especially as compared to nontumor glial tissue 
(Yamada et al., 1995). TGF-�1 and TGF-�2 can stimu-
late the proliferation of some glioma cell lines (reviewed 
in Van Meir [1995]). 

In gliomas, both TGF-�1 and TGF-�2 have been 
shown to stimulate VEGF production, and in hypoxic 
situations, cooperation between HIF-1� and SMAD 

proteins induced by TGF-� signaling leads to the induc-
tion of VEGF expression (Sanchez-Elsner et al., 2001). 
HRE and SMAD binding elements were identifi ed in the 
VEGF gene promoter, and strong induction of VEGF 
resulted from the activation of both HIF-1 and SMAD3 
(Sanchez-Elsner et al., 2001). TGF-� has been shown to 
have other proangiogenic activities in gliomas, including 
the upregulation of metalloproteinases, the downregula-
tion of metalloproteinase inhibitors (Wick et al., 2001), 
and the secretion of ECM (Rich et al., 1999). Inhibition 
of TGF- � activity by a novel small-molecule inhibitor 
(SB-431542) prevented the expression of VEGF and 
PAI-1 and inhibited proliferation of glioma cells in vitro 
(Hjelmeland et al., 2004). Such an inhibitor could prove 
useful in treatment of GBM by preventing some of the 
tumor-promoting effects of TGF-�. 

Conclusions

HIF is a transcription factor rapidly activated in cells 
under conditions of low partial oxygen pressure or 
hypoxia. HIF activates adaptation to oxygen depriva-
tion, including enzymes of the glycolytic cascade and 
proangiogenic cytokines. Some of the HIF-induced pro-
angiogenic factors such as VEGF/VEGFR and Ang-1/
Tie-2 elicit specifi c mitogenic effects on endothelial cells, 
and HIF induction of MMPs promotes endothelial cell 
migration by degradation of the ECM. Malignant glio-
mas contain multiple hypoxic regions, which exhibit 
elevated HIF activity, resulting in augmented expres-
sion of many HIF target genes and contributing to the 
growth and highly vascularized nature of these tumors. 
Activation of HIF expression in GBM appears to be 
initiated through a vicious cycle of induction of poorly 
functioning vasculature perpetuating the development 
of a hypoxic microenvironment throughout the tumor 
(Fig. 7) (Brat and Van Meir, 2004; Rong et al., 2005). 
The expression and activation of HIF are tightly regu-
lated through molecular pathways, which are attractive 
targets for therapeutic manipulation of tumor growth. 
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