
Is intent-to-treat analysis always (ever) enough?

Lewis B. Sheiner

Departments of Laboratory Medicine, Biopharmaceutical Sciences, Medicine; Schools of Medicine and Pharmacy; University of California San Francisco,

Box 0626, UCSF, San Francisco, CA, 94143, USA

Keywords: hierarchical models, intention-to-treat, missing data, noncompliance,

pharmacokinetic-pharmacodynamic modelling

Introduction

In a commentary written several years ago [1], Professor

D. Rubin and I pointed out that one is usually advised to

analyse clinical trials – the preferred modern strategy for

empirical evaluation of medical therapies [2, 3] – for

significance levels and estimates using only, or at least

primarily, the intention-to-treat principle (see, e.g. [4]).

We noted, however, that the intention-to-treat estimator

(see below) estimates so-called ‘use-effectiveness’, the

causal effect on outcome of prescribing the drug, rather

than the medically more important ‘method-effectiveness’,

the causal effect on outcome of actually taking the

drug. We argued that studies should be designed so that

they can yield valid estimates of method-effectiveness,

although so long as protocols are not followed exactly,

such estimates may depend heavily on additional assump-

tions (scientific models – see section on longitudinal data

with dropout, below); ones that go beyond the data at

hand. In this paper, I present a conceptual framework for

thinking about causal estimands and estimators for both

use and method effectiveness, with emphasis on the latter,

focusing on the problems posed by deviations from

protocol, notably noncompliance and dropout.

The paper is a review and exposition, rather than a

presentation of original material. Section 2 presents a

conceptual framework, setting context, defining causal

estimands (population quantities describing causal effects

of treatments) for use effectiveness and method effective-

ness, how these change in the face of noncompliance, and

the problem created by dropout; section 3 discusses

estimators of the causal estimands defined in section 2;

section 4 considers the effect of dropout on the estimators;

and section 5 discusses implications for study design.

Although different in some details, the ideas, point of

view, and notation presented here are essentially those

presented in the statistical literature by D. Rubin and

colleagues, based on the Rubin Causal Model. Rather

than provide extensive references throughout this work,

I limit further citations to important additional works

which discuss specific points or present examples, and

offer here a minimal set of references which provide

background and an entree to the relevant literature [5, 6],

and a more complete and technical discussion of non-

compliance [1, 7–9], dropout [10, 11], and scientific

modelling of drug dose-concentration-response [12, 13].

Conceptual framework

Data and design

The context is a clinical trial in which n individuals are

nominally assigned either to a control treatment, coded 0,

or a test treatment, coded 1, and a univariate outcome is

observed. The control and test treatments are assumed to

differ. The random variable indicating nominal assignment

for individual i is Zi, and the random variable denoting

the individual’s outcome is Yi.

A key design feature of randomized clinical trials is

‘random assignment’ to nominal treatment. Since the

validity of every estimator discussed in section 3 depends

on this assumption, it deserves to be stated formally: it is

assumed henceforth that the probability of being assigned

to test (control) treatment is independent of pretrial

prognosis and all other baseline patient characteristics.

Two types of deviation from protocol will be of

concern to this paper, noncompliance and dropout, and I

introduce next the notation required to deal with them.

Non-compliance

Non-compliance recognizes that nominal assignment, the

treatment assigned by the experimenter, may differ from

actual assignment, the treatment taken by the patient. The

random variable indicating actual assignment is Di; it

can be written Di(Zi) to explicitly recognize that it is a

function of assignment. Di can take the value 0, 1 or

Correspondence: Professor L. B. Sheiner, Departments of Laboratory Medicine,

Biopharmaceutical Sciences, Medicine; Schools of Medicine and Pharmacy;

University of California San Francisco, Box 0626, UCSF, San Francisco, CA,

94143, USA.

Presented at the 3rd Meeting on Clinical Measurement and New Drug

Development, Royal Society of Edinburgh, 13–14 June 2001.

f 2002 Blackwell Science Ltd Br J Clin Pharmacol, 54, 203–211 203



‘other’, where the first two values correspond to values

of Z – control (0) and test (1) – and the last indicates no

particular treatment, but simply that actual treatment

is unknown; some alternative is pursued. Thus, while

recognizing only one ‘version’ of control and test

treatments, I acknowledge the possibility of multiple

versions of the alternative. In general, Y will be a function

of D (and hence Z ). Let Yi(d ) denote the potential outcome

(see below) for individual i actually receiving treat-

ment Di=d. To maintain parallelism with dropout

(below), I introduce the (redundant) random variable

UiðzÞ :=IðDiðzÞ=z), where I(e) is the indicator function,

taking the value 1 if its logical argument is true, and 0 if it is

not, to designate whether the intended outcome is

observed (Ui=1) or not (Ui=0).

I assume that the compliance tendency of each

individual in the circumstances of the trial is a (unknown)

baseline variable, Vi, which determines the values of Ui(z)

according to Table 1.

Dropout

Dropout, as a problem for analysis and interpretation of

a clinical trial herein refers to a data set that is incom-

plete due to the loss of the outcome datum from one

or more subjects. The random variable indicating

responder status is Ri. It takes the value 1 if the outcome

of individual i is observed, and 0 if it is not. Just as with

Di, Ri can be a function of assignment: Ri(z) is the

potentially observable variable indicating whether or not

individual i will drop out on assignment to treatment z.

Similarly to Vi, the responder tendency of each individual

in the circumstances of the trial is a (unknown) baseline

variable, Wi, which determines the values of Ri(z), as in

Table 2.

Potential data

For each individual in the trial, there are 11 potentially

observable quantities, Zi, Vi, Wi, and Di(z), Ui(z), Ri(z),

and Yi(z), for z=0,1, although there are only 7

independent choices, as Di(z) fully determines both

Ui(z) and Vi, and Ri(z) fully determines Wi. I refer to

the Nr11 matrix of potentially observable data as the

potential data matrix, or just the potential data. In any

actual trial, we observe, for example, only one of Yi(Di(0))

or Yi(Di(1)) (these might or might not be different see

Table 1), depending on whether zi is 0 or 1. The Rubin

Causal Model claims that even if the control treatment was

assigned and we observed Yi(Di(0)), nonetheless the test

treatment could have been assigned, and in that case we

would have observed Yi(Di(1)). Counterfactuals, that is

unobserved potential outcomes, such as outcomes on

unassigned treatments, are central in the Rubin causal

model, as the model defines causal estimands (population

quantities describing causal effects) using them.

Although the idea of potential outcomes seems natural

and intuitive to most persons, caution must be taken when

they are used as a basis for causal reasoning. The only kinds

of potential outcomes that may meaningfully feature in the

definition of the causal relationships that a clinical trial

might establish are those that would result from decisions

made after study inception and before study termination1.

Clearly, the ‘decision’ to assign test or control treatment to

an individual could be altered after enrolment, so that

the potential outcome on the control treatment for a type

a complier assigned to the test treatment is certainly a

meaningful concept. A bit less certainly so are the potential

outcomes on both treatments for a type n complier: if

through added inducements and reminders incorporated

into a modified study design, one could imagine altering

his ‘decision’ not to comply with any assigned treatment,

then they may be meaningful, but if not, not. However,

there is no possibility of altering a possible pre-existing

correlation, perhaps a genetic-cultural link, between a

propensity to behave as a type n complier and more rapid

drug metabolism, leading to reduced sensitivity to the test

treatment if it were taken. Thus, the type n complier’s

potential outcome on the test treatment if he were a type

a complier is not a meaningful potential outcome, and

hence causality in the sense of the Rubin causal model

cannot be associated with complier type.

Observed data

Of the 11 potentially observable variables for any one

individual, we always observe three, zi=Zi, di=Di(zi),

and ri=Ri(zi). If ri=1, then we also observe yi=Yi(di).

Table 2 Responder Behaviour W.

W Type R(0) R(1)

a Always-respond (never drops out) 1 1

t Test-only responder (drops out only if zi=0) 0 1

c Control-only responder (drops out only if zi=1) 1 0

n Never-responder (always drops out) 0 0

Table 1 Compliance behaviour V.

V Type U(0) U(1)

a Always-complier (complies with any assignment) 1 1

t Test-only complier (only complies when zi=1) 0 1

c Control-only complier (only complies when zi=0) 1 0

n Never-complier (never complies) 0 0

1A strict view would limit potential outcomes to only those outcomes

consequent on actions assigned randomly by the experimenter, but I will not so

limit the discussion herein.

L. B. Sheiner

204 f 2002 Blackwell Science Ltd Br J Clin Pharmacol, 54, 203–211



The Nr3 or 4 matrix of observed data is called the actual

data matrix or the actual data.

Note in particular that, contrary to usual practice, di is

assumed to be observed: modern methods of monitoring

compliance make this assumption realistic [14]. The

characteristics of such methods, in fact, determine the

definition of ‘actual assignment’ I have used in the face of

noncompliance (and in this way, this work differs from

that of the other authors cited previously): modern

compliance monitoring methods record medicine con-

tainer openings. They can therefore indicate that an

individual is not taking the prescribed medication as

instructed, but if they do so indicate, they do not indicate

what other treatment he is taking. Thus, as noted above,

the actual assignment category – ‘other’ denotes some

version of alternative treatment, but does not specify what

it is. This view is particularly applicable, for example,

when Di(z)=z is defined as >80% of prescribed doses

taken correctly, as is commonly done. In that case an

individual who takes less than 80% (but more than 0%)

of the test treatment when Zi=1 and less than 80%

(but more than 0%) of the control treatment when Zi=0

is of compliance type n, and for him by definition both

Di(1)=‘other’ and Di(0)=‘other’; yet the two treatments

are clearly not the same, nor, in general, would they be

expected to lead to the same outcome.

Missing data

Both noncompliance and dropout can be viewed as

particular instances of missing data; data that were

scheduled to be observed but were not in fact observed.

Here, those data are Yi(zi) for those i designated as having

missing outcomes by an observation indicator as follows.

If noncompliance, but not dropout is present, i such

that ui
1
=1 are missing; if dropout, but not noncompliance

is present, i such that ui
1
=1 are missing; and if both are

present, i such that ri ui
1
=1 are missing.

Missing data may be classified by the relationship

between the observation indicator and the rest of

the potential data. Depending on the class, missing data

present minor (loss of precision) or major (validity)

problems. Data are Missing Completely At Random

(MCAR) if the missingness is independent of all other

data. Data are Missing At Random (MAR) if the

missingness depends only on other observed data and not

at all on unobserved or potential data, including the missing

data themselves. So-called nonignorable2 missing data are

neither MAR nor MCAR, and this is the class that

presents serious problems. Note that it may be the case that

missingness depends unconditionally on unobserved data,

but not on such data after conditioning on the observed

data. In that case the missingness is MAR, not MCAR. In

such a case, of course, for the method of analysis of the

MAR data to be valid, it must correctly condition on the

observed data. Thus, although MAR data can be validly

analysed, such analyses are more sensitive to modelling

assumptions than are analyses based on complete data or

data that are only MCAR.

Both noncompliance and dropout can separately cause

nonignorable missingness, and this is why they present a

problem for clinical trial interpretation. A simple example

makes the problem with nonignorable missingness

obvious: Consider a randomized trial of a new drug vs

placebo for a chronic disease, with outcome being a

measure of disease severity after a fixed time on treatment.

If patients drop out (fail to comply) on the test treatment

because of toxic side-effects, and if greater toxicity is

associated with greater efficacy, then the best potential

outcomes on the new drug in the group assigned to take it

will be missing from the actual outcomes in that group

due to the dropout (noncompliance). Therefore a natural

estimator of drug effect, the difference in average disease

severity between treated and controls among those providing

outcome data (among those on the assigned treatment) will be

downwardly biased relative to the value it would have had

if dropout (noncompliance) had not been present. The

missing severity measures (outcomes) are nonignorable

because their probability of being missed is related to their

value (through their association with toxicity) within

treatment groups; that is, after controlling for the observed

data (assignment).

Causal estimands

This discussion focuses on population-level causal esti-

mands, that is, expected values of population character-

istics. However, for simplicity, and because it emphasizes

ideas rather than technique, I assume henceforth that the

trial is large enough so that I can focus on valid estimation

without worrying about small-sample variability. Given

this assumption, trial-level causal estimands defined on

averages over all N rows of the potential data matrix are

valid (unbiased) estimators of the corresponding popula-

tion estimands, and for this reason, in an abuse of notation,

no distinction is made between the two.

Before proceeding further, I define some functions

that will prove useful. Let A and B be the vectors

(a1, a2, ..., ai, ..., aN) and (b1, b2, ..., bi, ..., bN),

2This term has a technical origin. Strictly speaking ignorable missing data is a

fourth type of missing data. Such data are MAR, but also the Distinct Parameters

(DP) assumption holds: the missingness mechanism (probability distribution

of the observation indicator) shares no parameters with the data mechanism.

The term ‘ignorable’ stems from the fact that with probability model-based

estimators and ignorable missingness, the model for the missingness mechanism

need not appear in the full probability model for the estimator to be valid and

efficient; the missingness can thus be ‘ignored’. We will not consider this detail

further: MAR alone is sufficient to justify estimator validity; the DP assumption

affects only precision.

Is ITT enough?
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respectively. The elements of the former are logical, in

which case the symbol ‘=’ means ‘is equal to’; the latter is

algebraic, in which case the symbol ‘=’ means ‘is assigned

the value.’ Let:

’ pðAÞ :=N�1
P

i=1,N IðaiÞ denote the fraction of the

study population for which ai is true; and

’ �YYðA;BÞ :=
P

i=1,N
IðaiÞYiðbiÞP

i=1,N
IðaiÞ

denote the average outcome

with actual assignment bi over those individuals in the

study population for whom ai is true.

For convenience, I define the logical condition A that

includes all study participants (A= {is1:N}) in the

expressions above to be the default condition, signified by

the symbol ‘all’. Further, where it will cause no confusion

as an argument in the expressions above, in an abuse of

notation, I let ai denote A and bi denote B, so that for

example, �YY=ðall,Dið1ÞÞ=
P

i=1,N YiðDið1ÞÞ.

Use effectiveness

The intention-to-treat estimand, Average Causal Effect

ACE :=�YYðall,Dið1ÞÞ � �YYðall,Dið0ÞÞ ð2:1Þ

is the expected value of the difference between outcome

with nominal assignment to the test treatment and with

nominal assignment to control. It describes use effective-

ness in the population of interest, the one from which the

trial participants are drawn.

Method effectiveness

Because estimating method effectiveness is less often an

explicit goal of clinical trials than use effectiveness, and

because the main purpose of this paper is to emphasize its

importance and discuss how it can be validly estimated, I

take the opportunity here to discuss at greater length why

it is an important causal estimand.

Method effectiveness – the expected outcome differ-

ence due to treatment with a new drug vs a standard

alternative (often placebo) – is almost certainly a more

important population pharmacological characteristic for

purposes of treating individual patients than is use

effectiveness – the expected outcome difference due to

prescribing the new drug vs the standard – for a number

of reasons.

Extrapolation. Method effectiveness is a biological

quantity, rather than a combination of biological and

behavioural quantities. As such, one can more confidently

extrapolate conclusions regarding its magnitude from

current trial participants to future patients – the sole

justification for insisting on clinical trials before

approving the use of a drug – than conclusions that mix

pharmacology and behaviour. Behaviour is far more

dependent on conditions specific to a particular study,

conditions that may not characterize future use.

Understanding. As a biological estimand, method effec-

tiveness provides both qualitative and quantitative insight.

Qualitatively, for example, if a trial fails (i.e. the data do

not support a conclusion that use effectiveness is neces-

sarily greater than zero), the data may still be compatible

with method effectiveness, indicating that the trial may

have failed because of noncompliance or dropout rather

than because of lack of intrinsic efficacy. Quantitatively,

method effectiveness for a specific pharmacological

endpoint that is quantitatively compatible with in vitro

values for that endpoint (e.g. antimicrobial MIC) adds a

‘proof-of-principle’ component to trail interpretation.

Sufficiency for drug approval. The unequivocal demonstra-

tion of method effectiveness is sufficient to satisfy the

efficacy requirement for drug approval. There is neither

a theoretical nor a legal requirement to demonstrate use

effectiveness.

Necessity for dosing. A use-effectiveness dose–response

relationship describes the expected efficacy and toxicity of

a drug averaged over rates of compliance in a particular

trial. It is hard to see how this can be used to choose a dose

for a new patient. In contrast, an argument can be made

that a rational starting dose for a new patient is one that

is likely to yield desirable efficacy without excessive

toxicity if taken as prescribed. A method-effectiveness

dose–response relationship provides the basis for choosing

such a dose.

Exclusive emphasis on designing studies solely so that

ITT analyses will be valid, unfortunately still the norm,

precludes attention to design features that allow valid

estimates of method effectiveness. I return to this point

later.

Returning now to method effectiveness estimands, note

first that if all individuals were always-compliers, the

obvious method effectiveness estimand would be ACE.

Because, however, the pair (D(1), D(0)) of actual

treatments taken in response to the two nominal assign-

ments can be different for all 4 types of compliers, 4

distinct method effectiveness estimands may be consid-

ered, one for each compliance group. Note that similar

logic does not apply to the 4 types of responders: (pure)

nonresponse does not affect actual treatment, so that

this subsection need only concern itself with the

distinct method effectiveness estimands induced by

noncompliance.

Within a group of like-compliers, the obvious method

effectiveness estimand is ACE restricted to that group,

ACEn :=�YY ðvi=v,Dið1ÞÞ � �YY ðvi=v,Dið0ÞÞ. ACE as

defined in (2.1) can be expressed as a function of these

group-specific ACE values:

ACE=pðvi=aÞACEa þ pðvi=tÞACEt

þ pðvi=cÞACEc þ pðvi=nÞACEn

L. B. Sheiner
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Of least interest are ACEn and ACEc: the former is

uninteresting because it does not necessarily involve

outcomes on either actual treatment chosen for study; the

latter is of interest only if the control treatment itself is of

intrinsic interest, and if the alternative treatment chosen

by c-type individuals when assigned to the test treatment

in fact differs from the control treatment.

The two remaining method effectiveness estimands

ACEa and ACEt (hereafter ACACE and TACE) are of

interest: Under the reasonable assumption that the

alternative treatment taken by type t compliers when

assigned to control is never the test treatment (likely to be

true, for example, when access to the test treatment is

limited to those assigned to it, as is common in new drug

testing – see below), both estimands compare expected

outcomes under the test treatment to some nontest

alternative. ACACE is arguably of greater interest than

TACE as it compares the test treatment to the control

treatment, which presumably was chosen for the trial

for a good reason.

Perhaps the practically most relevant method effective-

ness estimand is a weighted average of ACACE and

TACE called the Compliance Average Causal Effect

CACE :=
pðvi=aÞACACE þ pðvi=tÞTAC

pðvi=aÞ þ pðvi=tÞ : ð2:2Þ

It is the expected difference in outcome associated with

a difference in nominal assignment in that subpopulation

which, under the conditions of the trial, will take the test

treatment when assigned to it. If, as above, test-only com-

pliers never take the test treatment when they are assigned

to the control then the subpopulation that CACE

describes is composed of all those individuals who will

take the test treatment under trial conditions if and only

if they are assigned to it. Henceforth I regard ACACE

and CACE as the sole method effectiveness estimands

of interest.

Valid causal estimators

Estimands are defined on potential data, whereas esti-

mators are limited to actual (observed) data. For simplicity,

I extend the ‘large sample’ assumption for the potential

data made in the previous section to apply to (the number

of outcomes observed in each assignment group of ) the

actual data. Having done so, discussion henceforth can

be limited to finding estimators that are unbiased (valid)

for their estimands.

For simplicity, I consider first valid estimators of ACE,

CACE, and ACACE in the absence of missing data, and

then reconsider the same estimators in its presence.

Use effectiveness in the absence of dropout

The actual data counterpart of ACE,

dACEACE :=�YYðzi=1,diÞ � �YYðzi=� 0,diÞ,

is an unbiased estimator of ACE (the ‘hat’ notation will

be used to denote estimators henceforth) because of

the random assignment – the sample average outcome of

a subgroup is an unbiased estimator of the group average

outcome if the subgroup is chosen independently of

outcome.

Method effectiveness in the absence of dropout

Just as for dACEACE itself, randomized assignment assures that

(if vi were known) the counterparts of its components,

e.g. AC dACEACE=�YYðvi=a _ zi=1,diÞ � �YY ðvi=a _ zi=
0,diÞ, and p̂pðvi=a), would be valid estimators of the

corresponding causal estimands, and hence CACE would

be validly estimated by substituting estimators into formula

(2.2). The problem, however, is that vi is not known. The

remainder of this subsection considers how CACE and

ACACE might validly be estimated despite this.

CACE

Substituting the definition of ACE into (2.2) yields

CACE=
ACE

pat

� ACEc þ AC

pat

, ð2:3Þ

where pat :=pðvi=a _ vi=tÞ=pðvi=aÞ þ pðvi=t).

Because of random assignment and the fact that test-

compliance is observed in test-assigned individuals, pat is

validly estimated by

p̂pat :=
pðzi=1 ^ di=1Þ

pðzi=1Þ :

Hence, if ðACEc þ ACEnÞ were known, substituting
dACEACE and p̂pat into the first term in (2.3) and subtracting the

known value of ðACEc þ ACEnÞ=p̂pat would yield a valid

estimator of CACE.

Instrumental variables (IV) estimator

The IV estimator [7]

IV := dACEACE=p̂pat

validly estimates CACE under the Instrumental Variables

assumption

(IV ): ACEc=ACEn=0.

Note that the IV assumption implies neither �YY ðvi=c;
Dið1ÞÞ=�YY ðvi=n;Dið1ÞÞ, nor �YYðvi=c,Dið0ÞÞ=�YY ðvi=n,

Dið0ÞÞ; it does imply �YYðvi=v,Dið1ÞÞ=�YYðvi,Dið0ÞÞ for

Is ITT enough?
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both v=c and v=n. These will hold in the special type

of clinical trial discussed by Zelen [15, 16] that meets

the following conditions (henceforth denoted Zelen’s

conditions):

1. Compliance with test treatment is all or none;

2. Everyone who does not take the test treatment takes

the control treatment;

3. The test treatment is not available to control-assigned

individuals.

Zelen’s conditions are likely to be met in practice if,

corresponding to each similarly numbered condition, all of

the following hold: (1) Treatment is one-off; for example a

single vaccine injection, or a one-time surgical procedure;

(2) The control treatment is a broadly defined ‘standard of

care’, including whatever individuals generally do for the

condition defining study eligibility; and (3) The test

treatment is difficult to imitate, and cannot be obtained

without authorization. Sommer & Zeger [17] provide an

instructive example.

The effect of Zelen’s conditions is to make all alter-

native treatments the same and identical to the control

treatment, and hence to make complier types c and n (and,

separately, a and t) indistinguishable even on potential

outcomes. Thus only two types of compliers remain, types

a and n; the latter always take control, and the former

always take control unless assigned to test. Since the never-

compliers so defined always take the same treatment

regardless of assignment, it is hard to imagine how their

outcome could possibly depend on that (blinded) assign-

ment. If it does not, then the i.v. assumption holds3. Note

also that when the i.v. assumption holds, strictly

speaking, there is no need to observe compliance, so

long as a valid estimate of pat is available, perhaps from

some other study.

Using a covariate that predicts compliance

Observation of ui identifies test treatment compliers

in the group assigned to test (i.e. types a and t). If

somehow these same complier types could also be

identified in the group assigned to the control treat-

ment, ACE limited to just such individuals, i.e.
�YYðzi=1 ^ ui=1,diÞ � �YYðzi=0 ^ ðvi=a _ vi=tÞ, would

validly estimate CACE.

Of course, the key data – compliance behaviours under

unassigned treatments – are missing, so that there is no

way to distinguish a and t compliers from n and c compliers

in the control-assigned group (ui sorts them instead into

a and c vs n and t), but a covariate, Xi may be available

that is observable in all and, if not an infallible indicator

of compliance type (or at least a vs c), is at least highly

correlated with it. One covariate that is commonly used

in this way is ui itself, despite the fact that it does not do

the job without further assumptions. (Efron & Feldman

[18] provide an example of such an assumption and an

associated procedure for identifying the appropriate con-

trol subjects to compare with the compliers among the

test-assigned; unfortunately, the clinical trial data cannot

provide evidence that the assumption is correct).

If ui is used (without additional assumptions) to select

control-assigned subjects to compare to complying

treatment-assigned subjects, this defines the per-protocol

estimator, to be discussed in the next section. Using ui

in this way is justified for estimating method effectiveness

if one can assume that the average outcome on control

is the same for t and c type compliers. But doing so invokes

the causally dubious estimand �YYðvi=t,0Þ, which imagines

that control noncompliers could somehow be induced to

take the control treatment. Of course, under Zelen’s

conditions, they do, but then also, and without any

additional assumptions, the i.v. estimator can be

used. Perhaps a better way to use di when Zelen’s

conditions are not met is to compare p̂pat to

p̂pac :=pðzi=0 ^ ui=1Þ=pðzi=0Þ: if the two are

very close, it can be argued that since it is unlikely that

compliance groups c and t would be exactly the same non-

null size by coincidence, perhaps neither group exists. If

not, the IV estimator can be used. Less usefully, but more

justifiably perhaps, a large discrepancy between the two

estimated probabilities might be used to rule out use of the

IV estimator. Another possibility is to expose all subjects to

the test treatment for a short pretrial period and to use the

observed compliance in that period as the compliance-

predicting covariate (of course, it would be more efficient

to use the pretrial compliance as an eligibility criterion for

the subsequent study, rather than as a covariate in the final

analysis [19]).

ACACE

Non-confounding compliance

A natural estimator of method effectiveness, mentioned

in the last section, is the Per-Protocol estimator,

PP :=�YY ðui=1 ^ zi=1,diÞ � �YY ðui=1 ^ zi=0,diÞ,

which deletes all noncompliers with the test treat-

ment from the test-assigned group and all noncompliers

with the control treatment from the control-assigned

3Under the Zelen conditions, the assumption is known as the ‘exclusion

restriction’ assumption. This name comes from econometrics, the field in which

the IV estimator was first used. It is so named because the assumption ‘excludes’

an effect of compliance type on outcome except as it determines the treatment

actually received.
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group, and then contrasts the mean outcome in the two

assignment groups over the remaining individuals.

Given random assignment, PP validly estimates

PP :=
pðvi=aÞ�YYðvi=a,1Þ þ pðvi=tÞ�YYðvi=t,1Þ

pat

� pðvi=aÞ�YY ðvi=a,0Þ þ pðvi=cÞ�YY ðvi=c,0Þ
pac

where pac=pðvi=aÞ þ pðvi=cÞ: As it stands, PP is an

estimand with no particular method effectiveness

credentials. The reason is that although the PP definition

correctly contrasts average outcomes between groups

of individuals receiving the two treatments being

evaluated, it does so in two different patient groups, a

plus t-type compliers taking the test treatment vs a

plus c-type compliers taking the control treatment.

As long as the average outcomes are not the same

for each pair of complier types taking the same

treatment, a nonzero value of PP can be caused by

the treatment difference or a type difference. That is,

it is possible that ACACE=TACE=0 and hence

CACE=0, and yet PP=0 because, for example,
�YYðvi=a; 1Þ=�YY ðvi=t,1Þ.

Compliance type is acting here as a ‘confounder’, a term

from epidemiology describing a covariate linked to out-

come via (at least) two causal paths (see, for example [20]),

one indirectly, mediated by its effect on the ‘level’ of

a (observed) causal variable of primary interest (D), and

at least one other, either direct or indirect, not involving

that variable. Comparing groups with different values of

D rather than Z ensures that the groups also differ in their

distributions of V, and then one cannot distinguish which

difference causes the observed difference in outcome.

However, given the Non-Confounding Compliance

assumption

ðNCCÞ : �YYðvi=a,Dið1ÞÞ=�YYðvi=t,Dið1ÞÞ

and

�YY ðvi=a,Dið0ÞÞ=�YY ðvi=c,Dið0ÞÞ,

that compliance type does not affect average outcome

given identical actual treatments, then deleting the non-

compliers from each treatment group before analysis

creates treatment groups that behave just as if they

were composed of always-compliers only, and it is easy to

see that PP estimates ACACE (and, under NCC, CACE

as well, as then the two are identical).

Note that the deleted data (the noncompliers’ responses)

are nonignorably missing if the average outcome when

assigned to control differs between t and c compliers

and/or if ACEnl0: PP is invalid for ACE even under

NCC! This is simply to say that use effectiveness and

method effectiveness are not necessarily identical, even

under the NCC assumption.

Non-confounding within strata of a prognostic covariate

The NCC assumption may be difficult to justify globally.

However, it may be less difficult to justify within strata of a

prognostic covariate that correlates with Yi independently

of Vi: Vi can affect outcome given identical treatment only

through a causal path involving some other nontreatment

prognostic factor; to the extent that results are stratified on

such prognostic factors, the confounding will be dimin-

ished. Thus, given a prognostic covariate PP is computed

within strata to estimate the within-strata ACACE. A

regression setting can be used to accomplish the same thing

with a continuous-valued prognostic covariate. Prognostic

covariates are central to the methods discussed in the next

section for dealing with dropout.

Longitudinal data with dropout

Under certain restricted conditions it is possible to make

progress in the presence of dropout without relying on

covariates or modelling. For example, if dropout and

noncompliance are the same (that is, subjects either

comply and complete, or don’t comply and dropout), and

if NCC holds or a covariate inducing nonconfounding can

be found, then PP validly estimates CACE=ACACE.

Alternatively, Frangakis & Rubin [9] showed that under

Zelen conditions, the IV assumption, and the additional

assumption that dropout for never-compliers is not related

to assignment, a valid estimator for ACE can be found.

Restrictive conditions are not always met; this section

discusses a more general approach than either of the above.

It relies, as already mentioned, on adding a prognostic

‘covariate’ to transform the nonignorable data into MAR

data, just as a prognostic covariate is used to transform

confounded data into nonconfounded data in the presence

of noncompliance. Intuitively, the covariate unbiasedly

predicts outcome so that the residual missing data (the

difference between the predictions and the missing values)

are almost MAR, and hence, one can proceed as above

using the observed data augmented by the predictions4.

Unfortunately, under standard ‘endpoint-only’ designs

one cannot generally count on having a baseline

prognostic covariate powerful enough to render the

missingness MCAR within strata (and hence MAR

in the data set as a whole). In contrast, the serial response

data gathered in longitudinal studies can often serve in

this role, and the rest of this discussion therefore focuses

on such data.

4This ‘single imputation’ approach is adopted here for heuristic purposes; a full

probability-model based analysis uses the probability model for the missing data

in a more principled way, and avoids the inferential problems with single

imputation, discussed, for example, by Rubin [21].

Is ITT enough?
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Longitudinal data

A longitudinal study is one in which serial observations of

response are scheduled to be observed on each subject, and

the ‘outcome’ to be compared between assignment groups

is a function of those serial responses. In the simplest

case, and the one considered here, the outcome variable is

simply the last measured value of the serial response. For

example, if a symptom severity index (SSI) is filled out

and scored at monthly visits after randomization, the out-

come might be the score at a predesignated endpoint visit

T* (say 1-year). Dropout then means that there is a ‘last’

visit time Ti for each individual such that that all responses

are available prior to and including that time5, but none

thereafter. The value of Ri then depends on the relation-

ship of Ti to T*: if Ti=T* the individual did not drop

out; if Ti<T*, he did.

The longitudinal design means that the outcome Yi is

now the last entry in an individual longitudinal response

vector Yi=(Yi1, Yi2, ...,). Let Yobsdenote the YiT * actually

observed, and Ymiss denote those that are missing.

Achieving ignorability by modelling the missing outcomes

One way to render ML estimation valid in the face of

nonignorable missingness is to introduce, if possible, a

good model for the missing outcomes. What is meant

by good, and how such a model can help, is easily under-

stood if we imagine, as at the beginning of this section,

that the missingness will be dealt with by filling in (but see

footnote 4) the missing values Ymiss=ðYmiss
1 ,Ymiss

2 ,:::,Ymiss
N Þ

with imputed values Yimp ¼ ðYimp
1 ,Y

imp
2 ,:::,Y

imp
N Þ and then

proceeding with the analysis using ðYobs,YimpÞ as if it

were the actual (complete) data vector Y. Clearly, if each

Y
imp
i provides an unbiased estimate of Ymiss

i , then the

analysis using ðYobs,YimpÞ instead of Y, whilst it may be less

efficient than that originally planned, will be valid. The

predictions will almost surely depend on the ‘covariate’

Yc
obs, that is the serial response actually observed, and may

require as well, other covariates.

Truly unbiased imputation can in principle be obtained

if missingness depends on the modelled response, e.g. on

a true physiological state, and not on its possibly impre-

cisely measured observed value. If it depends on the

observed value itself, e.g. on the patient’s stated mood, not

on an imprecise model for it, then the imputation model

will still be somewhat biased. Even if the latter condition

holds, however, if predictions are reasonably accurate, the

degree of damage the missingness can now do is much less

than before, as the only missing data is the difference

between the imputation and the observation, not the full

value of the observation itself.

Last Observation Carried Forward

Last Observation Carried Forward (LOCF) is a very

popular imputation strategy. It imputes the missing Yi at

time T* for (dropped out) individual i as the last observed

value at time Ti. Unfortunately this ‘model’ does not often

make the missingness ignorable. Most responses that

evolve over time follow a smooth (say increasing) trajec-

tory, so that the last observed response before T is almost

surely a (downwardly) biased estimate of the true last

value. If the response were a SSI for a progressive chronic

disease, say arthritis, the LOCF ‘model’ would say that

once a patient drops out, his SSI stays fixed at the last

observed value despite the fact that it usually rises

monotonically, in accord with the natural history of the

disease. For most chronic conditions there is generally no

reason to believe that SSI and disease would miraculously

cease to progress the day a patient drops out of a study

(indeed, were it so, dropping out would be a valuable

treatment!). The nonignorability here almost certainly

conservatively biases any causal estimator computed from

the imputed data: if the test treatment slows the rate

of progression, and if progression past a certain point

induces dropout, then more dropout will occur in the

placebo group because their rate of progression is

unaltered. LOCF will impute these unobserved high SSI

values to be the (lower) values last observed. Whilst this

conservatism may make an analysis using LOCF more

acceptable to consumers than if it induced anticonservative

estimates (which would lead to apparent efficacy of a

possibly worthless treatment), neither the magnitude nor

the direction of the bias can always be guaranteed, and

in any event, the estimate is not valid for method

effectiveness.

Scientific models

Models that incorporate scientific knowledge are the

only ones that can consistently produce unbiased

imputations. They might be as simple as using the

knowledge that SSI progression is approximately linear

to justify estimating missing values from a linear

regression of the observed data on time for each subject

who drops out, or they might be as complex as a

full physiological pharmacokinetic/pharmacodynamic

model, cast in an hierarchical statistical model framework.

The key point is that, obviously, the adequacy of

the model for the missing data cannot be tested on the

observed data: credibility for predictions must therefore

rest entirely on the external (scientific) knowledge that

justifies them.

5Allowing for a more general ‘nonmonotone’ missingness pattern in which

occasional visits are missed prior to time Ti does not require any new concepts,

although it does complicate certain methods of data analysis (but we do not plan

to discuss these in detail anyway); we avoid sporadic missingness here simply

because it complicates notation.
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Conclusions

This review began with the observation that method

effectiveness – average outcome difference due to taking a

test treatment vs a control – is an important causal estimand

on which to base therapeutic decisions (e.g. whether to use

the treatment, and if so, at what intensity). The intention

to treat estimator of treatment effect validly estimates use

effectiveness (but only if any missing data are ignorable),

an estimand primarily of value for public policy decisions

(e.g. regulatory decisions and whether to publicly finance

the use of the treatment), not method effectiveness.

Clinical trials, if perfectly executed answer both

questions with the same (dITTITTÞ estimator. However,

trials may be marred by deviations from protocol, notably

some patients failing to comply with the prescribed

treatment, and the same or other patients dropping out

before the study endpoint can be observed. Both of

these deviations mean that the intention-to-treat use-

effectiveness estimator no longer validly estimates method

effectiveness (and in the case of dropout, it may not even

validly estimate use effectiveness). Depending on study

circumstances, other estimators may be available that

validly estimate important method effectiveness estimands.

It should therefore be a priority to design studies so that

the conditions permitting such estimators to be valid

are met.

In general, other than the obvious features of

randomized and blinded assignment, and encouragement

of complete follow-up, the following additional design

features increase the likelihood that one of the method

effectiveness estimators discussed herein will be valid.

Zelen’s conditions: (1) treatment is one-off, (2) the

control treatment is ‘standard of care’, and (3) the test

treatment is available only to those for whom it is

prescribed.

Compliance is measured in all patients for the duration

of the trial.

The study is longitudinal, and the ‘endpoint’ is a func-

tion of the serially measured response(s).

Prognostic covariates (and, if available, those predicting

compliance with test treatment) are measured at baseline

and serially.

In addition, for data seriously marred by deviations from

protocol, scientific model-based analyses rather than

simple comparisons of summary statistics may be required

to achieve unbiased estimates of causal estimands. Such

estimates will necessarily be sensitive to scientific assump-

tions that cannot be verified on the study data themselves.

Models and assumptions should be prespecified and

discussed in the study protocol to avoid accusations of

posthoc ‘data dredging’.

References

1 Sheiner LB, Rubin DB. Intention to treat analysis and the

goals of clinical trials. Clin Pharmacol Ther 1995; 57: p. 6–15.

2 Friedman LM, Furberg CD, DeMets DL. Fundamentals of

Clinical Trials, 2nd edn. 1985. Boston: PSG Inc.

3 Pocock SJ. Clinical Trials: A Practical Approach 1983. New

York: John Wiley & Sons.

4 Lee YJ, et al. Analysis of clinical trials by treatment actually

received: is it really an option? Stat Med 10: 1595–1605.

5 Holland PW, Rubin DB. Causal inference in retrospective

studies. Evaluation Review 1988; 12: 203–231.

6 Little RJ, Rubin DB. Causal effects in clinical and

epidemiological studies via potential outcomes: concepts

and analytical approaches. Annu Rev Public Health 2000;

21: 121–145.

7 Imbens GB, Rubin DB. Bayesian inference for causal effects

in randomized experiments with noncompliance. Annals of

Statistics 1997; 25: 305–327.

8 Angrist JD, Imbens GW, Rubin DB. Identification of

causal effects using instrumental variables. J Amer Stat Assoc

1996; 91: 444–472.

9 Frangakis CE, Rubin DB. Addressing complications of

intention-to-treat analysis in the combined presence of

all-or-none treatment-noncompliance and subsequent missing

outcomes. Biometrika 1999; 86: 365–379.

10 Little RJA, Rubin DB. Statistical analysis with missing data 1987.

New York: Wiley & Sons.

11 Diggle P, Kenward MG. Informative dropout in longitudinal

data analysis. Appl Statis 1994; 43: 49–93.

12 Sheiner L, Wakefield J. Population modelling in drug

development. Statist Meth Med Res 1999; 8: 183–193.

13 Sheiner LB, Steimer J-L. Pharmacokinetic/pharmacodynamic

modelling in drug development. Annu Rev Pharmacol Toxicol

2000; 40: 67–96.

14 Urquhart J. Role of patient compliance in clinical

pharmacokinetics. A review of recent research. Clin

Pharmacokin 1994; 27: 202–215.

15 Zelen M. A new design for randomized clinical trials. New

Engl J Med 1979; 300: 1242–1245.

16 Zelen M. Randomized consent designs for clinical trials: an

update. Statistics in Medicine 1990; 9: 645–656.

17 Sommer A, Zeger SL. On estimating efficacy from clinical

trials. Stat Medical 1991; 10: 45–52.

18 Efron B, Feldman D. Compliance as an explanatory variable

in clinical trials (with discussion). J Amer Stat Assoc 1991;

86: 9–26.

19 Sheiner LB, Rubin DB. Intention-to-treat analysis and the

goals of clinical trials. Clin Pharmacol Ther 1995; 57: 6–15.

20 Greenland S, Pearl J, Robins J. Causal diagrams for

epidemiological research. Epidemiology 1999; 10: 37–48.

21 Rubin DB. Multiple imputation after 18+years. J Amer

Stat Assoc 1996; 91: 473–489.

Is ITT enough?

f 2002 Blackwell Science Ltd Br J Clin Pharmacol, 54, 203–211 211


