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ABSTRACT

Nucleotide repair genes are not generally altered in
sporadic solid tumors. However, point mutations
are found scattered throughout the genome of
cancer cells indicating that the repair pathways
are dysfunctional. To address this point, in this work
we focus on the expression pathways rather than in
the DNA structure of repair genes related to either
genome stability or essential metabolic functions.
We present here a novel statistical analysis com-
paring ten gene expression pathways in human
normal and cancer cells using serial analysis of
gene expression (SAGE) data. We find that in cancer
cells nucleotide-excision repair (NER) and apopto-
sis are the most impaired pathways and have a
highly altered diversity of gene expression profile
when compared to normal cells. We propose that
genome point mutations in sporadic tumors can be
explained by a structurally conserved NER with a
functional disorder generated from its entangle-
ment with the apoptosis gene network.

INTRODUCTION

Cancer cells have large and small abnormalities in their
genetic material: additional or missing chromosomes,
mutated genes and other types of alterations. The lost of
genome stability pathways is associated with genetic
deterioration of cancer cells and is one of the most
important aspects of carcinogenesis. In fact, mutations
in mismatch repair (MMR), nucleotide-excision repair

(NER), base-excision repair (BER) and recombinational
repair genes have been causally implicated in the
acquisition of a genome instability phenotype (1).
Genome instability in solid tumors originates from

either somatic mutations (observed in the majority of
sporadic cancers) or germline mutations (associated to
rare hereditary cancer syndromes). Considering the list of
repair genes presented in Cancer Gene Census (2),
germline mutations can be observed in NER, BER and
MMR, while somatic mutations are described only in
recombinational repair (homologous recombination and
non-homologous end joining). On the other hand,
mutations in apoptotic genes are recurrently observed in
both types of solid tumors as listed in the census.
The genotype signature of the malfunctioning of

these stability gene networks is 2-fold: aneuploidy
(e.g. translocations, gain or loss of entire or large parts
of chromosomes) and/or random point mutations
(e.g. nucleotide changes randomly distributed throughout
the genome) (3). The omnipresence of random point
mutations in sporadic solid tumors (4) and the recurrent
absence of mutations in nucleotide repair genes (2) suggest
a functional deficiency in these stability pathways without
structural alterations in the related DNA sequence.
There are different views explaining how a cell

loses genome stability and acquires a cancerous pheno-
type (5,6). In one proposed scenario, large chromosomal
changes are required for triggering the onset of cancer,
such as varying the number of whole chromosomes or
cutting and/or pasting their fragments among different
chromosomes. Then either the expression of unbalanced
gene dosage (7) and/or alterations in mitotic check
points (8) can, under adequate conditions, give place to
a cancer. An alternative idea proposes that cancer cells
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have a ‘mutator phenotype’ that favors the acquisition
of point mutations, which eventually affect tumor
suppressors or oncogenes yielding to cancer (9).
Supporting this idea, a list of mutated genes found in
human colorectal and breast cancer covering several gene
functions shows that point mutations are the most
common alterations found throughout the genome of
cancer cells (over 87%) (10).
The two scenarios are qualitatively possible, since both

offer explanations to the typical chromosome configura-
tions and nucleotide alterations of a cancer cell. In order to
discriminate between different scenarios, studies of
chromosome and gene structures should be complemented
by quantitative analysis of gene expression of cancer cells.
As a contribution in this direction, we present here
a pioneer, comprehensive statistical analysis of 10 gene
expression pathways in normal and cancer cells using serial
analysis of gene expression (SAGE) data from the public
gene expression resource (SAGE Genie) (11) available
at Cancer Genome Anatomy Project (CGAP) (12).

MATERIALS AND METHODS

Data selection

Human cancer and normal tissue SAGE libraries are
retrieved using SAGE Library Finder tool at SAGE
Genie website (http://cgap.nci.nih.gov/SAGE) based on
the search criteria: tag length (short 10 bp), tissue
preparation [bulk, short-term culture (STC), antibody
purified (ABP), microscope dissected (MCD) or cell line]
and tissue histology (cancer or normal). The final list is
presented in Supplementary Tables S1 to S4 and contains
only cancer libraries that had at least one normal
equivalent tissue library, and vice-versa, matching both
the search criteria. The list of SAGE libraries is also
retrieved for tag-to-gene corresponding libraries using
SAGE Absolute Level Lister (SALL) tool at SAGE Genie
website. This tool links SAGE unique tags to genes via
UniGene cluster IDs (e.g. it packs into one file Tag
Sequence, Tag Frequency, UniGene Cluster ID and Gene
Symbol). SALL database retrieval was conducted in June
2006 (UniGene Build #191 and #192). Therefore, accord-
ing to the search criteria, we retrieved the largest human
SAGE collection up to date at NCI’s Cancer Genome
Anatomy Project for the analysis presented here.

Mathematical definitions and analysis of SAGE libraries

In the SAGE database, a SAGE library corresponds to
one tumor sample exam, which is made from mRNA
extracts from different tissue preparations (bulk, short-
term culture, antibody purified, microscope dissected or
cell line) and histology (cancer or normal), as described in
detail by Lash et al. (13). One such library gives the
amount of every detected transcript in the sample, each
one being labeled by a 10-letter tag, corresponding to
10 bases close to the poly-A tail, whose length is long
enough to discriminate every possible transcript.
Transcripts related to different gene networks may be
grouped and used to quantify and characterize their
expression activity. Here we analyze both the amount of

transcript production and its diversity in ten gene path-
ways, chosen due to either their recognized relation with
genome stability (apoptosis, chromosome stability, mis-
match repair, nucleotide-excision repair, base-excision
repair and recombinational repair) or, as a control
group, due to their essential life-supporting activities
(ribosome, ATP synthase, electron transport chain and
glycolysis). The tumor types were selected such that they
present a library of normal cells, to be used as control. The
complete list of SAGE libraries and details about database
search are available in the Supporting Online Material.

To obtain a quantitative expression of sample distribu-
tion of SAGE tags, we have measured the information
content of SAGE libraries using Shannon Information
Theory (14–18) defined as follows. Consider n as the
number of all selected SAGE libraries of a given tumor
type. Each library of this set is labeled by �(�¼ 1, . . . , n)
and has N� tags, among M� possible ones, that is, possible
transcripts. For a given SAGE library in this set, we can
define s(i,�) as being the number of transcripts (tags) of
a given type i, (i¼ 1, . . . , M�), whose sum for a given �
adds up to N�. The probability p(i,�) that, among the N�

tags of the �-library, a randomly chosen transcript is
of the type i is written as

p i,�ð Þ ¼
s i,�ð Þ

N�
, 1

such that
P

i p i,�ð Þ ¼ 1: The normalized Shannon infor-
mation function H� is defined as

H� ¼ �
1

ln M�ð Þ

XM�

i

p i,�ð Þ ln p i,�ð Þ, 2

where we have divided all terms by the factor ln(M�) in
order to normalize the quantities, guaranteeing that
0�H�� 1. The idea is to compare among samples of
different tissues that may present different numbers
of M� possibilities (e.g. different numbers of possible
transcripts). While N� reflects gene expression activity
(the amount of tags in the �th library), H� reflects the
spread of the distribution s(i,�), i.e. it measures the
diversity that exists in the �th library.

Finally, in order to normalize the quantities by sets of
tags, taking as reference normal tissue histology, we define
the relative diversity h� for any given set of genes as

h� ¼
Hc

�

Hc
� þHr

�

, 3

where Hc
� and Hr

� are, respectively, the diversity of cancer
and normal SAGE libraries. Observe that 0� h�� 1,
and h�<½ implies Hc

� < Hr
�, that is, the transcript

distribution in the �th library is narrower in cancer cells
than in the normal tissue, while h�>½ represents the
inverse case. In analogy, the relative gene expression
activity n� of the � library is defined as

n� ¼
Nc

�

Nc
� þNr

�

, 4

where Nc
� and Nr

� are, respectively, the gene expression
activity of cancer and normal tissue (i.e. number of
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SAGE tags). Again, 0� n�� 1, and n�<½ implies
Nc

� < Nr
�, that is, in this library the cancer cells have

lower gene activity, producing less transcripts than the
normal case (e.g. Supplementary Figures S1 and S2).

Diversity of gene expression pathways

To estimate the diversity of expression pathways related to
genome stability, we carry out the following steps:
(i) define gene expression pathways of interest; (ii) identify
groups of genes that best represents each pathway;
(iii) identify the best SAGE tags of these genes—among
all possible tags—presented in the collection of tags of
each SAGE library; (iv) arrange the SAGE tags into a
separate file—one for each pathway; (v) verify the
agreement of the original database with subset files;
(vi) build a curated database; and (vii) estimate the
degree of diversity of pooled SAGE tags, as defined in
mathematical definitions section.

We focused this study in six genomic stability pathways
(apoptosis, chromosome stability, mismatch repair,
nucleotide-excision repair, base-excision repair and
recombinational repair). Here, the group of genes
representing each gene expression pathway is considered
as a group of UniGene Cluster IDs. The lists of selected
genes and pathways are presented in Supplementary
Tables S9–S14, including references used for selection. In
order to link genes and SAGE tags, we used the UniGene
number as common identifier. Next, we checked libraries
looking for UniGene number duplication. This process
reveals that, in the original database retrieved from the
SAGE Genie website, several pooled tags (Unique Tags)
present the same UniGene cluster ID and, therefore, they
are pooled as single UniGene number. The curated
libraries are then used to build the subset files of tags—
one for each gene expression pathway. These files are used
in the final step to estimate the diversity of gene
expression. The curated database and a Microsoft
ExcelTM spreadsheet that automatically calculates diver-
sity scores for multiple pathways are available upon
request.

We have considered several internal controls in order to
use as invariant references among cancer and normal
SAGE libraries. The idea is to estimate the diversity of a
gene expression pathway that produces co-expressed
genes, ideally always in the same proportion, indepen-
dently of tissue type or histology. For this purpose, we
consider the following criteria for selection: (i) gene
products should be present in stoichiometric amounts
because they are part of the same stable complex and/or
are functionally associated at the molecular level (19);
(ii) the candidate pathway must occur in all cell types
because they are necessary for the cell survival and/or
are implicated in basal cell metabolism (20); (iii) the
pathway must be involved in core, conserved biological
functions (21). Among likely candidates, we evaluated
four co-expressed gene groups (named here by its final
products): (i) ribosome (e.g. ribosomal proteins); (ii) ATP
synthase; (iii) electron transport chain; and (iv) glycolysis.
The lists of selected control pathways are presented

in Supplementary Tables S5–S8, including references
used for selection.

Pairwise data of cancer versus normal

After estimating SAGE library parameters for each
expression pathway, as defined above, the values of
cancer libraries are compared to normal ones. The
pairwise comparisons produce two distribution types of
matched pairs. One related to SAGE library properly
(overall SAGE tags); other related to gene expression
pathways (a subset of SAGE tags). The pairwise
comparisons are then plotted in order to examine either
the entire data distributions or by tissue types individually.
The number of pairwise libraries—cancer versus normal—
is limited by the number of SAGE libraries available in
SAGE Genie website up to date (http://cgap.nci.nih.gov/
SAGE). Therefore, each cancer library is paired with each
normal library of the same tissue type, as presented in
Supplementary Tables S15–S16, providing 493 pairwise
comparisons—368 for solid tumors (ST) and 125 for cell
lines(CL): brain (ST¼ 192; CL¼ 20); breast (ST¼ 75;
CL¼ 45); cerebellum (ST¼ 40; CL¼ 8); stomach
(ST¼ 28); prostate (ST¼ 12; CL¼ 32); colon (ST¼ 4;
CL¼ 8); pancreas (ST¼ 4; CL¼ 8); skin (ST¼ 3); ovary
(ST¼ 3; CL¼ 2); liver (ST¼ 2; CL¼ 2); lung (ST¼ 2);
kidney (ST¼ 1); peritoneum (ST¼ 1); thyroid (ST¼ 1).
Indeed, there are only 492 pairwise libraries in
SAGE tag-to-gene analysis because the skin library
‘SAGE_Skin_melanoma_B_DB3’ was not integrated
with SAGE Absolute Level Lister (SALL) tool at the
period of our study.

Analysis of protein/gene interaction networks

The protein–protein interaction network associating genes
of the six genome stability pathways is generated using the
database STRING (‘search tool for the retrieval of
interacting genes/proteins’) (22,23) with input options
‘databases’, ‘experiments’ and 70% confidence level. In
order to identify each gene in the database, we used both
HUGO ID (24) and Ensembl Peptide ID (25)
(Supplementary Table S17). Alternatively, the amino
acid sequence of a given protein is supplied to identify
the corresponding entry. The results from the search are
saved in data files ‘tab-delimited text fields’ describing
edge relationships and then handled in Medusa applica-
tion (26) (i.e. optimized software for accessing protein
interaction data from STRING). Pathways are discrimi-
nated by different colors and data are crossed with Cancer
Gene Census (2) in order to indicate genes whose somatic
mutations have been reported to be causally implicated in
human cancer. The complete file matching entry IDs, data
interactions and mutated genes are available upon request.
Finally, graphs are exported to postscript files to have
figure quality improved and edited in CorelDraw� graphic
design tools (Corel Corp., Ottawa, Canada).

Statistical analysis

Under the null hypothesis, the stochastic contrast among
k expression pathways is given by h�A¼ h�B¼ � � � ¼ h�K.
Although the distributions do not seriously deviate from
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normality, as observed in Figures 1 and 2, with equal
sample sizes among pathways, the data failed to meet the
assumptions of ANOVA for normality and homogeneity
of variance and, thus, we used Kruskal–Wallis one-way
analysis of variance followed by Mann–Whitney test
for comparisons. The tests were performed in SPSS
nonparametric statistical package (SPSS for Windows,
release 14.0.0. SPSS Inc., Chicago, IL). Values are expres-
sed as mean� SEM. Significance is considered at
P<0.05.

RESULTS AND DISCUSSION

In what follows we present the results concerning
the above defined quantities for different tumor types.

First, we compare the gene expression activity Nc
� and

diversity Hc
� of each cancer SAGE library from several

tissue types with its respective normal case (Figure 1A and
B). The great majority of cancer tissues showed an
increased gene expression activity and diversity, since in
almost all cases the majority of libraries present
Nc

�=N
r
� > 1 and Hc

�=H
r
� > 1: The resulting global histo-

gram distributions of cancer-normal pairwise libraries are
then plotted in Figure 1C and D, showing that the number
and diversity of tags in cancer libraries are higher than
normal tissue in 56.6 and 72.8% of the cases.

To evince the contribution from the different gene
networks, which is not shown in the global histograms,
in Figure 2 we present the same matched pairs of SAGE
libraries, assessed for subsets of tags corresponding
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to different gene expression pathways. Comparing the
histograms presented in Figure 2A and C, we conclude
that apoptosis and NER pathways present a smaller
number of cancer libraries with Nc

� > Nr
�, indicating

reduced gene expression in these pathways. When

considering the diversity of tags (Figure 2B and D) the
results are opposite, since apoptosis and NER present
more cancer libraries with Hc

� > Hr
�, indicating increased

diversity in these gene expression pathways. Furthermore,
observe the contrast between the diversity distributions
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for Ribosome and NER pathways: Ribosome histogram
is narrowly peaked around 1, indicating that cancer and
normal cells have almost identical transcript profiles for
this highly conserved pathway, while NER diversity histo-
gram presents a broad distribution, biased to Hc

�=H
r
� > 1:

In fact, except for NER, all other pathways presented a
uniform gene activity change in the sense that the relative
profiles are conserved. Moreover, NER presents a
negative correlation between gene activity and diversity
(log–log scatter plots of core cell functions and genomic
stability pathways are presented in Supplementary Figures
S3 and S4). This result indicates that NER gene activity
decreases due to the reduction of normal gene expression
peaks in cancer cells. In this way, the increased relative
contribution of a broad profile background enhances
diversity.
In order to consolidate these results and simultaneously

compare all gene expression pathways, we present in
Figure 3A the average values of the relative activity n�
for each gene network. As we can observe, NER and
apoptosis present the lowest amount of relative activity
(P<0.001), indicating again an altered state of gene
expression. In contrast, NER has the highest relative
diversity (P<0.001) (Figure 3B), which corroborates that
the low level of gene expression occurs together with
changes on gene expression profile of this repair pathway.
Since gene expression in cell lines could not reliably reflect
the gene expression in bulk tissues, we also present in
Supplementary Figures S5 and S6 an individual analysis,
by tissue type and preparation. Overall, the results
indicate that the conclusions drawn on these observations
follow the same outcome of the pooled analysis, especially
considering the most representative solid tumors in the
sample (i.e. brain, breast, cerebellum and stomach).

In cancer cells programmed cell death mechanism is in
general structurally impaired (27), what is coherent with
the observed gene expression profile of apoptosis tran-
scripts. However, NER is in general structurally intact in
sporadic solid tumors, since no somatic mutations in NER
genes have been reported to be causally implicated in
oncogenesis (2). The observed transcript profile then
suggests that NER-transactivation-dependent functions
are affected in cancer cells.

As both apoptosis and NER networks are simulta-
neously affected, a causal correlation is plausible, con-
sidering that both networks are entangled. One scenario
is suppression of NER transcription activity due to
global alterations in cell-death control. A second alter-
native would be apoptosis and NER impairment caused
by the malfunctioning of a gene, either due to failures
in activation-dependent functions or gene mutations.
A natural candidate in this last case is TP53 based on
the wealth of experimental evidence that this gene plays
a role in both apoptosis and NER networks (28). As
an illustration of these two possibilities we present in
Figure 4A a protein–protein interaction network associat-
ing genes of the six genome stability pathways investigated
here. The graph is generated using database STRING (22)
with input options ‘Experimental/Biochemical Data’ and
‘Association in Curated Databases,’ with 70% confidence
interval, meaning in this graph that genes are linked
whenever direct (physical) or indirect (functional) protein
interaction is reported in curated databases. Figure 4A
suggests that either scenario is possible. This graph
indicates a strong interaction among all pathways with
significant overlapping among different genes. Concerning
apoptosis and NER, TP53 plays a key role, connecting
both networks (Supplementary Figure S7). In fact, there
are many reports in the literature pointing p53 affecting
both dependent and independent transactivation NER
functions, as well as affecting apoptosis (28–31). Also, it is
reasonable to assume that damage in a specific gene
function may affect its neighbors in the network, causing
perturbations that may disrupt the whole network. The
implication of these observations is that the vulnerability
of NER and apoptosis could reside in the same core
‘node.’ Other scenarios are also possible, as defective
genes independently acting on both networks, but then
more genes should be simultaneously impaired in order to
account for the results presented here.

Furthermore, observing the network architecture and
the organization of interactions in Figure 4A, one can see
that NER topology suggests the existence of a functional
module overlapping three pathways, i.e. NER, MMR and
chromosome stability (module r). To quantify the inter-
action pattern among genes in the network we calculated
the connectivity k, defined as the number of links that a
given node has with other nodes (32). Figure 4B presents
the nodes by increasing connectivity. There are two
striking features in this figure. First, all r-nodes present
high connectivity. Second, there are no mutations in
high connectivity nodes. This may be indicating that the
joint functions of the nodes in r are essential to turn
the cell viable, what would play the role of a protection
mechanism for the organism against proliferation of
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mutation-prone clones. Furthermore, TP53 appears as the
mutated gene with highest k degree, what could be
interpreted as a gene with high enough connectivity such
that a mutation has a great effect in disrupting the cell
apoptosis and repair system, but low enough connectivity
such that the cell is still viable. Following this speculative
point of view, mutations in more than one gene with
lower connectivity should be required to disrupt both
apoptosis and repair systems, that is, to cause cancer. This
would hence explain why mutations in other genes than
TP53 are less probable and why TP53 is not mutated in all
tumors (10). In other words, it may happen that higher
connectivity and higher mutation probability in cancer
cells are correlated up to a connectivity threshold,
when mutations render the cell unviable. This possibility
is consistent with the growth failure and premature
death described in at least three NER-deficient mouse
models (33) and with the correlation between protein
connectivity and indispensability described in yeast
proteome (34).
In summary, the above statistical analysis indicates that,

relative to normal tissues, cancer cells present (i) enhanced
overall gene expression, indicating a higher transcriptional
activity, (ii) decreased apoptosis and NER gene expression
activity, (iii) conserved expression profiles for control
gene pathways, (iv) high diversity in transcript profiles
for NER, suggesting suppression of expression peaks,
enhancing the relative background contribution. It is then
possible that conditions that disable apoptosis, probably
due to mutations in apoptotic genes, also affects
NER-transactivation-dependent functions via p53. NER
malfunctioning could then account for random point
mutations scattered throughout the cancer cell genome.
Furthermore, the analysis of network connectivity points
to a highly connected module (r) involving genes from
NER, MMR and chromosome stability where mutations
are recurrently absent in cancer cells, but whose functions
could be impaired by mutations in peripheral genes,
linking this module with apoptosis.
A natural perspective of these findings is to extend the

same approach for diagnostic purpose, for example, and
thus test the robustness of our conclusions, which could
also indicate whether this model can be applied to identi-
fication of other pathways involved in cancer progression.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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