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The analysis of large-scale genomic information (such as sequence data or expression patterns) frequently
involves grouping genes on the basis of common experimental features. Often, as with gene expression
clustering, there are too many groups to easily identify the functionally relevant ones. One valuable source of
information about gene function is the published literature. We present a method, neighbor divergence, for
assessing whether the genes within a group share a common biological function based on their associated
scientific literature. The method uses statistical natural language processing techniques to interpret biological
text. It requires only a corpus of documents relevant to the genes being studied (e.g., all genes in an organism)
and an index connecting the documents to appropriate genes. Given a group of genes, neighbor divergence
assigns a numerical score indicating how “functionally coherent” the gene group is from the perspective of the
published literature. We evaluate our method by testing its ability to distinguish 19 known functional gene
groups from 1900 randomly assembled groups. Neighbor divergence achieves 79% sensitivity at 100%
specificity, comparing favorably to other tested methods. We also apply neighbor divergence to previously
published gene expression clusters to assess its ability to recognize gene groups that had been manually
identified as representative of a common function.

The availability of genomic sequence and genome-scale data
sets for expression, regulation, and proteomics is shifting the
focus of data analysis from individual genes to families of
genes. Frequently, the analysis of genome-scale experiments
results in the definition of gene groups. For example, gene
expression (Eisen et al. 1998), protein sequence (Altschul et al.
1990, 1997), deletion phenotypes (Winzeler et al. 1999;
Hughes et al. 2000), and yeast-2-hybrid screens (Uetz et al.
2000) can all be used to produce sets of related genes. Given
a set of genes, it is important to recognize if there is a common
functional feature, or if the set is in some way entirely novel.
The large number of genes and their multiple functions pro-
hibit easy manual assessment of common function. A com-
putational method that detects common function in a set of
genes would be useful, therefore, for assessing the significance
of an experimentally derived gene set and prioritizing those
groups that deserve follow-up. For example, such a method
could be used to rapidly screen large numbers of gene expres-
sion clusters and identify functionally interesting ones.

The published literature contains virtually every impor-
tant biological development, and much of the literature is
accessible in electronic form—often as full text, and almost
always in abstract form (http://www.ncbi.nlm.nih.gov/
PubMed/). Article abstracts about genes can be exploited to
predict biological function (Raychaudhuri et al. 2002). We
assert that the biological literature (here we use PubMed ab-
stracts) contains the necessary information for assessing
whether a group of genes represents a common biological
function.

In this paper we propose a novel computational method,
neighbor divergence, that rapidly assesses whether a set of genes

shares a common biological function by automatic analysis of
scientific text. It requires only a corpus of articles relevant to
all of the genes being studied (e.g., all genes appearing on an
expression array) and an index associating the articles to ap-
propriate genes. Such reference lists are often available from
genomic databases (Gelbart et al. 1997; Cherry et al. 1998;
Bairoch and Apweiler 1999; Blake et al. 2002) or can be com-
piled automatically by scanning titles and abstracts of articles
for gene names (Jenssen et al. 2001).

An alternative approach to assessing the functional co-
herence of a gene group is to cross-reference it against pre-
defined groups of related genes that have been compiled au-
tomatically from the literature or by manual annotation. Jens-
sen and colleagues used co-occurrence of gene names in
abstracts to create networks of related genes automatically
form literature (Jenssen et al. 2001). They showed that those
groups were useful in gene expression analysis. The Gene On-
tology (GO) Consortium and Munich Information Center for
Protein Sequences (MIPS) provide vocabularies of function
and assign the relevant terms to genes from multiple organ-
isms (Ashburner et al. 2000; Mewes et al. 2000). Genes that are
assigned the same term constitute a functional group of
genes. However, such resources may not be comprehensive
and up to date at any given time, and it is also laborious to
maintain the vocabulary and the gene assignments. Our ap-
proach requires only a set of references associated with genes.
It requires no precompiled lexicons of biological function,
previous annotations, or co-occurrence in the literature. It is
kept current and up to date if it is provided a current literature
base. Furthermore, this method can be applied to any arbi-
trary set of genes, as long as an index of gene–article associa-
tions is provided.

Recognizing coherent gene groups from the literature is a
difficult problem because some genes have been extensively
studied, whereas others have only been recently discovered.
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In addition, most genes have mul-
tiple functions. The literature about
genes reflects these differences. A
given gene may have many rel-
evant documents or none, and the
documents about it may cover a
wide spectrum of functions. Conse-
quently, the available text can skew
performance of text analysis algo-
rithms. However, individual articles
tend to address functions very spe-
cifically; it is this specificity that we
exploit in our approach.

We use statistical natural lan-
guage processing (NLP) methods to
access and interpret biological text
(Manning and Schütze 1999). Sta-
tistical NLP techniques have al-
ready been shown to be useful in
annotating individual genes (Tama-
mes et al. 1998; Eisenhaber and
Bork 1999; Fleischmann et al. 1999;
Raychaudhuri et al. 2002), deter-
mining gene or protein interactions
(Blaschke et al. 1999; Thomas et al.
2000; Jenssen et al. 2001; Stephens
et al. 2001), and assigning keywords
to genes or groups of genes (An-
drade and Valencia 1997; Shatkay
et al. 2000; Masys et al. 2001).

The intuition behind neighbor divergence involves rec-
ognizing articles that are about the function represented in
the group. If a group of genes shares some specific function,
such as “autophagy”, an article germane to that function will
refer to at least one of the genes in the group. Furthermore,
other similar articles that pertain to the same function will
tend to refer to the same gene or to other genes in the group.

Neighbor divergence assigns a functional coherence
score to a group of genes on the basis of the literature. It uses
semantic neighbors; two articles are semantic neighbors if
there is similar word usage in each of them (Manning and
Schütze 1999). First, semantic neighbors are precomputed for
each article in the corpus. Given a gene group, each article’s
relevance to the group is scored by counting the number of
neighbors that have references to genes in the group. If the
group represents a coherent biological function, articles that
discuss that function will have many referring neighbors and
therefore will score high (see Fig. 1). Articles that address bio-
logical functions that are irrelevant to the group function will
score low. If there are many high-scoring articles, the group
likely represents genes with shared function. Neighbor diver-
gence determines whether a function is represented in a gene
group from the distribution of article scores. Specifically, the
neighbor divergence measure of functional coherence of a
gene group is an information-theoretic measure of the differ-
ence between the empirical distribution of article scores and a
theoretical distribution of scores that would be expected with
a noncoherent group of genes.

To evaluate neighbor divergence and to compare it with
other approaches, we used 19 groups of yeast genes, each
representing a different function. We also devised 1900 decoy
random yeast gene groups. We tested methods by scoring all
groups. A good method should assign high scores to func-
tional groups and low scores to random groups. We report the

percentile of the functional groups relative to the 1900 groups
as a measure of success; a score that exceeds all random group
scores is in the 100th percentile. Also, we calculate the preci-
sion and recall of a method at different score cutoff levels. The
precision is the number of functional groups scoring above
the cutoff divided by the number of total groups scoring
above the cutoff. The recall is the number of functional
groups scoring above the cutoff divided by the total number
of functional groups. A good method achieves 100% recall at
100% precision.

We also examined how removing legitimate genes and
replacing them with irrelevant genes in the gene group affects
the score. If the score falls off monotonically, then the score is
well behaved and even partial groups have some signal. The
neighbor divergence method can then also be used to refine
gene groups, by adding and replacing genes to increase the
functional coherence score.

Gene expression clustering algorithms generate a large
number of clusters, many of which are spurious. We tested
our method’s ability to recognize 10 yeast gene expression
clusters that were manually recognized by investigators as
representative of a common function (Eisen et al. 1998). This
is a real-world test of the sensitivity of neighbor divergence in
detecting meaningful groupings derived from experimental
data.

RESULTS AND DISCUSSION

Gold Standard for Benchmarking
Method Performance
To assess the performance of neighbor divergence and other
methods, we selected 19 functional yeast gene groups as a
gold standard that were defined by an independent body
(Ashburner et al. 2000). These groups varied in size and con-

Figure 1 Scoring articles relative to gene groups. We graphically depict a small gene group of three
autophagy genes (boxes with dotted boundaries). The genes are connected to their respective article
references (boxes with solid boundaries). Articles about autophagy are dark boxes with white lettering.
Notice that, for all genes, only a few of the referenced articles are about autophagy, the critical function
that unites these genes in the group. The arrows are used to indicate the semantic neighbors of article
B.2, an autophagy article. The significance of this article to the group’s unifying function becomes
apparent when we notice that many of its neighbors, also autophagy articles, are references for other
genes in the same group.
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tent (Table 1A). This diversity is representative of gene groups
that experimental procedures may derive. Also, many of the
genes were members of more than a single functional gene
group (Table 1B), which underscores the multiple functional-
ity that many genes have. We created 1900 random yeast
gene groups as a negative set. This may be a poor negative set
because experimentally derived gene sets are rarely com-
pletely random. However, this set is sufficient to use in com-
paring the different methods and establishing a performance
baseline for neighbor divergence.

Performance of Neighbor Divergence
Neighbor divergence achieves 79% recall (15 of 19 functional
groups) at 100% precision; this is equivalent to 79% sensitiv-
ity at 100% specificity. In Figure 2 we have plotted the preci-
sion and recall at different cutoff levels for neighbor diver-
gence and other methods for comparison. Because the cutoff
score is selected to be more stringent, some functional groups
are not obtained and therefore recall is lower. However, most
random groups fail to make the cutoff and the precision is
higher. In Table 2 we have listed the percentile of the score
assigned by the method for the different functional groups
relative to the 1900 random groups. Neighbor divergence as-
signed 15 of the 19 functional groups scores that exceeded all
of the 1900 random groups; another 3 functional groups had
scores exceeding 98% of the random groups (Table 2).

Neighbor divergence performance is robust to different
size gene groups. Smaller groups usually contain fewer genes,
fewer articles, and consequently are more difficult to discover.

Despite that, neighbor divergence is
able to assign relatively high scores
to these groups (Table 2).

In Figure 3 we have plotted the
distribution of neighbor divergence
scores for the 1900 random gene
groups and the 19 functional gene
groups. Although there is some
overlap, most functional groups
have scores that are about an order
of magnitude higher than the high-
est score assigned to a random gene
group.

Calculating Neighbor
Divergence Scores
With Article
Score Distributions
The neighbor divergence measure
of functional coherence in a gene
group is a measure of the disparity
between the empirical distribution
of article scores and a theoretical
distribution of article scores. We
use a Poisson distribution to ap-
proximate this theoretical distribu-
tion of article scores for a nonco-
herent gene group. As an example,
we have scored all of the articles
against one functional gene group
and plotted the resulting empirical
distribution of scores (see Fig. 4A).

Table 1A. Gold Standard Functional Gene Groups

Functional classification
Gene

ontology code Genes
Total articles
referenced

Unique articles
referenced

Signal transduction GO:0007165 94 3484 1944
Cell adhesion GO:0007155 6 82 59
Autophagy GO:0006914 16 110 55
Budding GO:0007114 74 1692 979
Cell cycle GO:0007049 341 8399 4438
Biogenesis GO:0016043 459 6439 3840
Shape size control GO:0007148 54 1629 1014
Cell fusion GO:0006947 89 2495 1470
Ion homeostasis GO:0006873 43 667 363
Membrane fusion GO:0006944 6 212 209
Sporulation GO:0007151 27 646 553
Stress response GO:0006950 94 2603 1866
Transport GO:0006810 313 4559 2708
Amino acid metabolism GO:0006519 78 1594 1221
Carbohydrate metabolism GO:0005975 90 2719 1855
Electron transport GO:0006118 8 205 187
Lipid metabolism GO:0006629 90 1035 715
Nitrogen metabolism GO:0006807 15 264 229
Nucleic acid metabolism GO:0006139 676 12345 6674

Table 1B. Genes in Multiple Groups

Number of GO
codes/gene 0 1 2 3 4 5 6

Number of genes 2412 1242 386 113 40 9 3
Total genes 4205
Total GO code assignments 2576

Most genes are not in a single functional group. Some genes are in as many as six functional
groups.

Figure 2 Precision-recall plot for each of the functional coherence
scoring methods. We used each method to score the functional co-
herence of the 19 functional gene groups and the 1900 random gene
groups. We calculated and plotted precision and recall at cutoff scores
of different stringency. There is a trade-off between precision and
recall. More stringent cutoff values select fewer true functional
groups, and recall (or sensitivity) is compromised; however, less strin-
gent cutoff values cause many random groups to be selected inap-
propriately and precision is compromised. An ideal precision-recall
plot achieves 100% precision for every value of recall. The neighbor
divergence method is closest to the optimal curve.
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If the score distribution is different from the Poisson, then the
gene group likely represents a biological function. The log
ratio of probability in both distributions is plotted for each
article score in Figure 4B. Very high scoring articles are rel-
evant to the group’s function and are overrepresented relative
to the Poisson distribution.

Performance of Naı̈ve Word Divergence Method
For purposes of comparison, we developed and tested a naı̈ve
word divergence method that is based on an intuitive statis-
tical NLP strategy. Abstracts are di-
vided into those that refer to group
genes and those that do not. A
probability distribution of words in
abstracts referring to group genes is
calculated from counts and com-
pared with the distribution of
words in the other articles. Word
divergence is an information-
theoretic measure of the disparity
between the two word distribu-
tions. If a subset of rare words is
used significantly more inside the
group than it is outside the group,
then these words may be indicative
of some biological function within
the gene group. Therefore, word di-
vergence should be sensitive to the
presence of biological function in
the gene group.

Wo r d d i v e r g e n c e o n l y
achieves 10.5% recall (2 of 19 func-
tional groups) at 8.3% precision on
the same data set (Fig. 2); this is
equivalent to 10.5% sensitivity at
98.9% specificity. This method per-
forms relatively poorly. Although

an individual article may address a single aspect of a gene’s
function, different articles referring to the same gene may
discuss many different biological functions (Fig. 1). Conse-
quently, pooling all of the articles referring to a gene results in
an uninformative distribution of words. If all articles written
about a gene addressed the same function, this method would
have been more successful.

Performance of Other Article-Scoring Approaches
The best article score and best article p-value are similar to neigh-
bor divergence in that all articles are scored for relevance
against the gene group by counting the number of referring
semantic neighbors. In these methods, however, only the
single “best” article score is used as a score for the group.
These methods perform better than word divergence because
they do not combine signals from many different articles, but
rather consider the articles individually. Best article score
achieves 58% recall at 8.3% precision (93.7% specificity), and
best article p-value performs comparably, achieving 58% re-
call at 9.1% precision (94.2% specificity) (Fig. 2).

These methods search for articles that have semantic
content that is relevant to the group. The advantage of this
approach is that articles are treated as individuals. This ap-
proach is more appropriate for the problem because genes are
often multifaceted, but scientific articles tend to be focused
on the subject they are addressing. The best article score
method is limited because large groups would be expected to
have larger scores on average. To correct for this, we have tried
computing a p-value for the best score instead. The p-values
seem to overcompensate for larger groups, however.

Both methods are limited by their use of scores of only a
single article; this ignores other high-scoring articles that
should be abundant if the gene group represents a function.
The neighbor divergence method relies on the referring
neighbor principle also, but in contrast obtains greater statis-
tical power by considering the scores of all articles and not
just the extreme-valued ones.

Figure 3 Histogram of neighbor divergence scores. Each open square represents (�) the count of
random gene group scores in the range indicated on the horizontal axis; each closed diamond rep-
resents the count of functional gene group scores in the range on the horizontal axis. There is little
overlap between the two histograms. None of the random gene groups score above .16; most of the
functional gene groups score well above .16.

Table 2. Percentile Scores Achieved by the Neighbor
Divergence Scoring Method

Functional classification Percentilea

Signal transduction 100.0%
Cell adhesion 99.7%
Autophagy 100.0%
Budding 100.0%
Cell cycle 100.0%
Biogenesis 100.0%
Shape size control 100.0%
Cell fusion 100.0%
Ion homeostasis 100.0%
Membrane fusion 98.8%
Sporulation 100.0%
Stress response 100.0%
Transport 100.0%
Amino acid metabolism 100.0%
Carbohydrate metabolism 100.0%
Electron transport 89.3%
Lipid metabolism 100.0%
Nitrogen metabolism 98.6%
Nucleic acid metabolism 100.0%

aRelative to the scores of 1900 random groups. A good method
assigns a score that exceeds that of all random groups; such a
score is in the 100th percentile.
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Performance of Neighbor Divergence Without Filter
Abstracts referring to well-studied genes often have semantic
neighbors that refer to the same gene. If such a gene is in the
group, an abstract referring to the gene may receive a spuri-
ously high score because many of its article neighbors refer to
the same gene. That abstract may not, however, be relevant to
the group function. A sufficient number of such high-scoring
abstracts can increase the neighbor divergence score. To re-
duce potential false-positive gene groups produced by this
effect, our implementation of neighbor divergence includes a
filter in determining the semantic neighbors. When calculat-
ing semantic neighbors for an article, only articles that refer
to different genes are considered. Without the filter (neighbor
divergence–no filter), performance is reduced to 68% recall at
100% precision (Fig. 2).

Understanding the Gene Group’s Function
Neighbor divergence determines whether a group of genes has
a coherent function. It does not tell us the function. Because

all of the articles are scored by
neighbor divergence for a given
gene group, the easiest way to de-
termine a group’s function is to ex-
amine the higher-scoring articles
manually or automatically. For ex-
ample, in the ion homeostasis func-
tional group, the highest scoring ar-
ticle is titled “Resolution of subunit
interactions and cytoplasmic sub-
complexes of the yeast vacuolar
proton-translocating ATPase” (To-
mashek et al. 1996). The highest
scoring article for the autophagy
gene group is titled “Structural and
functional analyses of APG5, a gene
involved in autophagy in yeast”
(Kametaka et al. 1996). Both of
these articles contain clues to the
nature of the gene group. These and
other high-scoring articles indicate
the shared function. The high-
scoring articles could be collected
and examined manually to deter-
mine group function.

Alternatively, keywords for the
group that describe the function of
the group could be determined au-
tomatically. Investigators have al-
ready developed algorithms to find
keywords in collections of docu-
ments that could be applied to
these high-scoring articles to deter-
mine functional keywords (An-
drade and Valencia 1997).

Corrupting Functional Groups
We examined the robustness of the
scores to removal of genes and re-
placement with random genes. As
this procedure is conducted, scores
slowly decrease. About half of the
genes for the two functional groups
examined can be removed while
still maintaining a reasonably

strong signal (see Fig. 5). Incomplete gene functional sets can
be detected, although their scores will be lower. Therefore,
partial functional groups derived from experimental screens
are still discernable.

Furthermore, the more representative a gene group is of
a specific function, the greater the neighbor divergence score.
This indicates that, as scores are optimized by addition and
removal of genes, more ideal functional gene groups can be
obtained. There is then the possibility of using neighbor di-
vergence in bioinformatics algorithms to automatically define
gene groups in the context of experimental data.

Application of Functional Coherence Scoring to
Manually Labeled Gene Expression Clusters
Eisen and colleagues (1998) collected expression measure-
ments on yeast genes under 79 diverse conditions. They used
a hierarchical clustering algorithm to identify groups of genes
with coherent gene expression patterns. A few of the gene

Figure 4 Observed and expected distribution of article scores. (A) The bar graph in the figure
represents the observed empirical distribution of article scores for the “signal transduction” gene
group. The line on the figure is the Poisson distribution; it is the expected distribution of scores for a
random gene group of the same size. (B) The ratio in log scale of observed (bars in Fig. 4A) to expected
(line in Fig. 4A) distribution of article scores. The X-axis is drawn at a ratio of one, where observed is
equal to expected. Because the gene group represents a well-defined biological function, the distri-
butions are very different. High-scoring articles that discuss signal transduction and low-scoring articles
that discuss functions besides signal transduction are overrepresented.
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clusters contained many genes with similar function. These
published clusters were manually identified and labeled with
a summary label. We hypothesized that our method could
rapidly identify the functionally coherent groups of genes.
We reevaluated the functional coherence of these clusters au-
tomatically with neighbor divergence. Our results are pre-
sented in Table 3. We found that 7 of the 10 clusters had very
high functional coherence scores.

For three of the clusters, the functional coherence score

was poor. The “spindle pole body
assembly and function” cluster
contained 11 yeast genes; we found
that only 3 of these genes were
among the 32 listed “spindle pole”
genes in the Comprehensive Yeast
Genome Database (CYGD) (Mewes
et al. 2000). Similarly, the “mito-
chondrial ribosome” cluster con-
tained 22 genes; only 10 of these
genes were among the 49 “mito-
chondrial ribosome” genes listed by
CYGD. Also, the “mRNA splicing”
cluster contained 14 genes; we
found only 3 of these genes among
the 38 listed “mRNA splicing” yeast
genes in CYGD. Many of the genes
in these clusters do not represent
the annotated function. Although
these clusters are suggestive, they
are not coherent functional groups
based on our scoring criteria; they
contain less than half of the genes
with the reported function. Accord-
ingly, the functional coherence
scores are low. In fact, it may be
that these clusters represent a novel
association of genes that should be
pursued and validated for their
functional implications.

Future Directions
There is growing interest in en-

hancing biological data analysis by using the published litera-
ture as a knowledge source to guide bioinformatics algo-
rithms. Inclusion of literature has been shown to directly aug-
ment biological data analysis, such as sequence homology
searches, sequence-based assignment of cellular compart-
ment, and gene expression analysis (MacCallum et al. 2000;
Shatkay et al. 2000; Chang et al. 2001; Jenssen et al. 2001;
Stapley et al. 2002). Many analytical approaches, such as
those based on supervised and unsupervised machine learn-
ing, aim to define groups of genes based on patterns in ex-

perimental data (Raychaudhuri et
al. 2001). Neighbor divergence can
be a critical piece in connecting
such data analysis algorithms to the
scientific literature. New algorithms
can be written that search for
groups with consistent signal in the
experimental data that also have
high functional coherence. For ex-
ample, a clustering algorithm can
be rewritten to identify groups of
genes with similarities in expres-
sion and also similarities in func-
tion as assessed from the literature;
the solution is to modify the objec-
t ive function in gene group
searches to include similarity of the
literature for a group as well as ex-
perimental similarity. The neighbor
divergence score may have other

Figure 5 Replacing functional genes with random genes reduces neighbor divergence scores grace-
fully. We replaced genes in two functional gene groups (“autophagy” and “ion homeostasis”) with
random genes, and scores were recalculated for the corrupted groups. Each point represents 10 scores;
error bars indicate 95% confidence interval of scores for that many genes replaced. Neighbor diver-
gence scores above .1 are very significant (see Fig. 3). Neighbor divergence scores remain significant
despite replacement of about 38% (6 of 16 genes) of the “autophagy” genes and 60% (26 of 43
genes) of the “ion homeostasis” genes.

Table 3. Assigning Neighbor Divergence Scores to Experimentally Obtained Gene
Expression Clusters

Functional label assigned to expression clustera
Number
of genes

Neighbor
divergence score

Score
percentileb

ATP synthesis 14 0.1358 99.9%
Chromatin structure 8 0.1456 100.0%
DNA replication 5 0.1867 100.0%
Glycolysis 17 0.2118 100.0%
Mitochondrial ribosome 22 0.0269 53.3%
mRNA splicing 14 0.0248 48.3%
Proteasome 27 0.3007 100.0%
Ribosome and translation 125 0.2224 100.0%
Spindle pole body assembly and function 11 0.0272 53.8%
Tricarboxylic acid cycle and respiration 16 0.1249 99.8%

aEisen et al. (1998) clustered genes from diverse experimental conditions. They labeled 10 of the
clusters in Fig. 2 of their paper as containing genes that represent some consistent biological
function. Each row represents a gene cluster.
bRelative to 1900 random gene groups.
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applications in defining new functional groups, annotating
genes, and organizing genes in a functional hierarchy.

The work that we have presented here is limited in that
it only uses article abstracts and not the whole text of articles.
A more complete implementation of this method would le-
verage the full text of articles; these are now becoming avail-
able on line (Roberts et al. 2001). Our method relies on ab-
stracts focusing on specific subjects. Inclusion of full text ar-
ticles will probably be most effective if the text is broken into
smaller, more specific semantic units, perhaps individual
paragraphs.

METHODS

Neighbor Divergence Algorithm

Data Types: Document Corpus and Reference List
The neighbor divergence calculation for a gene group requires
a corpus of documents relevant to all genes in the organism
and a reference list indicating the articles that are germane to
each gene. Here, all documents are PubMed abstracts. Only
the title and abstract fields in the PubMed records are used.
From these documents, we find unique tokens by tokenizing
on white space, punctuation, and common nonalphanumeric
characters such as hyphens and parentheses. Only those to-
kens that were present in >4 abstracts and <10,000 abstracts
were considered as vocabulary words. Abstracts are converted
into vectors of word counts in which each dimension repre-
sents a specific word.

Identifying Semantic Neighbors for Corpus Articles
For each article, the k most similar articles, including the
original article, are precomputed. Here we use k = 20. To
quantify the similarity between two documents, we used the
cosine between the two weighted document word vectors.
Word vectors of articles were first converted into inverse
document frequency-weighted word vectors (Manning and
Schütze 1999):

Wi,j = ��1 + log2 �tfi,j��log2� Ndfi� if tfi,j > 0

0 if tfi,j = 0
�

where Wi,j is the weighted count of word i in document j, tfi,j
is the number of times word i is in document j, dfi is the
number of documents that word i is present, and N is the total
number of documents. Inverse document frequency weight-
ing is commonly used to reduce the impact of very common
words. Article similarity is calculated as the cosine of the angle
between these two weighted article vectors.

In the selection of the 20 similar articles for each article,
we applied a simple filter as discussed earlier. Except for the
seed article, all other articles that referred to a subset of genes
referred to in the seed article were removed from consider-
ation.

Scoring Article Relative to Gene Groups
Given a gene group, neighbor divergence then assigns a score,
Si, to each article i. The score is a count of semantic neighbors
that refer to group genes. Groups that represent genetic func-
tions will induce many articles to have high scores.

Practically, most articles in the data set refer to multiple
genes rather than a single one. Neighboring articles with
some genes referring to gene groups are counted fractionally.

frk,g = nk,g�nk

where nk,g is the number of genes in the gene group g that the
neighboring article k refers to, nk is the number of genes that

article k refers to, and frk,g is the fractional reference for article
k to group g.

To obtain the article score, we sum the referring fractions
of the 20 neighbors and round to the nearest integer.

Si,g = round��
j= 1

20

frsemi,j,g�
where Si,g is the score for an article i for a group g calculated by
rounding and summing the fractional reference of its 20
neighbor articles whose indices are semi,j. Si,g is an integer that
ranges between 0 and 20.

Calculating a Theoretical Distribution of Scores
If the gene group has no coherent functional structure, the
semantic neighbors of any given article should refer to group
genes independently with a probability q. Each of these trials
should be independent. A Poisson distribution estimates this
distribution accurately for small values of q. In this case:

P�S = n� =
�n

n!
e − �

where � = 20*q. For a given gene group, we estimate q, the
fraction of articles referring to group genes, by summing all of
the fractional references, fr, of all articles and dividing by the
number of articles, N.

Quantifying the Difference Between the Empirical Score Distribution
and the Theoretical One
An empirical distribution of the article scores is computed for
the gene group. If the gene group contains no functional co-
herence, the distribution of scores should be similar to the
Poisson distribution. The functional coherence of the gene
group is scored as the Kullback-Leiber (KL) divergence be-
tween the empirical distribution and the Poisson distribution.

KL Divergence
To quantify the difference between two distributions, we use
KL divergence or relative entropy (Manning and Schütze
1999). Given two distributions, a theoretical one, h, and an
observed one, g, we calculate divergence:

D�g�h� = �
i
gi log2 �gi�hi�

If two distributions are the same, the divergence is zero; the
more disparate the two distributions, the larger the diver-
gence.

Other Methods to Score Functional Coherence

Word Divergence: A Baseline Method for Comparison
As a baseline, we test an alternate method, word divergence.
This method requires calculation of two distributions of
words. The first distribution is computed from words in ab-
stracts referring to genes within the group; counts of each
word are divided by the total number of words these abstracts.
A second distribution is computed similarly for all abstracts
referring to genes outside the group. Both distributions are
smoothed with Dirichlet priors, assuming 300 prior words
distributed according to a baseline distribution; the baseline
distribution of each word is computed by dividing its count in
all abstracts by the total count of all words in all abstracts. The
KL divergence of these two distributions of words is then com-
puted as a measure of functional coherence; the gene group
distribution is treated as the observed distribution.
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Best Article Score and Best P-Value
These scoring schemes are also based on scoring articles
against gene groups as describedearlier. Here, we used the
highest article score as a measure of a gene group’s functional
coherence (best article score). In a different approach, we used
the negative log of the p-value for the best article score (best
article p-value). To calculate the p-value of an article, we use
the Poisson distribution. The p-value of an article is the
summed probability of an article having equal or more refer-
ring neighbors than it has.

Neighbor Divergence–No Filter
This method is identical to neighbor divergence except the
filter applied in selection of semantic neighbors is not used.

Evaluation

Data Types
All experiments described in the following section are con-
ducted in Saccharomyces cerevisiae.

We used a reference list that contained PubMed abstract
references to yeast genes from the Saccharomyces Genome
Database (Cherry et al. 1998). The reference list included
20,101 articles with 50,860 references to 4205 genes; the ar-
ticle records were obtained from the National Center for Bio-
technology Information in Medline format. A total of 12,301
words were selected for the vocabulary. All documents were
converted into 12,301 dimensional vectors of word counts.

Assembling the Functional Gene Groups
To test our method, we assembled gold standard functional
gene groups from GO (Ashburner et al. 2000). We focused on
“gene process” GO terms. We selected 19 diverse process GO
terms relevant to yeast biology that had at least three genes. A
functional group included genes assigned the listed term by
the GO consortium or a more specific child of the listed term.
The GO terms and properties of the groups they correspond to
are described in Table 1A. Many genes were assigned to mul-
tiple gene groups (see Table 1B). We used the 2 Nov 2001
release of the GO process ontology and the 17 October 2001
GO gene associations for yeast.

Assembling the Decoy Random Gene Groups
We assembled 1900 random gene groups as decoy gene
groups. For each gold standard functional gene group, 100
random gene groups of the same size were created.

Evaluating Methods to Identify Common Biological Function
In this study we evaluated five different methods to score the
functional coherence of a gene group: (1) word divergence, (2)
best article score, (3) best article p-value, (4) neighbor diver-
gence, and (5) neighbor divergence–no filter. Each method
was used to score the 1900 decoy gene groups and the 19
functional gene groups. The percentile for the score of each of
the 19 functional groups relative to the 1900 random gene
groups was calculated. Also, for different cutoff scores, preci-
sion and recall values were calculated for the gene groups.

Corruption Studies
For two of the gene groups, “ion homeostasis” and “au-
tophagy”, we sequentially removed genes in random order
and swapped in other genes. This process was repeated until
only one original gene remained. Neighbor divergence score
was calculated after each swap. This procedure was repeated
10 times, and the results were averaged together.

Computation
PubMed database queries and data preprocessing were imple-
mented using perl (Schwartz and Christianson 1997), Python

(Lutz and Ascher 1999), and the biopython toolkit (www.bio-
python.org). All mathematical computations were performed
with Matlab (Mathworks).
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