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A heuristic algorithm for associating Gene Ontology (GO) defined molecular functions to protein domains as
listed in the ProDom and CDD databases is described. The algorithm generates rules for function-domain
associations based on the intersection of functions assigned to gene products by the GO consortium that
contain ProDom and/or CDD domains at varying levels of sequence similarity. The hierarchical nature of
GO molecular functions is incorporated into rule generation. Manual review of a subset of the rules gener-
ated indicates an accuracy rate of 87% for ProDom rules and 84% for CDD rules. The utility of these
associations is that novel sequences can be assigned a putative function if sufficient similarity exists to a ProDom
or CDD domain for which one or more GO functions has been associated. Although functional assignments
are increasingly being made for gene products from model organisms, it is likely that the needs of investiga-
tors will continue to outpace the efforts of curators, particularly for nonmodel organisms. A comparison
with other methods in terms of coverage and agreement was performed, indicating the utility of the approach.

The domain-function associations and
http:/ / www.cbil.upenn.edu/GO.

An important early step in the postgenomic era is the char-
acterization of the biochemical functions of gene products.
Accurate computational predictions are a useful resource for
both the community at large and the curators that eventually
assign function to gene products. The Gene Ontology (GO)
(Gene Ontology Consortium 2001) is an ontology, that is, a
database of agreed-to terms for molecular functions, biologi-
cal processes and cellular components. GO also includes rela-
tionships between terms such as specialization or part-whole
relations. GO was developed to facilitate effective use of this
information. We present an automatic method for leveraging
curated GO function annotation of proteins to associate GO
terms with protein domains that can then be applied to pro-
teins that contain any of the domains.

We make the assumption that the functions that a pro-
tein is capable of performing are determined by the protein
domains that it contains. We use the simplest possible model
of this kind; each domain contributes a function indepen-
dently of any other domain in the protein. The basis of the
algorithm, illustrated in Figure 1, is to identify, using an in-
tersection procedure, the GO functions common to a set of
proteins that each contain a domain. We determine whether
or not a protein has a domain using sequence similarity. As
part of the process of associating GO functions with a do-
main, we determine a p-value threshold for each domain that
indicates the level of similarity needed to confer function. As
demonstrated by Hegyi and Gerstein (2001), this is an impor-
tant consideration. We contrast this approach with the com-
parison of entire proteins where similarities may be found
between regions that are not responsible for the transferred
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function assignments are

available from our website

annotation (Myers et al. 2000). An evaluation of all sequences
assigned to a function is needed to ascertain the essential
sequence features of the function (Henikoff and Henikoff
1994; Bateman et al. 1999; Corpet et al. 1999; Hofmann et al.
1999).

The GO function ontology consists of function classifi-
cations arranged in a directed acyclic graph, that is, a parent-
child hierarchy where components may belong to more than
one component but no component can be its own descen-
dant. The top level has general terms such as enzyme and
nucleic acid binding; more specific terms are located deeper in
the hierarchy. The length of a path to a term is termed its
depth. The terms in a path to a term are called the ancestors of
the term. A term is a leaf if it is at the end of a path. Our
method takes advantage of the structure of the GO ontology
to make only as specific a prediction as is consistent with the
data.

We chose the ProDom (Corpet et al. 1999) and CDD
(Bryant and NCBI Structure Group 2001) databases as our ini-
tial sources of domain models. ProDom contains protein sig-
natures determined from sequences organized into classes of
functional domains by sequence clustering. The Conserved
Domain Database (CDD) is comprised of a mirror of two ma-
jor domain databases, the Simple Modular Architecture Re-
search Tool (SMART) (Schultz et al. 2000) and Pfam (Bateman
et al. 2000); it also includes entries from the Library Of An-
cient Domains (LOAD), maintained by I. Aravind, E. Koonin,
and colleagues at the National Center for Biotechnology In-
formation.

RESULTS

We applied our algorithm (Fig. 2) using version 2.61 of the
GO function ontology and 15,241 GO function associations
for 11,679 gene products in M. musculus, D. melanogaster, and
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Figure 1 lllustration of the approach used to assign Gene Ontology (GO) functions to domains.
Gene products (proteins) are assigned a molecular function by members of the Gene Ontology
Consortium (hand associations). BLAST similarities are used to associate the GO-assigned proteins
to domains. A heuristic algorithm is then used to assign GO functions to domains (learned asso-

ciations).

S. cerevisiae (http://www.geneontology.org), to generate do-
main-function associations or rules. Manual review of ap-
proximately 400 of the rules indicates that the error rate, in
terms of completely wrong associations, is about 10%-15%.
The majority of incorrect assignments can be attributed to
domains that have repetitive elements or are found in various
classes of proteins that result in significant similarities to GO-
associated proteins (GOAPs), but are not definite predictors of
their function. Two examples are the WD40 motif and the
LIM domain. WD40 repeats are often found in proteins hav-
ing a variety of functions (Smith et al. 1999). The LIM domain
is involved in mediating protein—protein interactions (Bach
2000) and is found in proteins of varied function. Some of
these suspect domain-function assignments can be identified
as having large numbers of HSPs (high-scoring pairs) in BLAST
(Altschul et al. 1997) comparisons. We selected a cutoff of five
HSPs to avoid these repeats when assembling a list of simi-
larities to a given GO-associated protein. Similarly, when pre-
dicting GO functions, we ignore such similarities.

Rule Generation

Four groups of rules were generated. To ascertain the impact
of each domain database, we initially generated rules and
made predictions using ProDom and CDD separately. Subse-
quent analysis was performed to determine the impact of
joining the two databases. Furthermore, two separate rule
groups were generated for each motif database used; one
group included the use of all GO associations (ProDom-All or
CDD-All), and the other group excludes those with an “In-
ferred from Electronic Annotation” (IEA) evidence code (Pro-
Dom-NoIEA or CDD-NoIEA). Associations to GO:005554, mo-
lecular function unknown, were excluded from rule generation
in all cases; these associations do not help us learn meaningful
domain-function associations.

We categorize rules by types (Fig.
3) that describe the amount and con-
sistency of the data used to generate
the rule. Table 1 reveals the total num-
ber and distribution of the rule types
for each rule group. The majority of
domains in both of the ProDom rule
groups have only one GOAP. Conse-
quently, there is no opportunity to in-
tersect functions, and we simply asso-
ciate all of its functions with the do-
main. This is also the most frequent
rule type generated in the CDD rule
groups; however, it does not represent
the majority of the domains. We will
examine the accuracy of this type of

rule below.

\ ProDom Rules

Domains "0}' "Q'\" ‘1"" ‘Q"" "0'

The two ProDom rule groups exhibit a
similar rule-type distribution, as
shown in Table 1, although the per-
centage of “one protein” rules is
higher in the group that does not
make use of the IEA-based associa-
tions. The ordering of rule types from
most to least common does not
change with the inclusion of GO asso-
ciations with the IEA evidence code. In
both ProDom rule groups, the most
common rule type in cases where the domain has multiple
GOAPs is “single function,” where all GOAPs have the same
associated GO functions. This is the simplest possible non-
trivial intersection. It is possible, in this case, for the GOAPs to
have multiple common functions, only one of which should
actually be associated with the domain under consideration.
This was not seen to be case in practice. Rather, this rule type
primarily associates GOAP members of the same gene family
to a ProDom domain describing that family. For example, in
the ProDom-NoIEA group, the rule for ProDom domain
PD001109 HEXOKINASE TRANSFERASE GLYCOLYSIS ATP-
BINDING TYPE HK ALLOSTERIC ENZYME GLUCOKINASE was
based on six GOAPs each with the function GO:004396 hexo-
kinase. (We note that the ProDom domain names typically
include key words taken from the proteins that contain the
domain, but may be unrelated to the function of the domain.)
Almost as common as “single function” rules are the “con-
sensus ancestor” rules that make explicit use of the hierarchi-
cal structure of the GO function ontology. By considering the
ancestor functions of GOAPs, a more general description of
function shared by all GOAPs may be found. In practice, nei-
ther of the ProDom groups generated a rule set based on a
“near consensus ancestor” function; all were based on a “con-
sensus ancestor” function. An example of this rule type is the
association of the GO function GO008236 serine-type peptidase
with the domain PD000068 PROTEASE SERINE HYDROLASE
PRECURSOR SIGNAL ZYMOGEN GLYCOPROTEIN 3.4.21.-
FACTOR FAMILY. Fourteen GOAPs were used to create the
rule; three were annotated as serine-type peptidase but the rest
were annotated as more specific terms serine-type endopepti-
dase, trypsin, tissue kallikrein, or monophenol monooxygenase ac-
tivator that were generalized to serine-type peptidase. The third
most common rule type is that of “consensus leaf” (leaf refers
to GOAPs being assigned functions at the same hierarchy
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1. BLAST GO-annotated proteins against domains. Only keep results
with p-values <= 10e-5.
2. For each domain:

a. Generate a list of proteins and their p-values €from the
BLAST rumns. Sort the list according to p-value. If there
are no proteins on the list, then generate a “no protein”
rule and go on to the next domain.

b. Go through the list to generate a rule for the domain.

i. Assign a function(s) to the domain based on the best p-
value. This is a *“one protein” rule. If there are no
more proteins, go on to the next domain.

ii. Consider the next protein on list with those above it.
For these proteins, go through the rule generators in
the order “single function”, “consensus leaf”, “near
consensus leaf”, and the deeper of “consensus ancestor”
and “near consensus ancestor”, until the rule
conditions are met. Assign that rule to the domain at
the p-value for the lowest protein on the list
considered. Repeat this step until there are no more
proteins on the list and go on to the next domain.

iii. If no rule conditions are met, then assign a “no call”
rule.

Figure 2 Algorithm for assigning a GO function to a domain.

level). The “consensus leaf” rules apply to multiple GOAPs
with a common GO function, when at least one of the pro-
teins has at least one other GO function. For example, the rule
for ProDom PD156480: PHOSPHATASE TYROSINE HYDRO-
LASE PROTEIN-TYROSINE STRUCTURAL TYPE CYTOSKEL-
ETON NON-RECEPTOR ISOFORM SPLICING was assigned GO:
0008092 ligand binding or carrier:protein binding:cytoskeletal pro-
tein binding protein. One GOAP containing this domain was
annotated with an additional function, protein tyrosine phos-
phatase, that is associated with a kinase domain that only that
GOAP contained. This function was not corroborated by the
other GOAPs, and so it was not associated with the ProDom
domain PD156480.

In cases where most, but not all, GOAPs share a function,
it is possible that the function in question is indeed shared,
but is simply not annotated for all GOAPs. The “near consen-
sus leaf” rule takes this into account by requiring at least 80%
of at least five GOAPs to have a common GO function. This
turned out to be the least common rule, mainly because the
number of GOAPs per domain tends to be fewer than five. For
domains similar to 10 or more GOAPs, the “near consensus
leaf” was more common than “single function” and “consen-
sus leaf” rules combined. Indeed, the rule with the most
GOAPs per domain (76) was a “near consensus leaf.” An ex-
ample of this rule type is the rule associating GO:0003723
RNA binding with ProDom domain PD259036 NUCLEAR RNA-
BINDING REPEAT POLY-U-BINDING-SPLICING-FACTOR RO
POLYU-BINDING CONSENSUS C18A3.5 NSAP1 GRY-RBP. The
rule uses 22 GOAPS and was generated by ignoring two leaf
functions, translation initiation factor and helicase that were
associated with one GOAP each.

The domain coverage (i.e., the percentage of ProDom
domains containing more than one sequence for which we
can associate one or more GO functions) is higher in the
ProDom-All group. Without using the IEA associations, 11%
of the 95,518 ProDom domains containing more than one
sequence are assigned one or more GO functions. Incorporat-
ing the IEA associations increases the number of domains for
which we can assign function by 62%, yielding a domain
coverage of 18%. These results are expected and reflect one of
the impacts of including IEA associations; however, a concern
is the potential negative impact on rule accuracy, as discussed
below.

CDD Rules

The CDD rule groups show a similar rule-type distribution
(Table 1); the ordering of rule types from most to least com-
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mon does not change with the inclusion of GO associations
with the IEA evidence code. Again, the percentage of “one
protein” rules is higher in the group that does not make use of
the IEA-based associations. The two most common rule types
for CDD domains with multiple GOAPs are the reverse of
those for ProDom rule groups. The most common rule type in
cases where the domain has multiple GOAPs is “consensus
ancestor”. An example of this rule type is given by the CDD
entry: pfam00783: IPPC, Inositol polyphosphate
phosphatase family catalytic domain that is assigned
G0:0004437 inositol/phospha tidylinositol phosphatase based on
seven GOAPs. Additional, more specific functions included
inositol-1,4,5-triphosphate phosphatase and phosphatidylinositol-
bisphosphatase. The second most common rule type for both
CDD rule groups is “single function”. An example of a “single
function” rule for CDD is illustrated by the assignment of
GO:0004169 dolichyl-phosphate-mannose-protein mannosyl-
transferase to CDD entry pfam02366: PMT: Dolichyl-
phosphate-mannose-protein mannosyltransferase

Single Protein Single Function

PN A

Consensus Leaf Near Consensus Leaf

AR E

Consensus Ancestor Near Consensus Ancestor

1 1 1
3 1 2 2

Figure 3 Examples of the six rule types. The drawings represent a
portion of the GO hierarchy where each gray oval is a GO term. The
top open oval is the GO term molecular function that serves to distin-
guish functions from cellular component or biological process. In every
example, except “single protein”, there are five GOAPs having simi-
larity to a particular domain. The numbers next to the term ovals
indicate the number of times the term is the deepest function asso-
ciated with a GOAP. In “consensus leaf” and “consensus ancestor”,
one of the proteins has additional GO function terms that our method
does not associate with the domain. In “near consensus leaf” and
“near consensus ancestor”, a spurious protein has similarity to the
domain, but the GOAP and its GO function terms were not used in
generating the rule.
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Table 1. Distribution of Rule Types

Total number One similar Single Consensus Near Consensus
Rule group?® of rules® GO protein© function© leaf€ consensus leaf® ancestor®
ProDom-All 17504 11498 (66%) 2466 (14%) 1251 (7%) 472 (3%) 1817 (10%)
ProDom-NolEA 10724 7579 (71%) 1361 (13%) 540 (5%) 176 (2%) 1068 (10%)
CDD-All 1792 651 (36%) 337 (19%) 179 (10%) 161 (9%) 464 (26%)
CDD-NolEA 1396 639 (46%) 249 (18%) 105 (7%) 84 (6%) 319 (23%)

The number and percentage of rules and rule-types for each combination of domain database (ProDom or CDD) and set of protein GO
associations (All or No IEA) are shown. No “near consensus ancestor” rules were ever created. *Protein domain database and types of GO
associations considered when building rules. ®Total number of rules built. “Number and percent of rules as a function of rule types illustrated

in Figure 3.

based on seven GOAPs. The two least common rule types were
that of “consensus leaf” and “near consensus leaf”.

As with the ProDom rule groups, an increase in coverage
can be seen in the CDD-AIl group over the CDD-NoIEA group,
as shown in Table 2. Without using the IEA associations, 38%
of the CDD entries are assigned one or more GO functions.
Incorporating the IEA associations increases the coverage to
52%, without significantly changing the distribution of rule

types.
P-Value Thresholds

As part of determining the association between a domain and
GO functions, our method determines a BLAST p-value
threshold such that only similarities between the domain and
novel proteins that have a lower p-value are used to determine
function. We observe that 70%-80% of the domains are
found to be similar only to proteins with completely consis-
tent GO functions. In these cases, the threshold is simply the
highest p-value between the domain and the GOAPs. Only a
small fraction (1% for CDD and 3% for ProDom) of the
GOAPs were used in a “near consensus” rule and were not
consistent with the rule. Our method will predict an incorrect
function for such proteins. On average our method rejected
40% of the GOAPs per domain as being inconsistent with a
rule when there were at least five GOAPs for a domain. Most
(95%) of the p-value thresholds for these rules were between
10~ % and 10~ *° with an average of 10~ '* and a mode of 10~ °.

Table 2. Coverage of Motif Databases as a Function of
Usage of IEA Protein-Function Associations

Number of
Rule set® domains with a rule® Coverage©
ProDom-NolEA 10724 11%
CDD-NolEA 1396 38%
LOAD 27 49%
Smart 353 59%
Pfam 1016 34%
ProDom-All 17504 18%
CDD-All 1792 52%
LOAD 31 59%
Smart 417 75%
Pfam 1344 47%

LOAD, Smart, and Pfam are component databases in CDD. We
only considered those ProDom domains derived from at least two
sequences. *Domain (sub)database and GO associations used to
build rules. PTotal number of domains with at least one rule. Per-
cent of (sub)database for which a rule was created.

This is consistent with the data of Hegyi and Gerstein (2001),
and thus our method is able to identify reasonable similarity
cutoffs that should prevent erroneous functional assign-
ments.

Impact of Using Electronic Annotation During

Rule Generation

Including GO associations based on electronic annotation in
our training set allows us to learn more domain-function as-
sociations, but this may come at the expense of accuracy if the
IEA annotation is incorrect frequently enough. We measured
the effect of IEA annotation by comparing rules made with
and without IEA annotation on a domain-by-domain basis.
We restricted the analysis to the 3627 ProDom and CDD do-
mains that associated a single function in both UNION-nolEA
and UNION-IEA rule sets where the UNION-nolEA rule had a
rule type other than “one protein”. For each domain, we de-
termined the set of functions that were common to both rule
sets and compared each rule set to the set of common func-
tions. We found that 4% of the UNION-nolIEA rules had noth-
ing in common with the UNION-IEA rules, 87% of rules
agreed completely with the common set, and 9% of the rules
were at least one level deeper. The corresponding statistics for
the UNION-IEA rules were 91% identical and 5% more spe-
cific. To measure the amount of support that IEA GOAPs add
to rules, we compared the change in the number of GOAPs
used for each domain. Of the rules that had some functions in
common, 4% used fewer GOAPS, 57% had the same amount,
and the remaining 39% added one or more GOAPs. While
there was some evidence of inconsistencies, in practice, it ap-
pears that the majority of IEA data, when used with our algo-
rithm, yields rules that are consistent with rules produced
without it.

Agreement with InterPro to GO Mapping

We performed a comparison of our learned domain-function
associations with the InterPro to GO mappings available at
www.geneontology.org. The results are summarized in Figure
4. Of the ProDom domains considered, 29% are mapped to
GO functions in both our learned associations and the Inter-
Pro to GO mapping. Within this set of domains, 89% agree on
at least one term; the average depth of these agreements is
3.26 terms. Domains for which neither approach produced an
association accounted for 36% of the ProDom entries consid-
ered. The remaining 35% is divided between two sets, those
for which Interpro provides a mapping and we do not (21%),
and those for which we provide an association but there is no
mapping available from InterPro (14%). Pfam comparisons
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Existence of GO Association for ProDom
Domain Mapped To InterPro

=3 Neither have Assoc.
B [nierPro not CBIL
O CBIL not InterPro
M Both have Assoc.

Existence of GO Association for Pfam
Domain Mapped To InterPro

goa/HUMAN) that we were able map
to SWISS-PROT. None of these se-
quences were used in creating the
rules. To increase coverage and to ex-
amine the effects of the p-value
thresholds, we relaxed the BLAST p-
value (pv) requirements to allow do-
main-protein similarities as long as the

89% Agreement
Average Depth = 3.26

81% Agreement

Average Depth =3.67

similarity p-value (sim pv) = 107 3° or
—log(sim pv) / —log(rule pv) = 0.8;
for example, we would consider simi-

Figure 4 Comparison with InterPro to GO Mapping. The two charts show the percentages of
domains in ProDom and Pfam that have been associated with GO functions by InterPro and/or by
our method (Computational Biology and Informatics Laboratory [CBIL]). In cases where both
methods have yielded assignments, the figure indicates the percentage of assignments that have
some agreement and the average depth of agreement. We consider only ProDom domains derived

from at least two sequences.

show a similar result, with 27% having GO associations in
InterPro mapping as well as in our learned associations.
Within this set, 81% agree on at least one term, and these
agreements have an average depth of 3.67 terms. Entries for
which neither approach produces an association account for
34% of Pfam. The remaining 39% is again divided between
entries for which InterPro provides a mapping and we do not
(17%), and entries for which we provide an association and
InterPro does not (22%).

Agreement and Coverage Assessments

To assess the performance of our rules when used to annotate
proteins, we made predictions for 4357 manually curated hu-
man proteins from EBI (ftp://ftp.ebi.ac.uk/pub/databases/GO/

larities as high as 10~ '° for a rule with
a threshold of 10~ 2°. The results are
shown in Table 3. Using all rules and
all similarities as described, we
achieved a protein coverage of 81%. Of
the proteins with predictions, 74%
had a prediction that agreed with the
curated function, and 18% had no agreeing prediction. Our
algorithm automatically assigns a confidence (high, medium,
or low) to each rule that depends on its type and p-value
threshold. The confidences can be adjusted when a rule is
curated. Considering only the rules with high and medium
confidence decreases coverage but increases agreement to
81% of covered proteins. As expected, low-confidence and
‘one protein’ rules generate predictions with lower agree-
ment, as does the use of domain-to-protein similarities higher
than the rule threshold. If we use just the most reliable rules
and similarities, we cover 51% of the proteins considered with
only 11% nonagreement. Similar trends are observed when
IEA associations are included. We find that including IEA an-
notation yields significantly greater coverage (67%) with es-
sentially the same reliability.

Table 3. Coverage and Agreement of Predictions with EBI-Curated Annotation of 4357 Human Genes Found in SWISS-PROT

Using Both ProDom and CDD Rules

Agreement*
P-value
IEA? Rule subset® ratio© Coverage yes some none
No All All 3517 (81%) 74% 9% 18%
High+Medium
Confidence All 2631 (74%) 81% 6% 12%
>=1 2463 (70%) 82% 6% 12%
<1 400 (11%) 67% 16% 17%
Low confidence All 2821 (80%) 67% 11% 23%
>=1 2685 (76%) 69% 10% 20%
<1 601 (17%) 39% 15% 46%
‘One Protein’ All 2275 (65%) 61% 15% 25%
>=1 2052 (58%) 64% 14% 23%
<1 486 (14%) 37% 22% 41%
H+M - ‘One Protein’ >=1 2201 (63%) 84% 5% 11%
Yes All All 3909 (90%) 76% 7% 17%
H+M - ‘One Protein’ >=1 2902 (74%) 83% 5% 12%

?Indicates whether IEA GO Function associations were used to build rules. PIndicates the subsets of the rules that were considered when making
predictions. We considered difference rule confidences and rule type. Though ‘one protein’ rules are less desirable a priori, some have high
confidence if the p-value threshold is low or they have been manually reviewed. “H+M-‘One protein’ ” means the high and medium confidence
rules that are not ‘one protein’ rules. “Indicates what subset of similarities between human proteins and domains were considered when making
predictions. The p-value ratio is defined as -log(sim pv)/ -log(rule pv), so a value less than one indicates a similarity that is less stringent than
the threshold associated with the rule “Number and percent coverage of proteins. Bold entries indicate coverage based on 4357 proteins,
others are based on number of proteins covered with all rules and all p-values with or without use of IEA annotation. Note that multiple
functions are often predicted for proteins and so coverage percents may sum to more than 100%. “Best agreement per protein between
predictions and curated annotation is categorized as agreeing (exactly or with more or less specificity), showing some agreement (paths to
terms overlap but differ at leaf terms), or showing no agreement.
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GO function(s) were predicted for other data sets, pro-
teins in SWISS-PROT and musDoTS (EST assemblies from M.
musculus) (http://www.allgenes.org) as shown in Tables 4 and
5. The average depth of the predictions is about 3.5 terms.
Coverage is increased to 31% by the inclusion of multiple
domain databases. The inclusion of IEA associations yields an
increase from 48% to 56% in the number of SWISS-PROT
proteins having a GO function association when considering
the combined domain sources. The corresponding increase
for M. musculus genes was 11%. For other species, the coverage
of UNION-NoIEA rules was A. thaliana, 37% of 25009; C.
elegans, 40% of 19774; D. melanogaster, 48% of 13228; and S.
cerevisiae, 47% of 6358.

DISCUSSION

Association of molecular functions to protein domains pro-
vides a means to predict functions for novel sequences and
may also lead to insights regarding the physical basis of the
functions. We have used the physical basis for molecular
function, as encoded in amino acid sequence, to make these
associations. For these associations to be meaningful, mul-
tiple instances of proteins must be involved; otherwise the
risk of coincidental assignments is high. Only ProDom do-
mains represented by two or more proteins were included in
our analysis, to reduce the risk that GO-assigned gene prod-
ucts would match ProDom domains based on similarity to
regions not involved in eliciting the GO function. This is an
improvement over direct BLAST searches of unassigned pro-
teins against those with assigned GO functions. The limited
amount of curated data currently available meant that we
could not always realize the full benefits of our approach. We
found that the application of p-value thresholds was an effec-
tive means of limiting errors and that we can identify rules
that are more likely to produce incorrect assignments. This
information can be considered during curation or, perhaps
more importantly, before curation by any user of the predic-
tions.

Our approach performed well in terms of assigning func-
tions that were appropriate based on manual review of a large
number of the rules. As mentioned above, domains contain-
ing repeats were the major cause of incorrect assignments
(false positives). Another source of error arises from incom-
plete sets of GOAPs matched to domains as a result of a p-
value threshold. These issues can be addressed by including
steps to remove or reduce the influence of repeats and to
include an evaluation for allowing GOAPs that just miss the

p-value threshold. Another concern is errors of nonassign-
ments (false negatives). We covered 40% of C. elegans and
37% of A. thaliana, two species that we did not use in our
training set. This amount of coverage is certainly useful, but
we recognize the need for broader coverage. Coverage is lim-
ited by both available domains and annotation of protein
function. Combining multiple domain databases offers some
means for improvement in this area. Interpro (Apweiler et al.
2001) has integrated several such databases, providing the
opportunity to generate rules that may take advantage of the
same domain described in multiple fashions for assigning
GOAPs. Occasionally, for those domains that are associated
with functions, we found that the functions could be more
precise (deeper in the GO hierarchy) or that additional func-
tions could be added. These were the result of missing anno-
tation for the GOAP. The “near consensus” rules are able to
accommodate these cases to a certain degree and may be op-
timized further. We found that the use of IEA annotation
increased coverage with only a small increase in the rate of
bad predictions and a slight decrease in the level of detail of
the prediction. In the present study, we analyzed our method
using the more conservative UNION-nolEA rules so that we
can make more reliable predictions, but for the purposes of a
first pass of automatic annotation prior to manual curation,
we would recommend using the IEA annotation since it in-
creases the coverage.

Other methods have been described for predicting gene
function. A decision tree method was used to generate rules
assigning functions to SWISS-PROT features such as keywords
and species as well as based on homology (King et al. 2000). At
the time we began the present study, the GO functional hi-
erarchy was not populated sufficiently for such an approach
to work because of concerns of over-fitting due to sparse data.
Several computational strategies were recently used to assign
GO terms to a collection of M. musculus cDNAs (Kawai et al.
2001). In one strategy (Fleischmann et al. 1999) that also used
a notion of the consensus of annotation, the M. musculus
sequences, with similarity to protein sequences from SWISS-
PROT/TrEMBL (SPTR), were assigned GO terms using a trans-
lation table mapping the SPTR keywords to GO terms. In an-
other strategy, (Ashbumer 2000. http://www.geneontology.
org/egad2go) the sequences were assigned EGAD cellular
roles and a translation table was used to map the EGAD cel-
lular role(s) to GO terms. Our approach differs since we have
attempted to relate function to a particular subsequence of
protein (as defined by ProDom or CDD) rather than to a pro-

Table 4. GO Function Prediction Coverage Summary for musDoTS (M. musculus EST assemblies) with
Similarity to NRDB as a Function of the Domain Database and Use of IEA Annotation

Number of
assemblies with

Number of

Average number
of predictions

Average
depth of

Rule group?® prediction(s)® predictions© per assembly* predictions®
ProDom-NolEA 9633 (28%) 44219 4.6 3.3
ProDom-All 11721 (35%) 53386 4.6 3.3
CDD-NolEA 10074 (30%) 44423 4.4 3.1
CDD-All 10771 (32%) 47996 4.5 3.2
UNION-NoIEA 12711 (37%) 64818 5.1 3.3
UNION-AIl 14013 (41%) 73276 5.2 3.4

?Domain database and type of GO associations used to build rules. "Number and percent of EST assemblies for which
a prediction was made. “Total number of GO function terms predicted. “Average number of GO function terms
predicted per assembly. “Average number of depth of predicted GO functions terms.
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Table 5. GO Function Prediction Coverage Summary for SWISS-PROT as a Function of the Domain

Database and Use of IEA Annotation

Number of Average number Average

entries with Number of of predictions depth of
Rule group? prediction(s)® predictions© per entry* predictions®
ProDom-NolEA 38520 (39%) 197068 5.1 3.6
ProDom-All 48960 (50%) 264566 5.4 3.8
CDD-NolEA 40530 (41%) 178252 4.4 3.3
CDD-AIl 47076 (48%) 216976 4.6 3.5
UNION-NoIEA 47105 (48%) 248943 5.3 3.6
UNION-AII 55287 (56%) 310180 5.6 3.8

?Domain database and type of GO associations used to build rules. °PNumber and percent of entries for which a
prediction was made. “Total number of GO function terms predicted. “Average number of GO function terms
predicted per entry. “Average number of depth of predicted GO functions terms.

tein with particular descriptive features. A benefit of our
method is that it may provide a basis for further annotation of
GOAPs assigned to a common domain through investigation
of additional and lower-level functions associated with some
members. In general, our approach is complementary to the
others in providing predictions where others do not and pro-
viding the correct prediction in some cases where approaches
disagree.

Our future plans include the incorporation of more do-
main databases, consideration of combinations of domains,
and manual curation of predictions made on musDoTS EST
assemblies. This will serve to carefully check the predictions
we are making, and subsequently to provide more data to use
in building new rules.

METHODS

In a noise-free situation, the learning process would be simple
because of our assumptions about the independent and con-
sistent actions of domains in determining GO functions. Ev-
ery protein p has a set of associated GO functions F,. Given a
domain d there exists a set P, of proteins that each contain the
domain. Any protein that contains a domain should have the
domain’s function(s) associated with it, and therefore that
function will be a member of the intersection of the sets of
functions for each protein in P,. We therefore define the set of
functions associated with the domain d as F,;=nF, for all
p €P,. However, since errors in annotation and the identifi-
cation of protein are expected, we define a nonideal intersec-
tion described below.

We implemented our algorithm as follows. We use wu-
BlastP (http://blast.wustl.edu) to compare GOAPs with Pro-
Dom domains and rRPS-Blast (Bryant and NCBI Structure
Group 2001) to compare GOAPs with CDD domains. These
results are stored in a data warehouse, GUS (Genomic Unified
Schema) (Davidson et al. 2001). Then, for each domain, we
perform the nonideal intersection process, illustrated in Fig-
ures 2 and 3, on sets of functions associated with proteins
containing the domain. We do not consider ProDom domains
that contain only one known protein, to avoid searching with
multidomain proteins rather than individual domains. Rec-
ognizing that a BLAST similarity is not a perfect reflection of
domain membership, we record similarities with p-values (or
e-values in the case of RPS-BLAST) as high as 10~ ° knowing
that a fraction of them are incorrect. We assume that incor-
rect assignments tend to occur when the p-value is too high,
and vary a p-value threshold to select the largest set of pro-
teins that yields a (nearly) complete intersection of GO func-
tions. A simple method of doing this is to take the highest
p-value among the similarities that yields a non-null intersec-
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tion. However, often there is not a p-value threshold that
cleanly separates the GO functions, and rigid adherence to
this method could degenerate to taking the lowest p-value
only. We take two approaches to this situation that can be
used separately or together. First, using the hierarchical na-
ture of GO, we can perform the intersection process at lower
resolution if need be. The protein associations are made to
nodes deep in the GO hierarchy that are located on one or
more paths back to the root. We form domain-function asso-
ciations to nodes that are in the intersection of sets of these
paths rather than on sets of the leaves at the ends of the paths
(leaves). If the paths intersect deeply enough in the hierarchy,
then the computed F, is a useful prediction. By using the
hierarchy of the categories, we can often regain coverage by
making a less detailed prediction. This is analogous to ex-
panding a confidence interval when making predictions in
real-valued variables. Rules of this type are called “consensus
ancestor”. The second approach is to relax the constraint that
a predicted function must be associated with every member of
P,. We adopt the heuristic that a node is a member of the
intersection if it is associated with at least 80% of the proteins
in P, and P, contains at least five proteins. We accept the
highest p-value that generates an acceptable approximate in-
tersection and is consistent with the associations of the pro-
tein with that p-value. Rules of this type are called ‘near con-
sensus’. When the two heuristics are combined, the rule type
is “near consensus ancestor”. We look for a near ancestor that
is either a consensus or a near consensus and take the deeper
of the two (possibly) distinct nodes. It is possible for a directed
acyclic graph (DAC) to have a consensus node that is deeper
than a nonconsensus node. The domain-GO function asso-
ciations are stored in GUS with the threshold p-value, the rule
type used, and links to supporting evidence for the rule, in-
cluding the similarities and the GO protein associations. A
concise version of the algorithm used to generate rules for
assigning a GO function to a ProDom or CDD domain is given
in Figure 2.

The effects on our method of some nonideal conditions
are as follows. Consistently co-occurring domains in GOAPs
are unresolved by this method, since we cannot separate their
functions. The sliding p-value threshold effectively deals with
the incorrect identification of proteins and missing or incor-
rect annotation. Nonindependent or inconsistent domain be-
havior is expected to cause our algorithm to select the lowest
candidate p-value. When P, is large enough and the set of
GOAPS unused due to high p-values is large enough, we can
identify this situation and flag the domain as not meeting our
independence and constancy assumptions. Multiple indepen-
dent domains in a single model should cause similar behav-
ior. In both these cases, we assume that there is no segregation
of function by p-value. If this segregation does occur, then our
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method would choose the function associated with the set of
lower p-values.

To predict GO functions for a novel protein sequence, we
perform a BLAST search against ProDom and CDD and then
relate any GO functions associated with a domain that has a
BLAST p-value/e-value that meets the threshold recorded with
the domain-function association. For example, if novel pro-
tein p has a p-value match to protein domain d of 10~ *, and
domain d has a rule based on a p-value of 10~ '°, then the rule
can be applied to protein p. However, if the rule was based on
a p-value of 10~°°, then the rule would not be applied. For
cases such as the latter, where the protein-domain similarity
p-value is only slightly higher than the domain-rule thresh-
old, we have the option of allowing such assignments to in-
crease coverage. In all cases, we record as evidence the rule(s)
used to generate the prediction as well as the corresponding
BLAST similarities of the novel sequence against the protein
domain database(s).

Materials

Required data include the GO function ontology, GOAPs and
their associations, and the chosen protein domain databases.
Version 2.61 of the GO function ontology and the GO func-
tion associations used in training were obtained from www.
geneontology.org. The latest ProDom release (2001.1) was
downloaded from ftp://ftp.toulouse.inra.fr/pub/prodom/
current_release/. The most recent CDD release (dated June 27,
2001) was obtained from ftp://ncbi.nlm.nih.gov/pub/mmdb/
cdd/.
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