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ABSTRACT

Signals from different oligonucleotide probes
against the same target show great variation in
intensities. However, detection of differences along
a sequence e.g. to reveal intron/exon architecture,
transcription boundary as well as simple absent/
present calls depends on comparisons between
different probes. It is therefore of great interest to
correct for the variation between probes. Much of
this variation is sequence dependent. We demon-
strate that a thermodynamic model for hybridization
of either DNA or RNA to a DNA microarray, which
takes the sequence-dependent probe affinities into
account significantly reduces the signal fluctuation
between probes targeting the same gene transcript.
For a test set of tightly tiled yeast genes, the
model reduces the variance by up to a factor �1/3.
As a consequence of this reduction, the model is
shown to yield a more accurate determination of
transcription start sites for a subset of yeast genes.
In another application, we identify present/absent
calls for probes hybridized to the sequenced
Escherichia coli strain O157:H7 EDL933. The model
improves the correct calls from 85 to 95% relative to
raw intensity measures. The model thus makes
applications which depend on comparisons
between probes aimed at different sections of the
same target more reliable.

INTRODUCTION

Signals from oligonucleotide microarrays have proven
highly reproducible and the great majority of the
stochastic variation seen typically originates from differ-
ences in the samples measured. The high reproducibility
of the signal, however, breaks down when signals from
different probes, targeted against the same target, are
compared (1,2). Hence, probes measuring the same gene

transcript, in the same sample, present on the same
oligonucleotide array, typically result in a wide range
of signal intensities. The microarray community have in
large avoided this problem by restricting comparisons to
be between identical probes. Even where multiple probes
are targeted against a given transcript, the comparisons
are done probe wise (3) or they are based on so-called
expression index calculations (1,4) that carefully avoid
comparisons across different probes. Comparisons
between different probes, however, are of great interest
because they allow detection of differences along a
sequence. Microarray detection of intron/exon architec-
ture, transcription boundary, the methylation state of
genomic regions, etc. depends on such comparisons.
Ultimately, probe comparisons will allow absent/present
calls. Substantial amounts of data using tiling arrays are
available (5–7) as well as data on exon/intron detection (8).
At present, analyses hereof have relied on statistical or
rule-based approaches, exploiting the continuation of the
signal levels along a sequence or elevated signal within
a window (5,6). The relative high signal variation between
probes restricts such methods from detecting
short stretches of shuttle differences. Importantly, much
of the probe variation is sequence dependent (9). Hence,
correcting for the sequence-dependent variation among
probes should compensate for the intensity fluctuations of
probes targeting the same gene.
Here we present a thermodynamic model for the

microarray hybridization, taking the sequence-dependent
hybridization affinities into account. We use the model
to analyze two different microarray experiments: one
based on DNA–RNA hybridization and one based on
DNA–DNA hybridization. The main purpose of the
present article is to demonstrate how such a model can
be used to improve the analysis of experiments which
rely on comparisons between individual probes aimed at
different sections of the same target. This is because the
model takes into account the different binding affinities
of the probes thereby compensating partially for the signal
intensity fluctuations of probes with the same target.
The model thus has the important advantage that it allows
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a more quantitative comparisons between signals from
different probes. We describe two applications of this.
First, we use the model to determine the position
of transcriptions start sites (TSS) with greater accuracy
than is possible using the raw signals. We then use the
model to identify the presence/absence of DNA segments
in a cross-strain DNA hybridization between two
sequenced Escherichia coli strains. Again, the model
yields significantly more reliable results than when using
the raw intensities.

MATERIALS AND METHODS

Array design

The genome sequence for Sacchoromyces cerevisiae was
downloaded from the SGD FTP site (ftp://genome-ftp.
stanford.edu/pub/yeast/), on the 18th of September 2004,
and all CDSs were extracted (DNA and Intron/Exon
annotation), using the FeatureExtract software (10).
Using this sequence information as a basis, the following
probe-sets were designed: Up to 20 probes per gene
for S. cerevisiae genes (n¼ 5866) were selected using
OligoWiz 2 (11,12). In addition to the exon probes, probes
with a minimum distance of 25 bp were placed targeting
the regions 300 bp upsteam and 100 bp downsteam of each
gene (using OligoWiz 2).

About 5000 random probes of length 25 bp where
generated, using 25% probability of each of the four
nucleotides: A, T, G and C.

About 28 genes (12 of these in duplicate, yielding 40 in
total) covering the range from low to high expression,
according to de Lichtenberg et al. (13) were densely tiled
with probes (see table below). 23, 25 and 27 bp probes
were designed, with 10 bp between the midpoints of the
probes. This means all three length-variants of the probes
are centered on the same position. In total 18 759 tiling
probes were designed for each of the three probe lengths,
23, 25 and 27 bp. The data can be found at http://
www.cbs.dtu.dk/suppl/probes/.

Systematic
name

Standard
name

In duplicate Gene
length

No. of
probes

YAR007C RFA1 X 1866 185
YAR071W PHO11 X 1404 138
YBL002W HTB2 X 396 38
YBR093C PHO5 X 1404 138
YBR243C ALG7 X 1347 266
YCL014W BUD3 4911 489
YDL003W MCD1 1701 168
YDL224C WHI4 1950 193
YER001W MNN1 X 2289 227
YGR044C RME1 903 88
YGR108W CLB1 X 1416 140
YHR086W NAM8 1572 155
YHR175W CTR2 570 55
YIL132C CSM2 642 62
YIR018W YAP5 738 72
YJL092W HPR5 X 3525 351
YKR042W UTH1 1353 133
YLR353W BUD8 1812 179
YMR042W ARG80 X 534 51
YMR215W GAS3 X 1575 156
YMR305C SCW10 1170 115

YNL176C . 1911 189
YOR070C GYP1 1914 189
YOR144C ELG1 2376 236
YPL128C TBF1 X 1689 167
YPL163C SVS1 X 783 76
YPL208W RKM1 1752 173
YPL256C CLN2 1638 162

Experimental procedures

The RNA used in the experimental part of this publica-
tion, was extracted from a S. cerevisiae CDC15-2 strain
30min after release from a temperature induced arrest
of the cell cycle in late mitotic phase. See (13) for strain
and growth condition details. Total RNA was extracted
using the FastRNA pro red kit from Qbiogene, according
to the manufacturers description—for the lysis step the
samples were processed for 40 s at speed 6.0 in the
FastPrep apparatus. Quality and quantity of total RNA
was assessed using spectrophotometer readings at 260
and 280 nm and using an Agilent Bioanalyzer. aRNA was
synthesized using the Message Amp II Biotin Enhanced
kit (Ambion), using oligo-dT primers, and aRNA
fragmentation was done by heating the aRNA to 94�C
for 35min in a MgCl2 buffer. Hybridization was
performed according to the standard Affymetrix protocol.
Raw probe intensity values for our custom-designed
NimbleExpress chip were obtained using the makecdfenv
and affy packages from Bioconductor (14).

Intensities were taken from whole chromosomal
DNA hybridizations of E. coli strain O157:H7
EDL933 (15,16) and K-12 W3110 (17) to custom-designed
NimbleExpress arrays covering seven E. coli genomes
including EDL933 and W3110 (18). In short, independent
biological triplicates of each strain were grown overnight
in Luria–Bertani (LB) broth with continuous agita-
tion (19), and DNA was isolated using the Qiagen
Genomic Tip 500/G (Qiagen, Hilden, Germany) and the
Genomic DNA Buffer set (Qiagen). Seven microgram
of genomic DNA was fragmented with 0.7 Units
of DNAse 1 (Amersham Biosciences, Piscateway, NJ)
for 10–12min at 37�C in 1� One-Phor All Plus buffer
(Amersham Biosciences) to obtain fragments of
50–200 bp. Fragmented DNA was labeled according to
the manufacturers instructions for labeling fragmented
cDNA derived from mRNA for prokaryotic arrays
(Affymetrix Inc., Santa Clara, CA). The labeled DNA
was hybridized to custom made NimbleExpress arrays
(Affymetrix Inc.) for 15–17 h at 45�C. Standard protocols
from Affymetrix for hybridization, washing and staining
were followed using a hybridization oven, a Fluidics
Station 450 and a GeneChip� Scanner 3000 (Affymetrix
Inc.). Custom-designed probes were mapped to the
EDL933 and W3110 genomes for which probes were
included on the array. Hereby, we could determine to
which extend W3110 probes theoretically should hybridize
to the EDL933 samples and vice versa.

Physicochemical model

The results presented in this article are based on a physical
model for the binding of fluorescently labeled RNA/DNA
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strands to the oligonucleotides on the DNA chip.
The model is similar to the ones presented in Ref. (9,20–
22). It is based on equilibrium thermodynamics and
assumes that the observed intensity variations between
probes for the same gene are due to differences in the
binding energies between the probes and the RNA/DNA
strands. The model applies to both RNA and DNA
strands in solution but we will for brevity refer to the case
of RNA strands in the rest of this section. For DNA
strands, the model is completely analogous. For simplicity,
the model neglects effects such as secondary structures and
cross-hybridization and assumes that a given probe is either
completely bound to one RNA strand or unbound (free).
The basic process for the probe-RNA hybridization is

free probeþ free RNA�! �probe : RNA: 1

The binding of RNA strands to a given probe can be split
into two types: Specific binding for which the probe is
bound to its complimentary (target) RNA strand, and
non-specific binding for which the probe is bound to an
RNA strand which is not its complimentary. Let x(p) be
the concentration of RNA strands of type p. If fðpÞ 2 ½0, 1�
denotes the fraction of probes with target RNA of type p
which are bound to a RNA strand, equilibrium thermo-
dynamics predicts (23)

fðpÞ ¼
�ðp, pÞxðpÞ þ

P
p0 6¼p �ðp, p

0Þxðp0Þ

1þ �ðp, pÞxðpÞ þ
P

p0 6¼p �ðp, p
0Þxðp0Þ

2

where �ðp, p0Þ is the equilibrium constant for the binding
of RNA strands of type p0 to a probe for target RNA p.
In Equation (2), we separate the specific binding process
explicitly from the non-specific ones: The term �ðp, pÞxðpÞ
describes the specific binding whereas the termP

p0 6¼p �ðp, p
0Þxðp0Þ describes the non-specific binding. For

a well-designed probe, the specific binding is expected
to be dominant and �ðp, pÞ � �ðp, p0Þ with p0 6¼ p. The
equilibrium constants are given by (23)

�ðp, p0Þ / e��Gðp, p0Þ=kT 3

where �Gðp, p0Þ is the Gibbs free energy difference for the
binding process for RNA strands of type p0 to probes for
target RNA p with T the temperature. The free energies
must be expected to depend strongly on the base sequence
of the probe/target RNA.

The observed intensity I(p) for a given probe
is proportional to the fraction of probes f(p) bound
to a RNA strand, i.e. IðpÞ ¼ �fðPÞ. We can rewrite
Equation (2) as

IðpÞ ¼ cðpÞ
xðpÞ

xðpÞ þ aðpÞ
þ bðpÞ: 4

Here, the term b(p) yields the intensity coming from
non-specific binding. It is given by

b ¼ �

P
p0 6¼p �ðp, p

0Þxðp0Þ

1þ
P

p0 6¼p �ðp, p
0Þxðp0Þ

5

as can be obtained from Equation (2) by putting the target
RNA concentration to zero, xðpÞ ¼ 0. Likewise, the first
term in Equation (4) yields the intensity coming from
specific binding with the parameters a(p) and c(p)
given in terms of the equilibrium constants in
Equation (2). The intensity saturates at I ¼ cþ b when
x!1. This limit corresponds to all the probes bound
to their target RNA for very high target concentration.
A major goal for a model for the hybridization process

on DNA chips is to yield information on the concentra-
tion of the RNA strands in the solution. This is given by
the inverse of Equation (4):

xðpÞ ¼
aðpÞ½IðpÞ � bðpÞ�

bðpÞ þ cðpÞ � IðpÞ
: 6

Model for probe intensity parameters

To proceed, we need a model for how the parameters a(p),
b(p) and c(p) depend on the probe sequence. We will use a
position dependent nearest neighbor model to describe the
dependence of the hybridization energies on the probe
sequence writing

ln aðpÞ ¼
XLðpÞ�1
i¼1

!ðiÞ�ðiÞ 7

and likewise for b(p) and c(p). Here, i denotes the
base-pair position along the probe of length L bases,
!(i) is the position-dependent weight function, and
�ðiÞ ¼ �AA, �AT, . . . , �GG depending on whether the base
pair at position i and iþ 1 is AA, AT, . . ., GG. The model
thus assumes that the binding energy for the hybridization
is a sum of the binding energies �XX between base pairs
along the probe. We have introduced a function !(i) to
describe a position dependence of the binding energy
between base pairs. This position dependence can be due
to steric effects coming from the presence of the chip
surface. There are three sets of independent fitting
parameters �XX and !(i) corresponding to the three
parameters a(p), b(p) and c(p). In the following, we refer
to this position-dependent model as the ‘PD’ model.
The fitting procedure is based on the least squares

method. For instance, to find the �XX and !(i) parameters
for a(p) we minimize

X
p

ln aðpÞ �
XLðpÞ�1
i¼1

!ðiÞ�ðiÞ

" #2

: 8

The fitting procedure for the parameters b(p) and c(p) is
identical. The parameters a(p), b(p) and c(p) are found by
a least squares fitting of the observed intensities to the
Langmuir form (4). More details of the fitting procedure
can be found in the supplementary notes.
In the supplementary notes, the accuracy of the model is

established by benchmarking it using the Affymetrix
Spike-In U95 data set (24) and comparing it to other
models in the literature (22,25–27).
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RESULTS

Fluctuation reduction between probes of the same target

The main goal of the present article is to enable a more
reliable comparison between intensity data coming from
probes targeting different sections of the same target.
In this section, we therefore analyze the models ability to
correct for fluctuations between probes targeted against
the same gene transcript. An oligonucleotide microarray
holding probes densely tiling 28 yeast genes, were
hybridized (for details see Materials and methods, Array
design section). Here, we analyze the data from the
resulting 18 759 tiling probes targeting 28 genes with
unknown concentration in the yeast data set. We write
p 2 G for probes which target a RNA sequence from a gene
G. The intensities I (p) vary strongly within this probe set
even though they probe the same gene. Since we in the
yeast experiment do not have (as opposed to the Spike-In
data) intensity data for the same probes at different known
target concentrations, we cannot use the full non-linear
Langmuir form Equation (4). We therefore linearize
Equation (4) obtaining

ln IðpÞ � bðpÞ½ � ¼ ln
cðpÞ

aðpÞ
xðpÞ

� �
: 9

This linearization corresponds to assuming a non-
saturating concentration x(p) of the RNA fragments in
the yeast experiment. The probe dependence of the
background intensity b(p) is known from the random
probe analysis (see supplementary notes). For probes
p 2 G, the concentration x(p) is constant and the right-
hand side of Equation (9) only depends on the probe
sequence through cðpÞ=aðpÞ. In analogy with the Spike-In
analysis (see supplementary notes), we therefore fit (least
squares) the observed intensity from probes p 2 G to the
PD model using Equation (7) with ln aðpÞ replaced by
ln½cðpÞxðpÞ=aðpÞ�. To minimize the uncertainty for
the fitting parameters, we pick the gene targeted by the
most probes (489 probes). The result of the fit is shown
in Figure 1a. Here, we have plotted the observed
intensities and the prediction of the fit for probes p 2 G.
For clarity, we plot only the first 100 of the 489 probes
in the plot. As we see from Figure 1a, the model describes
the main features of the hybridization of the probes.
With the fitting parameters determining the probe

sequence dependence of ln½cðpÞxðpÞ=aðpÞ� for probes
p 2 G [with constant x(p)] obtained, one can use
Equation (9) to predict the concentration of other genes
G
0 relative to G. We rewrite Equation (9) for a probe p0

probing RNA strands from gene G0 (p0 2 G0) with
unknown concentration xðp0Þ as

ln
xðp0Þ

xðpÞ

� �
¼ ln I ðp0Þ � bðp0Þ½ � � ln

cðp0Þ

aðp0Þ
xðpÞ

� �
: 10

Given the base sequence for probe p0, ln½cðp0ÞxðpÞ=aðp0Þ�
predicts a value for the observed intensity assuming the
product of target gene G0 has the same concentration as
the product of the gene used for the fitting of Equation (9),
i.e. xðp0Þ ¼ xðpÞ. The difference between the prediction

of the fit and the observed intensity should be constant for
all probes targeting a given gene product p0 2 G0 and yields
from Equation (10) the relative concentration of gene
product G0 compared to G. To illustrate this, we plot in
Figure 1b the observed intensity from probes targeting
a gene transcript p0 2 G0 6¼ G and the model prediction
for the intensity given the probe sequence. Again, we only
show the first �100 probes. We see that the model
prediction for the intensity is consistently lower than the
observed intensity. From Equation (10), this corresponds
to a higher concentration of gene product G0 as compared
to gene product G. Furthermore, the difference between
the observed intensity and the prediction is approximately
constant in agreement with Equation (10). By performing
a probe average of this difference for probes p0 2 G0, we
obtain from Equation (10) an estimate of the concentra-
tion of gene product G0 relative to G. We denote this by
xG0=xG. For the specific gene G0 plotted in Figure 1b, we
obtain xG0=xG ¼ 7:6, i.e. the concentration of gene G0 is 7.6
times higher than G. Using this approach, one can obtain
the concentration of all the gene products not used for
fitting relative to the gene product used for fitting.

As stated above, a major purpose of our theory is to
explain the large variations in the raw intensity between
probes targeting the same gene. To illustrate this varia-
tion, we present in Figure 2 a box plot of the intensities for
probes targeting a given gene G0 not used for determining
the fitting parameters. A box plot of the corresponding
predicted concentration obtained from the PD model is
also shown. We see that variation of the concentration
predictions is significantly lower than for the raw
intensities. For the specific gene in Figure 2, we have
Var½logðxÞ�=Var½logðIÞ� ¼ 0:34; the variation of the signal
from the probes targeting the same gene is reduced by
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Probe position
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Figure 1. (a) The observed raw intensities from probes targeting the
tiling gene G used for fitting (black �) and the predictions of the PD fit
(red h) as a function of probe position along the gene. (b) The
observed raw intensities from probes targeting a tiling gene G0 not used
for fitting and the predictions of the PD fit.
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a factor �3. Averaging the variation over all the genes,
we obtain

hVar½xðpÞ�i

hVar½IðpÞ�i
¼ 0:57: 11

The model thus is able to compensate partially for the
variation of the observed intensity thereby reducing the
uncertainty in the predicted concentration of the gene.
For a perfectly working model there would be no
variation in the predicted concentration. There is of
course still a residual variation for the predicted concen-
tration which is to be expected as our rather simple
model cannot describe all the complicating effects in
the hybridization process and in the experimental
procedure.

A way to improve the performance of the model could
be to add random probes with the same base-pair content
as the probes targeting the yeast genomes. Providing one
can neglect the position dependence of the binding
process, such probes would give more information on
the background (non-specific) binding contribution to the
signal which could be used by our model.

Application: determining TSS from probe signals

One of the main motivations for this work is to facilitate
a present/absent call as well as to decide the boundary of
transcripts along a genomic sequence through hybridiza-
tion of probes targeted along a genome sequence.

Since the RNA is not expressed from regions upstream
of the transcription start sites (TSS), there is no specific
binding to probes targeting these regions. Consequently,
we expect the intensity of such probes to be smaller
than those targeting the transcribed regions. However,
this tendency is often distorted by the large variations
in the observed intensity due to affinity differences
between probes. As demonstrated above, the

physicochemical model presented in this article can
partially compensate for these variations.
The approach is as follows. We use Equation (10) to

extract RNA concentrations relative to the tiled gene for
which the model was fitted. We then fit both the observed
intensity and the corresponding predicted concentrations
[using Equation (10)] from probes around an expected
TSS to the functional form

xr ¼ x0 þ�x tanh
r� r0
�r

� �
12

with x0, �x, r0 and �r fitting parameters. Here xr denotes
the concentration of transcript starting at base position r
along the gene. The parameter x0 gives an offset, �x
gives the change in the concentration across the gene
start/end position, r0 is the fitted value for the position of
the gene start/end position and �r is the width of the
position (the uncertainty). We expect �r to be of the order
of the probe lengths, as we cannot determine the gene
start/end position with greater accuracy than the base
length of the probes used. We analyzed intensities from
probes of length 27 bases. Note that we need the
parameter x0 since the genes in general have a different
concentration than the tiling gene used for the fitting
giving rise to an offset as explained above. The observed
intensities are fitted to the same functional form (12).
To illustrate the performance of the model, we show

in Figures 3 and 4 two examples of such a fit to a TSS.
In both cases, the translation start is at base position 0.
For both TSSs, the fluctuations of the observed intensities
(Figures 3a and 4a) are rather large making a precise
determination of the gene start position difficult.
The fit based on Equation (12) for the raw intensities
yields �2=ðN� 4Þ ¼ 1:3 for TSS1 and �2=ðN� 4Þ ¼ 1:8 for
TSS2 where N is the number of intensities used in the fit
and we subtract 4 since there are four fitting parameters.
Figures 3b and 4b show the corresponding fits on the
predicted concentration profiles obtained from
Equation (10). For the TSS1 shown in Figure 3b,
the model works very well in reducing the fluctuations
of the signal. There is a clearer change in the predicted
concentrations for probes around the gene start
position and the fit based on Equation (12) is much
better with �2=ðN� 4Þ ¼ 0:033. For the TSS2 shown in
Figure 4b, the model also reduces the fluctuations
albeit less effectively. The reduction in the fluctuations
results in a better fit to Equation (12) with a reduced
�2=ðN� 4Þ ¼ 1:0 as compared to when the raw intensities
are used.
In total, 529 TSS where analyzed. Including probes

positioned �300 base positions around the gene
translational-start positions, we obtain an average �

�2

N� 4

� �
¼

1:35 Raw intensities
0:82 PD

�
13

when fitting the intensities and the thermodynamic models
to Equation (12). From Equation (13), we conclude that
the PD model allows for a more reliable determination of
the location of the TSS.

Raw intensity PD

–2

–1.5

–1

–0.5

0

0.5

1

1.5

lo
g(

I)

Figure 2. Box plot of the observed intensities from probes targeting a
given gene G0 and of the corresponding concentrations obtained from
the PD model.
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Absent/present call on DNA–DNA hybridization

We now analyze the microarray data from genomic
DNA hybridizations of E. coli O157:H7 EDL933 to
a custom-designed microarray covering seven E. coli
genomes including the K-12 W3110 strain. By mapping
to the known sequence of W3110, we identified probes
that should hybridize to the EDL933 sample, in theory.
These probes experience specific binding to their target
DNA strands and we denote them as present-probes. The
rest of the probes in general have a lower intensity since
they do not experience specific binding; we denote them
absent-probes. This is illustrated in Figure 5a. However,
as we see from the figure, the intensity of the present- and
absent-probes exhibit large fluctuations and their intensity

distributions partly overlap. This complicates the
identification of present-/absent-probes based on the raw
intensities from the microarray experiment. By defining
probes with an intensity above a certain threshold as on and
probes below as absent, we will incorrectly identify a number
of absent-probes as present (false positive) and vice versa.

The present model compensates partially for these
fluctuations yielding more narrow distributions for the
present-/absent-probes with less overlap. This is illustrated
in Figure 5b. Here, we have taken a subset of the absent-
probes whose signal exclusively comes from non-specific
binding and fitted (least squares) the observed signal
ln IðpÞ ¼ ln bðpÞ to the model (7) with a(p) replaced by b(p).
We then compensate the signal from the rest of the probes
by subtracting the predicted background signal from
the probe, i.e. the corrected intensity is ln IðpÞ � ln bðpÞ
with ln bðpÞ given by Equation (7). In this way, we
partially compensate for the fluctuations in the data
coming from the non-specific binding thereby allowing
a more accurate identification of present-/absent-probes.
Note that we do not train the model on a subset of the
present-probes also. This is because we want to test the
ability of the model to predict with no prior knowledge
whether a probe is present or absent. Our procedure
corresponds to assuming that the one can train the model
on a set of probes which are known not to target any
present targets. The model is then applied to a set of probes
where it is unknown whether they are present or absent.

In Figure 6, we plot the receiver operating characteristic
(ROC) curves (fraction true positive versus fraction false
positive, at varying thresholds) for both the raw and the
corrected probe signals. We see that the area under the
ROC curve is significantly larger for corrected probe
intensities resulting in 95% versus 85% correctly classified
probes at the optimal threshold for the corrected and
raw signals, respectively. Thus, we conclude that
the model indeed allows a more reliable identification of
present-/absent-probes.

DISCUSSION

DNA microarray hybridization signals are distorted by
various factors. A significant part of the distortion can
be attributed to the base sequence dependence of the
probe affinity. We presented a physicochemical theory
for the hybridization process on microarrays using
a position dependent nearest neighbor model for the
binding energies. In this way, we take stacking energies
and positional effects within the probes into account when
analyzing the hybridization signal.

The main purpose of the article is to demonstrate
that such a model allows the signals from different probes
with the same target to be compared more accurately,
as the conversion renders the signal less dependent on the
probe affinity. We demonstrated that the model reduces
the signal variance up to 64% for probes with the same
target. It thus enables a more quantitative comparison of
signals from different probes. Two applications of this
were presented.
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Figure 3. TSS1: (a) The observed intensities as a function of probe
position along the gene. (b) The corresponding predicted to concentra-
tion from Equation (10). The lines are fits based on Equation (12).
Zero marks the translation start (SGD-REF).
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Figure 4. TSS2: Same as for Figure 3.
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First, we demonstrated that our model provides
a more accurate estimate of the position of TSS as
compared to using raw intensities. The probe data
were fitted to a hyperbolic tangent to model the TSS.
Not surprisingly, the reduction in the signal variation

by our model improves the fit significantly. This
result does not depend on the specific functional form
(hyperbolic tangent) used for the fit; others may want to
model the TSS, other part of the gene structures or absence
of transcription all together, by other means. We expect
that most methods should benefit from using signals
corrected for probe affinity effects by thermodynamic
intensity correction similar to the one presented here.
Second, as a benchmark for ability of the model to

separate signal from no signal, commonly referred to as
absent/present call, we turned to a data set where the
result is known a priory. Genomic DNA from the E. coli
strain EDL933 for which the genomic sequence have
previously been determined, was hybridized to a micro-
array containing probes for another E. coli strain,
namely W3110. The correct call (absent/present) could
be determined for 85% of the probes when the raw
signals were used, whereas 95% correct calls could be
made when using probe affinity corrected signals. This
demonstrated a very useful application of our model.
Also, it shows that the model works for DNA–DNA
hybridization as well as RNA–DNA hybridization.
A software implementation of the model presented in

this article together with a description on how to use it
is available at http://www.cbs.dtu.dk/suppl/probes/. In the
future, one could improve the performance of the model
even further by taking into account additional aspects of
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Figure 5. (a) The total raw intensity distribution and the distribution of present-/absent-probes. (b) The corresponding corrected intensities (plus an
offset to adjust to the same mean value as for the intensities).
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the hybridization such as probe and/or target folding and
sandwich hybridization.

SUPPLEMENTARY DATA

Supplementary Data is available at NAR online.
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