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Therapeutic drug monitoring: antiarrhythmic drugs
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Antiarrhythmic agents are traditionally classified according to Vaughan Williams into
four classes of action. Class I antiarrhythmic agents include most of the drugs
traditionally thought of as antiarrhythmics, and have as a common action, blockade
of the fast-inward sodium channel on myocardium. These agents have a very
significant toxicity, and while they are being used less, therapeutic drug monitoring
(TDM) does significantly increase the safety with which they can be administered.
Class II agents are antisympathetic drugs, particularly the b-adrenoceptor blockers.
These are generally safe agents which do not normally require TDM. Class III
antiarrhythmic agents include sotalol and amiodarone. TDM can be useful in the
case of amiodarone to monitor compliance and toxicity but is generally of little
value for sotalol. Class IV antiarrhythmic drugs are the calcium channel blockers
verapamil and diltiazem. These are normally monitored by haemodynamic effects,
rather than using TDM. Other agents which do not fall neatly into the Vaughan
Williams classification include digoxin and perhexiline. TDM is very useful
for monitoring the administration (and particularly the safety) of both of these
agents.
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they be active or inactive. Examples of drugs with active
Introduction

(e.g. N-acetylprocainamide, (NAPA), the metabolite of
procainamide) and inactive (e.g. mexiletine) metabolites areThis article will discuss the role of Therapeutic Drug

Monitoring (TDM) in the clinical use of a large group of represented in this review.
Historically, assays were based on colorimetric, spectro-chemically disparate compounds. The unifying theme is that

most or all of these compounds have been at times used to photometric and fluorometric techniques which exhibited
decreasing degrees of specificity, respectively. Attempts totreat cardiac dysrhythmias. For many of these drugs (such as

the classical ‘Class I’ antiarrhythmic agents), this has been establish concentration-effect relationships were therefore
generally unsatisfactory or of questionable value. However,the major clinical application. For others (e.g. b-adrenoceptor

blockers, calcium channel antagonists, perhexilene), the the combination of these detection modalities with chroma-
tographic resolution, has allowed the firm establishment ofmajor therapeutic importance lies elsewhere. Many of these

drugs have undergone a decline in usage over recent years. TDM as a valuable adjunct to appropriate drug therapy.
In the early phase of investigation, the majority of drugThis applies particularly to the Class I antiarrhythmic agents,

many of which may well disappear from use over the next assays are based on high performance liquid chromatography
(h.p.l.c.) or on gas liquid chromatography (g.l.c.). Indecade. Nonetheless this is a group of compounds with

well-defined ‘therapeutic ranges’ and generally with dose- experienced hands these are specific, accurate and reproduc-
ible methods. Even greater specificity may be obtained usingdependent toxicity, where TDM continues to play an

important role. Increasingly, Class II and III agents are gas chromatography mass spectrometry (GCMS). However,
the potentially greater accuracy and reproducibility tendsreplacing the older antiarrhythmics. The value of TDM is

less clear-cut with many of these new drugs. not to be realised once introduced into laboratories
conducting assays on large numbers of specimens and
commonly involving less experienced analysts. The most

Determination of plasma concentrations of drugs for
commonly used routine techniques are those based on

TDM
commercial immunoassay kits [1], such as enzyme immuno-
assay (EIA), or fluorescence polarization immunoassayReliable, sensitive and specific assays for the drug of interest

are clearly a requirement to establish concentration-efficacy- (FPIA). The commercial methods may be relatively expens-
ive, and there is a potential for cross-reactivity of thetoxicity relationships. Assays need to be free from inter-

ference, not only from endogenous substances and from antibody with related drugs or metabolites. However, they
provide rapid, reproducible and generally accurate results,other concomitantly administered drugs, but also must

distinguish between parent drug and any metabolites whether require less skilled personnel, and are amenable to a high
degree of automation. In practice they commonly provide
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share the ability to block the fast inward sodium currentEnantiomers
responsible for the upstroke and rapid conduction of the
cardiac action potential. Hence they are capable of slowingMost commonly used routine assays, whether chromato-

graphic or immunoassay based, are not stereospecific. Indeed and even blocking intracardiac conduction. For this reason
it came as little surprise to many clinicians when recentwhile the chromatographic assays give concentrations which

are the sum of the concentrations of the individual large-scale mortality trials confirmed that many of these
drugs are capable, not only of preventing dysrhythmias, butenantiomers, immunoassays may be selective or non-selective

for the enantiomers and, generally speaking, there is no also of causing them [8–18]. This phenomenon of ‘pro-
dysrhythmia’ has become widely recognized, and has led toinformation available on their relative stereoselectivities. The

drugs used as racemates and which are of relevance to the a dramatic reduction in the usage of these agents, particularly
in Europe and Australasia.present review are, disopyramide, mexiletine, flecainide,

propafenone, sotalol, perhexiline, propranolol, and verapamil.
The ability to establish clear therapeutic ranges is made more

Class IA drugs (quinidine, disopyramide and procainamide)
difficult and data more questionable because of the lack of
information on the disposition of the individual enantiomers These drugs of which quinidine is the most widely used,

have very similar electrophysiological properties both in vitrowhich are commonly very different for these cardiac drugs.
Nevertheless, despite the intrinsic variability introduced, and vivo. They block both the inward sodium currents (an

action common to all Class I agents), and the outwardnonstereoselective assays have been used successfully and are
the basis for the vast majority of TDM services. There may potassium currents responsible for repolarization of the

cardiac action potential at concentrations in or near thebe a redefining of some current therapeutic ranges if
stereospecific assays are introduced into routine services. therapeutic range [3, 19]. For this reason they are capable

of causing proarrhythmic complications both via conductionAll but two of the agents to be discussed below have
traditionally been classified as possessing one or more of the slowing and via the promotion of oscillatory behaviour of

the action potential associated with delayed repolarization,four classes of antiarrhythmic action originally described by
Vaughan Williams (Table 1). While increasingly under giving rise to a form of polymorphic ventricular tachycardia

often referred to as ‘torsades de pointes’ [5, 20–23]. This ischallenge, this classification and the further subclassification
of the Class I agents into three subgroups ([2, 3] Table 2), particularly a concern with quinidine and disopyramide.

These drugs also share the unfortunate property that whileremains in widespread clinical use. It is far less complicated
than the more recently described ‘Sicilian Gambit’ [4]. their conduction-blocking actions are directly dose-

dependent, their action potential prolonging effects andFurther argument as to the relative merits of the various
classification systems is beyond the scope of this article, (for tendency to produce torsades de pointes may be more

marked at lower concentrations than at higher concentrationsreviews see [5–7]) and for reasons of familiarity and
pragmatism, the Vaughan Williams classification will be [19]. Indeed many clinical reports of torsades due to

quinidine and disopyramide have occurred with plasmafollowed below.
concentrations at the lower end of (or even below) the
therapeutic range [21, 22]. The reasons behind this paradoxClass I antiarrhythmic agents
are well described [19], and unfortunately complicate the

This is the oldest and by far the largest group and includes interpretation of TDM data with these compounds.
most of the classical antiarrhythmic agents. These compounds

Quinidine Quinidine is usually administered orally as the
Table 1 Vaughan Williams’ classification of antiarrhythmic sulphate or gluconate or in various long-acting forms. The
actions. elimination half-life for quinidine sulphate or gluconate is

5–8 h, but the sustained release formulations which areDrugs Actions
almost universally used produce adequate plasma concen-
trations for at least 8 h [24]. A new steady state is notClass I Quinidine Block fast sodium
achieved for at least 24–36 h after a change in dosageProcainamide current (hence slow
following the initiation of therapy with such a sustainedDisopyramide conduction)

Lignocaine release formulation. Accordingly TDM and dosage adjust-
Mexiletine ments should take this into account and should be based on
Flecainide trough levels sampled 8–12 h after the previous dose. Dosage
Propafenone adjustments should preferably not be made more frequently

than every 2–3 days. (This general principle of using troughClass II b-adrenoceptor Block effects of
blockers catecholamines levels and only altering doses after allowing 3–5 half-lives to

achieve steady state, applies to all drugs discussed below andClass III Amiodarone Prolong action
will not be repeated under each new agent).Sotalol potential and hence

Plasma concentrations of quinidine are now most com-refractoriness by
monly determined by FPIA or EIA. In early developmentblocking K+

fluorometric assays were used because of the intrinsic highcurrent

fluorescence of this drug [25], but these lack specificity [26].
Class IV Verapamil Block cardiac calcium

While apparently producing relatively reliable dataDiltiazem channel
[27], inherently greater specificity was obtained with the
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Table 2 Subgroups of Class I drugs.

Class Drugs Effects on action potential Summary of clinical effects

IA Quinidine Reduce rate of depolarization Moderate slowing of
Procainamide and prolong duration of cardiac conduction.
Disopyramide action potential Prolongation of

refractory periods

IB Lignocaine Reduce rate of depolarization Selective depression of
Mexiletine selectively in ischaemic ischaemic tissue. May

cells. Shorten action shorten refractory
potential duration periods

IC Flecainide Marked depression of Marked slowing of cardiac
Propafenone depolarization rate conduction. Small

increase in refractory
periods

introduction of h.p.l.c. assays [28, 29]. However, although Quinidine is implicated in a number of clinically
significant drug interactions, which may increase require-quinidine is a single, stable isomer (note that a commonly

promulgated fallacy is that quinidine and quinine are ments for monitoring. Inhibition of hepatic metabolism of
quinidine occurs with drugs such as cimetidine andenantiomers [30]), it may contain dihydroquinidine (which

is active), as a contaminant. Furthermore, several of the ketoconazole, and enhancement of metabolism by phenytoin
and rifampicin. Macrolide antibiotics, particularly erythromy-metabolites of quinidine are active, and accumulate to

clinically significant concentrations during chronic therapy cin, can both interfere with quinidine metabolism and
produce additive potassium channel blockade. This form of[31]. Earlier fluorescence assays were unreliable in these

respects. Moderate cross reactivity of the antibodies in the interaction has been reported in association with life-
threatening torsades de pointes [21]. Quinidine reduces thecommonly used FPIA assay [32] occurs with

3-hydroxyquinidine whose activity is #20% of that of the renal and nonrenal clearance of digoxin [35–37] and displaces
digoxin from tissue binding sites. This leads to a reductionparent. This is one of the metabolites for which a correlation

was identified between concentration and electrophysiologi- in the volume of distribution of digoxin of 30–40% and a
reduction in digoxin clearance of 30–50%. Serum digoxincal responses in human subjects [31]. The antibodies also do

not distinguish between quinidine and the dihydroquinidine concentrations rise rapidly but do not plateau for up to 5
days or more. Most recommend halving the dose of digoxincontaminant.

Therapeutic plasma levels are generally quoted as on addition of quinidine and then monitoring digoxin
levels closely.3–8 mg ml−1 [33]. As referred to above, the dose-response

curve for a particular form of quinidine toxicity, torsades de
pointes, does not correlate well with this range, which Disopyramide Disopyramide may be given orally or

intravenously. Oral bioavailability is about 80% and peaklargely refers to the efficacy of the compound in suppressing
ectopic activity. Action potential prolongation and hazard plasma levels occur at 1–2 h [38]. The usual oral dose is

300–600 mg d−1.for torsades de pointes are actually maximal at the lower
end of the therapeutic range, and may occur at concentrations Disopyramide has a half-life of 4–6 h in healthy volunteers.

Elimination is largely renal, and half-life rises with fallingbelow this range [19]. This helps to explain the fact that
torsades de pointes frequently occurs either early in a course creatinine clearance.

50–80% of the drug is normally excreted unchanged inof quinidine therapy or after the quinidine has been ceased
and the blood levels are falling. Little can be done about the urine. There are several metabolites that probably do

not contribute to the antiarrhythmic effect, but one has 24this, other than pursuing a high level of clinical awareness.
This is the rationale for the increasingly common practice times the anticholinergic potency of the parent, and may

contribute to anticholinergic side-effects [39]. Long-actingof admitting patients to hospital for 2–3 days at the initiation
of quinidine therapy. formulations of disopyramide are available and effective [40].

Most commonly, disopyramide is assayed by EIA orProtein binding is 70–80%, and 80% of the drug is
metabolised in the liver. The remainder is excreted FPIA. There are apparently no data on the relative

specificities of the antibodies for the enantiomers of thisunchanged in the urine. Renal excretion occurs by
glomerular filtration and is pH dependent. Renal clearance racemic drug, which exhibits stereoselectivity with respect

to metabolism, renal clearance and protein binding [41].of quinidine may diminish with increased urine pH [34],
and reduced creatinine clearance, and hence is decreased in Interestingly, total clearance of each of the isolated enanti-

omers is similar but the S-enantiomer is cleared significantlythe elderly. Quinidine is not susceptible to peritoneal or
haemodialysis. There is significant interpatient variability in more slowly when the racemate is given [42].

R-disopyramide and S-disopyramide have very similarbioavailability with a wide range of final daily dose (400–
1200 mg day−1) being required to achieve therapeutic activities with respect to prolonging the effective refractory

period [43]. Consequently, while there are assays availableplasma concentrations. For these reasons therapeutic drug
monitoring is definitely indicated. to determine the enantiomers of disopyramide [44], the lack
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of stereospecificity of commonly used TDM assays would via the kidneys and also undergoes limited metabolism.
When monitoring procainamide therapy, it is customary tonot appear to be a major concern S-disopyramide is 3–4

times more potent than R-disopyramide with respect to measure serum levels of both procainamide and NAPA
which has significant antiarrhythmic action, particularlyanticholinergic activity [45].

The therapeutic range for disopyramide concentration is Class III activity ( prolongation of the action potential via
potassium channel blockade). NAPA (but not procainamide),#2.8–7.5 mg ml−1 [46]. Unlike most other antiarrhythmic

drugs, protein binding of disopyramide shows nonlinear, can be removed by haemodialysis and haemoperfusion, but
not by peritoneal dialysis [57]. Hepatic and/or renal diseasesaturable characteristics [47, 48]. This is of clinical importance

since apparently small increases in total plasma concentration will obviously interfere with excretion, and the dosage of
procainamide should be reduced accordingly, based onof disopyramide may mask larger rises in free (active) drug

concentration [47]. There appears to be a better correlation TDM. Cardiac failure by interfering with hepatic metabolism
and renal function may also necessitate dosage reduction.between the overall change in QTc interval or ventricular

tachycardia cycle length and free concentrations than with The ratio between procainamide and NAPA in the plasma
will depend on the acetylator status of the individual. Slowtotal concentrations of disopyramide [49, 50]. Routinely,

however, total concentrations are reported and the quoted acetylators will have a low NAPA/procainamide ratio. The
therapeutic plasma concentration of procainamide is gener-therapeutic range is that for total drug.

Disopyramide binds significantly to a1-acid glycoprotein, ally thought to be in the range of 4–12 mg ml−1.
The FPIA and EIA assays are used most commonly forconcentrations of which rise during many acute illnesses,

including myocardial infarction [51]. In addition to these TDM of procainamide and of the active metabolite NAPA.
The antibodies are, respectively, specific for both parent andcaveats, as with quinidine, there is correlation between

relatively low plasma concentrations of disopyramide and metabolite [32]. Whether the therapeutic range should be
based on the additive concentrations of the parent andhigh risk of torsades de pointes [19].

Interpretation of disopyramide assays is complicated not metabolite (as is commonly the protocol) or on individually
defined therapeutic ranges for each of procainamide andonly by the issues outlined above but by a number of other

matters. a1-acid glycoprotein levels are generally higher in NAPA has not been established, but it is reasonable to
monitor concentrations simultaneously. Addition of concen-elderly individuals, although the effect of this on decreasing

amounts of free drug is probably balanced by the decreased trations would appear to be an intrinsically flawed approach
because it assumes equal activity and toxicity of parent andrenal function seen in elderly patients. Systemic clearance in

children is at least twice as high as in normal adults although metabolite, and can only be done if both are expressed in
molar units.the compound does not commonly feature in paediatric

practice.
Normally about 80% of disopyramide is excreted

unchanged in the urine and although it is a basic compound,
Class IB drugs ( lignocaine and mexiletine)

alterations in urine pH have little effect on the rate of renal
excretion of disopyramide [52]. From a practical point of Lignocaine Lignocaine is widely used parenterally for the

control of ventricular tachydysrhythmias. It is also findingview it is important to either decrease the dose or more
commonly increase the dosing interval of disopyramide as an increasing role (along with orally active agents such as

mexiletine and flecainide) in the management of variouscreatinine clearance falls [53].
Drugs which induce hepatic enzymes such as rifampicin chronic pain syndromes particularly those thought to be

neurogenic in origin [58–60].and phenytoin increase conversion of disopyramide to its
more anticholinergic metabolite and may enhance anticholi- Because of extensive hepatic first pass metabolism to

potentially toxic metabolites [61, 62], lignocaine must benergic side-effects. Macrolide antibiotics, particularly
erythromycin, can both interfere with disopyramide metab- administrated parenterally. It has a volume of distribution at

steady state of about 1.3 l kg−1, a distribution half-life ofolism and produce additive potassium channel blockade.
This form of interaction could lead to life-threatening 8 min, and a plasma elimination half-life of #2 h. There

are a number of effective dosage regimens in the literaturetorsades de pointes. Disopyramide does not appear to
interact significantly with digoxin or warfarin. designed to rapidly produce therapeutic blood levels without

overshooting and causing toxicity. These usually involve a
bolus or rapid infusion followed by a steady infusion toProcainamide Procainamide is usually given orally at a total

dose of 3–6 g day−1. Bioavailability is high and peak plasma maintain plasma concentrations constant. Plasma concen-
trations should certainly be checked, to minimize toxicityconcentrations are achieved 1–2 h after tablet ingestion.

Protein binding is only 10–20% and the elimination half- particularly if the infusion is to be continued beyond 24 h.
If inefficacy is an issue, then plasma levels should be checkedlife is quite short (3–5 h). For this reason long acting

formulations are commonly prescribed where this drug is to when clinically indicated.
The usually quoted therapeutic plasma concentrations arebe used chronically. Approximately 40–70% of procainamide

is excreted unchanged in the urine by glomerular filtration approximately 2–6 mg ml−1. Toxicity is generally concen-
tration-dependent, as is efficacy. There is no significant crossand active tubular secretion [54]. Approximately 16–30% of

procainamide is acetylated by hepatic N-acetyltransferases, reactivity of the most commonly used EIA and FPIA assays
[33, 63] with the primary metabolites, the concentrations offorming N-acetylprocainamide (NAPA). Proportions of

metabolism to NAPA are about 16–20% in ‘slow acetylators’, which are relatively low in plasma [63, 64]. Therapeutic
ranges have not been established for treatment of chronicand 25–30% in ‘rapid acetylators’ [55, 56]. NAPA is excreted
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pain but the values quoted for antiarrhythmic effects appear ranges from 7 to 15 h in healthy volunteers and averages
about 10 h in patients with cardiac disease [76]. There isclinically satisfactory.

Lignocaine has two active metabolites, monoethylglycine considerable variability, however, and plasma concentration
monitoring is recommended. Plasma flecainide levels arexylidide (MEGX) and glycine xylidide (GX) which also

have short half-lives of 2 h and 1 h, respectively. Some of related linearly to dose over a wide range.
The therapeutic range is #200–1000 ng ml−1, withthe central toxicity of lignocaine is attributed to central

accumulation of the metabolites, particularly in patients with toxicity possible over 1000 ng ml−1 and quite likely over
1600 ng ml−1 [77, 78]. The drug is rapidly metabolized toheart failure [62, 65].

Old age, and any drug or disease state which influences compounds which are far less potent than the parent [79].
The depression of conduction velocity is quite stronglyhepatic blood flow or metabolism will have significant

effects on the pharmacokinetics of lignocaine. Common, concentration-dependent, with no complicating factors such
as exist with quinidine or disopyramide. The duration ofclinically relevant examples include alcoholic liver disease,

reduced hepatic blood flow due to heart failure or the QRS interval on the surface ECG can be used as a
crude indication of toxicity, with prolongation of the QRSb-adrenoceptor blockers, and reduced metabolism due to

cimetidine. interval signifying conduction slowing in normal myocar-
dium. Nonetheless, this is not recommended as a substitute
for plasma concentration monitoring.Mexiletine Mexiletine is structurally very similar to

lignocaine but is well absorbed after oral administration, There is some confusion arising from the use of the
acetate salt of flecainide, rather than the free base, for thewith peak plasma concentrations occurring within 2–4 h.

Bioavailability is about 80% [66–68]. For oral doses of 100– reference standards used in some FPIA kits and chromato-
graphic procedures [80]. Indeed, the therapeutic range600 mg day−1 there is a linear relationship between plasma

concentration and dose [69]. The therapeutic range is reported for flecainide (200–1000 ng ml−1) is that based on
the acetate salt rather than the free base, flecainide; the#0.6–1.7 mg ml−1 [68] for antiarrhythmic effects; the

comment on lignocaine concentrations for chronic pain corresponding range would be 175–870 ng ml−1 [81]. While
it can be argued that use of molar units overcomes thisapplies also to mexiletine (as it does also for flecainide).

The mean half-life of elimination after oral administration difficulty, the range is probably not sufficiently well defined
for clinical utility.of a single dose is about 6–10 h but it may be higher

(11–17 h) in patients with cardiac disease [66–68]. The immunoassays do not distinguish between the
enantiomers of flecainide. Stereospecific h.p.l.c. assays areMexiletine is eliminated largely by hepatic metabolism, with

85% being metabolised to inactive metabolites. available [82–84]. However, there is little or no difference
in the ability of the enantiomers of flecainide to depressApproximately 15% is excreted unchanged in the urine,

and as long as creatinine clearance is above 10 ml min−1, sodium channels [85–87] and, consequently, it is unlikely
that the relative disposition of the enantiomers is important.renal insufficiency has little or no relevance to plasma

kinetics for mexiletine. Being a weak base, the proportion In healthy subjects, 80–90% of oral flecainide is excreted
in the urine either as unchanged drug or as relativelyof drug excreted unchanged in urine is pH dependent. The

half-life of mexiletine at pH 5.0 (2.8 h) is less than half of inactive metabolites. The presence of heart failure prolongs
flecainide plasma half-life but does not affect urinarythat at pH 8.0 (8.0 h) [70]. Mexiletine cannot be removed

by dialysis. excretion after a single dose, and during long-term adminis-
tration patients with heart failure may require a lower dailyThere are variable and stereoselective differences in the

disposition of the mexiletine enantiomers [71, 72]. The flecainide dose, (although it is generally recommended that
flecainide is not given in the presence of clinical leftR-enantiomer has been reported to have greater antiarrhyth-

mic activity [73]. Mexilitine is generally assayed using achiral ventricular dysfunction). Impairment of renal function
prolongs plasma half-life and this effect correlates quite wellGC or h.p.l.c. based assays, although stereoselective assays

are available [74]. While intersubject variability in response with creatinine clearance. Flecainide is not significantly
removed by haemodialysis.may be explained in part by variable disposition of the

enantiomers there are no studies which have investigated Plasma protein binding of flecainide is #40%, and is
relatively constant across the therapeutic concentration rangethe correlation between concentration and effect using

stereoselective assay. and above.
Flecainide exhibits polymorphic metabolism, cosegregat-Drugs which induce hepatic enzymes have been shown

to enhance the hepatic elimination of mexiletine. These ing with debrisoquine. Deficiency of the CYP2D6 isozyme
(poor metabolisers) results in impaired metabolism but onlyinclude rifampicin and phenytoin. By increasing the conju-

gation of mexiletine with glucuronic acid, cigarette smoking of the R-enantiomer [88], the S-enantiomer presumably
being metabolised by other pathways. Furthermore, quini-also enhances the elimination of mexiletine. Cimetidine,

morphine and atropine can delay the absorption of mexiletine dine which is a potent inhibitor of P4502D6, significantly
reduces the clearance of R-flecainide [89]. The resultingfrom the gut. Maximal blood concentrations and half-life

are unchanged. increased concentrations of flecainide may also lead to
increased QRS [89] and proarrythmic effects [90].

Class IC drugs (flecainide, propafenone) Propafenone Propafenone is a Class IC agent but also
exhibits some b-adrenoceptor blocking action [91, 92]. It isFlecainide Flecainide is very well absorbed orally with

negligible hepatic first pass effect [75]. Elimination half-life well absorbed orally, with maximum plasma concentrations
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occurring at 2–3 h [93]. Hepatic first-pass metabolism is
Class III antiarrhythmic agents

extensive however, leading to a bioavailability of only
10–20%. Kinetics are nonlinear [94, 95]. Plasma half-life

Sotalol
varies widely from about 2 to about 12 h.

Reported effective plasma concentrations range widely Sotalol is an increasingly popular antiarrhythmic agent which
possesses both nonselective b-adrenoceptor blocking activityfrom 40 to over 3000 ng ml−1 [96–99]. In general, plasma

concentration appears to correlate poorly with antiarrhyth- and Class III antiarrhythmic action [108–110]. This latter
action is due to blockade of outward potassium currents,mic efficacy. Some of the reason for this may be genetic

differences in metabolism discussed below. This has led to and produces a dose-dependent prolongation of cardiac
action potential duration. It also produces a propensity tothe recommendation that efficacy and toxicity should be

monitored more by electrocardiographic parameters (such torsades de pointes [21, 111], which is generally associated
with high blood levels of sotalol; this risk is exacerbated byas QRS prolongation), and degree of suppression of

overt dysrhythmias, rather than by plasma drug hypokalaemia which may occur with concomitant high
dose diuretics.concentrations.

Propafenone is a racemic drug [100]. Plasma concen- The oral bioavailability of sotalol is about 60%, and there
is no significant hepatic first-pass metabolism. More thantrations are generally determined by h.p.l.c. Stereospecific

assays have been developed and applied to bioequivalence half the oral dose is recovered unchanged in the urine and
there are no known active metabolites, nor is there anytesting [101]. Interpretation of the plasma concentrations of

propafenone is potentially complex because not only do significant plasma protein binding. Hence fluctuations in
serum concentration are small. Moreover, the lack ofthe enantiomers have differing activities, but the metabolite,

5-hydroxypropafenone, is antiarrythmic [102] and achieves metabolic elimination means that this drug, unlike the
structurally related b-adrenoceptor antagonists such astherapeutically relevant concentrations. While the enanti-

omers are similar with respect to antagonising sodium propranolol and metoprolol, does not exhibit polymorphic
metabolism.channels, S-propafenone is the enantiomer with

b-antagonist activity [100]. Furthermore, R-propafenone The plasma half-life is long, ranging from about 10–15 h
and averaging #12 h. Plasma concentrations are linearlyimpairs the metabolism of S-propafenone such that the

actions of the racemic drug are not simply those predicted related to dose, and also vary directly in proportion to
changes in creatinine clearance.by summation of the effects of the individual enantiomers

[103]. The usual oral dose of sotalol is 80 mg twice daily to
160 mg twice daily. Total daily doses above 320 mg−1 dayIn more than 90% of patients, propafenone is metabolised

rapidly and extensively in the liver [99, 100, 104]. In less lead to an increased incidence of torsades de pointes. In the
presence of diminished renal function, the first step is usuallythan 10% of patients, the principal hepatic cytochrome

P-450 enzyme responsible for propafenone metabolism, to prolong the dosing interval to once daily. With creatinine
clearance below 10–30 ml min−1, dosing every second dayCYP2D6, appears to be either deficient or absent [99, 104,

105]. These patients demonstrate marked reduction in may be sufficient. Patients with more severe degrees of renal
failure than this need careful blood concentration monitoring.propafenone clearance, with long elimination half-life and

high plasma concentrations relative to dose [99]. They are There are no major pharmacokinetic drug interactions
commonly associated with sotalol usage. Sotalol, however,more susceptible to central nervous system side-effects and

b-adrenoceptor blocking effects, owing to the high plasma causes all of the side-effects predictable from its
b-adrenoceptor blocking action including a number ofconcentration of the parent compound. However, the drug

appears to be equally antiarrhythmic in both normal and pharmacodynamic interactions with other cardioactive com-
pounds such as calcium channel blockers and otherslow metabolisers. As noted above the principal metabolite,

5-hydroxypropafenone, also possesses significant Class I antiadrenergic drugs with which it may produce additive
negative inotropic or chronotropic effects. It also mayantiarrhythmic actions [102].
produce additive effects in terms of slowing cardiac
repolarization, leading to enhanced prodysrhythmia with

Class II antiarrhythmic agents (b-adrenoceptor
agents which also block outward potassium currents includ-

blockers)
ing amiodarone, tricyclic antidepressants, phenothiazines,
terfenadine, astemizole and macrolide antibiotics, particularlyThe b-adrenoceptor blockers have a significant antiarrhyth-

mic efficacy which is often discounted by clinicians [106, erythromycin.
Therapeutic drug monitoring is not commonly carried107]. In addition they are the only class of antiarrhythmic

agent to have demonstrated convincing mortality reduction out in association with sotalol usage. It may be of value in
difficult situations, particularly in association with severepost-myocardial infarction, an effect largely or entirely due

to a 30% reduction in sudden death rates in these patients. renal dysfunction or where there is a question concerning
compliance. Plasma concentrations of sotalol during chronicThey therefore represent an extremely valuable and some-

what under-rated component of the antiarrhythmic arma- oral therapy generally range from #1–3 mg ml−1 [109,
112]. Much more commonly however, the dosage ismentarium of the clinician. On the other hand, their efficacy

and side-effects correlate poorly with plasma concentrations, monitored according to effects on the QT interval, with
prolongations of more than 15–20% being regarded as anand unlike the Class I agents, there is little or no role

for therapeutic drug monitoring with b-adrenoceptor indication to reduce the level or prolong the dosage interval.
Sotalol concentrations in plasma are generally determinedblockers.
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by h.p.l.c. [113–115, 116], and stereospecific assays have the metabolite is active the therapeutic range is based on
reporting of parent drug concentrations only. This practicebeen developed to monitor the disposition of the enantiomers

[117]. There are relatively minor differences in the dispo- is intrinsically flawed, since ignoring the metabolite concen-
trations which may be greater than the parent makessition of the enantiomers following administration of the

racemate, the form used therapeutically. This is attributed definition of a clear therapeutic range unlikely.
There are a number of potentially significant drugto stereoselective differences in plasma protein binding.

Their half-lives are similar [118]. The activity of the interactions associated with amiodarone. In particular it may
elevate serum digoxin levels and potentiate the actions ofracemate is primarily attributable to the (−)-enantiomer

[119]. warfarin. When amiodarone is added to a maintenance
digoxin regimen, the serum digoxin concentration rises
linearly for up to a week until a new plateau is reached

Amiodarone
[127, 132, 133], and this may result in significant digitalis
toxicity. The mechanism for this interaction is still unclear.This very widely used drug is commonly classified as a

Class III agent and certainly prolongs cardiac action potential The appropriate action is generally to halve the dose of
digoxin and check plasma digoxin concentrations.in chronic dosing. Nonetheless it has a number of other

actions which may well contribute both to its antiarrhythmic In patients taking warfarin, the INR is prolonged by the
administration of amiodarone [134]. The mechanism of thisand proarrhythmic potential. These include significant

sodium channel blocking (Class I action), significant antisym- interaction is also unknown. Additionally, amiodarone will
produce additive cardiac depression with b-adrenoceptorpathetic action of a non competitive kind [120] and some

degree of calcium channel blockade. It has been widely used blockers and calcium channel blockers.
since the 1960s, initially as a vascular smooth muscle relaxant
for angina and subsequently as an antiarrhythmic agent. In

Perhexiline
many countries including Australia it is now the most
commonly used antiarrhythmic. Perhexiline maleate has been used to treat angina pectoris

for some 25 years without ever achieving wide popularity.The use of amiodarone is complicated by its very unusual
pharmacokinetics and unwanted side-effects. These aspects It lacks significant negative inotropy or haemodynamic

effects, but its widespread use has been significantlyare both well covered by recent reviews [120, 121], and
will only be briefly outlined here. The administration of hampered by what are perceived to be unpredictable serious

hepatic and neurological side-effects [135–139]. It wasamiodarone (normally by mouth) is complicated by variable
bioavailability (20–80%), and a terminal half-life of elimin- originally labelled as a calcium antagonist and subsequently

shown to block at least some outward potassium channelsation which is usually 35–40 days, but may exceed 100
days. The major metabolite (desethylamiodarone) accumu- [140]. There is considerable doubt, however, as to whether

either of these actions is of relevance at therapeutic bloodlates in high concentration in plasma and tissues, and
possesses very similar electrophysiological properties to the concentrations and recent evidence suggests that its anti-

ischaemic actions may relate to its inhibition of carnitineparent [122, 123]. Dosage regimen varies very widely but
most clinicians use a loading dose of 600 mg to palmitoyltransferase-1 [141].

Whatever its mechanism of action however, it has become2000 mg day−1 for 1–8 weeks, followed by reduction to a
maintenance dose of the order of 200–400 mg day−1. evident that toxicity is directly related to perhexiline blood

concentration, and that the drug has a saturable rate ofWhere rapid loading is desirable, amiodarone maybe given
intravenously (via a central vein) but the Class III action hepatic metabolism that is genetically determined [142,

143]; see below). With the advent of a reliable assay fordoes not generally appear in the first few hours or even days
of administration. quantifying blood concentrations of perhexiline there has

been a pronounced decrease in the incidence of seriousMany of the side-effects appear to be dose-dependent but
blood concentration monitoring, other than to monitor side-effects with careful TDM.

The concentrations are generally reported as those of thecompliance, is of limited benefit. The drug and its metabolite
are found in tissues at very much higher concentrations than racemic drug which is the form used clinically. There are

no commercially available immunoassays and concentrationsin plasma [123, 124]. There is some evidence that plasma
concentrations above 0.5 mg ml−1 seem to be required for of perhexiline are measured routinely in relatively few

laboratories. Direct assay by h.p.l.c. with fluorescenceefficacy, but there are no convincing data showing a
correlation between actual plasma concntrations and antiar- detection [144], or with derivatization which allows determi-

nation of the plasma concentrations of the cis- and trans-rhythmic effect [125]. Similarly while serious toxicity seems
to be more likely at concentrations above 2.5 mg ml−1 [126, monohydroxy metabolites [145] are described. GC with

electron capture detection following derivatization also has127], its incidence is more reliably correlated with measures
of total drug usage, suggesting the importance of accumu- been used to quantify perhexiline and metabolites in plasma

[146]. However, given the very high and stereoselectivelation in target tissues over time.
Amiodarone concentrations are determined by h.p.l.c. disposition of the enantiomers (2.5 l min−1 (+)-enantiomer,

1.0 l min−1, (−)-enantiomer [147]) one could question thewhich can separate parent from the active metabolite,
desethylamiodarone [128, 129]. Amiodarone and desethyla- likely value of such nonstereoselective assays, and the likely

association between concentration of racemic drug and effect.miodarone are unstable and should be protected from light
[130]. The assays available have been recently reviewed with Plasma perhexiline concentration does not correlate with

dose, as metabolism is saturable within the usual clinicalrespect to suitability of internal standards [131]. Although
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dose range [144]. The major metabolic pathway of perhexi- Furthermore, endogenous substances [154], generally
referred to as digoxin-like immunoreactive substances/line is hepatic metabolism via CYP-2D6 and it is subject to

genetic polymorphism, with up to 10% of the Caucasian factors (DLIS/DLIF) may also elicit a ‘digoxin-like’ response.
Commercial kits demonstrate variable specificity for DLIFpopulation being ‘slow metabolizers’ [148]. Thus the dose

range associated with ‘therapeutic’ plasma concentrations is [155]. DLIF may be more problematic in renal failure [156],
hepatic dysfunction, and neonates with attempts to reducevery wide and it may range from 50 mg once per week to

600 mg day−1 [149]. The usual maintenance dose range is the interference by ultrafiltration giving improved specificity,
but not in all specimens [157]. A more recent monoclonal100–400 mg day−1, aiming to achieve a plasma concen-

tration in the range of 0.15–0.6 mg ml−1 (0.38–1.5 mm). antibody assay has demonstrated improved specificity both
with respect to interference by DLIF and digoxin metab-Patients who remain symptomatic with concentrations in

this range may achieve additional benefit by cautious dose olites, and may also give reliable unbound concentrations of
digoxin in the presence of ‘Digibind’ [153]. Thus digoxinincreases to achieve a concentration in the range of

0.6–1.2 mg ml−1. Significant hepatotoxicity and peripheral concentrations need qualified interpretation in the light of
these possible interferences and cross reactivities and mayneuropathy is usually only observed with chronic plasma

concentrations above 1.2 mg ml−1 (3 mm). The most practical explain, in part, the variable response of patients even within
the ‘therapeutic’ range of digoxin concentrations.way of identifying slow metabolizers is to commence

patients on 300 mg once daily for 1 week with a subsequent Since digoxin acts by binding to and blocking the sodium-
potassium pump, there is significant potentiation of digoxinreduction to 100 mg once daily. A blood level performed

after the initial week of therapy will be very high in the toxicity in the presence of hypokalaemia which in itself
reduces pump activity significantly. Every effort should be10% of the population who are slow metabolizers, and these

patients should be reduced to a very low maintenance dose made to maintain normal plasma potassium concentrations
in patients taking digoxin. Similarly, digoxin is to an extentof 50–100 mg once weekly monitored by further TDM.

The remaining patients should be maintained initially on potentiated by elevated serum calcium concentration and
vice versa.100 mg once daily after the first week of therapy with

further dose increments of 50–100 mg daily at 2–4 week Serum concentrations of digoxin may be dramatically
influenced by other medications. Interaction of digoxinintervals based on plasma concentration measurements and

clinical efficacy. with quinidine is now well documented with the adminis-
tration of quinidine to a patient already on a stable digoxin
regimen leading to an increase in the plasma concentration

Digoxin
of digoxin of 50–150% [158]. This increase begins to appear
within hours. It is partly due to displacement of digoxinDigoxin is by far the most widely prescribed cardiac

glycoside. It may be administered intravenously, intramuscul- from binding sites, and maintained by a reduction in renal
clearance of digoxin [159]. Inhibition of the ‘drug-pump’arly or orally. Oral bioavailability is about 75%, and the

half-life is 40–150 h. It is not metabolized to a significant P-glycoprotein, by quinidine may be the major mechanism
[160, 161]. A number of other cardioactive agents, includingdegree although metabolic clearance becomes more signifi-

cant as renal function declines. It is excreted unchanged in verapamil, amiodarone, propafenone and diltiazem also
commonly produce dramatic increases in digoxin concen-the urine and for this reason dosage has to be adjusted

carefully in patients with renal disease. trations. Anti-adrenergic agents do not affect serum digoxin
levels but may produce additive negative chronotropicDigoxin was one of the first agents for which routine

TDM was introduced. The fall in the prevalence of clinically actions.
significant digitalis toxicity since plasma concentration assays
became readily available in the 1970s has been attributed
to TDM.

Conclusions
Digoxin is commonly given to adults in a dose of 0.25 mg

once daily if renal function is normal. The usually accepted Therapeutic drug monitoring has played an extremely
important role in the development and clinical applicationtherapeutic plasma concentration range is between 0.5 and

2.0 ng ml−1. The therapeutic and toxic concentration ranges of many agents used to treat cardiac rhythm disturbances.
This is particularly true of the Class I agents and ofoverlap and toxicity may occur even within the therapeutic

range. There is some clinical trial evidence that efficacy is perhexiline and digoxin. TDM has been less important in
monitoring the use of b-adrenoceptor blockers and Class IVconcentration-dependent within the therapeutic range, and

considerable evidence of concentration-dependence toxicity. drugs and has played only a limited role in the use of
amiodarone, where there is some value in monitoring forDigoxin is almost exclusively assayed by EIA and FPIA

for the purpose of TDM. The commonly used immunoassays compliance and toxicity.
The world wide reduction in the use of Class Imay not distinguish digoxin from other drugs e.g. spironolac-

tone and its metabolites [150] and there is substantial cross antiarrhythmic agents will somewhat reduce the relevance
of TDM to the practising cardiologist however, although itsreactivity with digoxin metabolites. The assays for digoxin

are also unreliable for 10 days or more following adminis- role in monitoring digoxin and perhexiline will remain.
There are a number of novel, pure Class III antiarrhythmictration of digoxin antibodies (e.g. ‘Digibind’) for the

treatment of digoxin toxicity because of competition for agents in various stages of development, some of which will
definitely require TDM if they come into wide-spreadbinding of digoxin between the digoxin antibodies in the

assay kit and the circulating Fab fragments [151–153]. clinical use.
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