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The Generic Model Organism System Database Project (GMOD) seeks to develop reusable software components
for model organism system databases. In this paper we describe the Generic Genome Browser (GBrowse), a
Web-based application for displaying genomic annotations and other features. For the end user, features of the
browser include the ability to scroll and zoom through arbitrary regions of a genome, to enter a region of the
genome by searching for a landmark or performing a full text search of all features, and the ability to enable
and disable tracks and change their relative order and appearance. The user can upload private annotations to
view them in the context of the public ones, and publish those annotations to the community. For the data
provider, features of the browser software include reliance on readily available open source components, simple
installation, flexible configuration, and easy integration with other components of a model organism system
Web site. GBrowse is freely available under an open source license. The software, its documentation, and
support are available at http://www.gmod.org.

Model organism system databases (MODs) are a vital tool for
scientific research. They share a common set of tasks: to col-
lect and curate data from the scientific literature such as mu-
tations, alleles, genetic and physical maps, and phenotypes;
to integrate this information with the results of large-scale
experiments such as microarray studies, SNP screens, and pro-
tein-interaction studies; to provide reagent resources such as
stocks, genetic constructs, and clones; and, lastly, to provide a
common nomenclature for gene symbols, anatomic terms,
and other elements of the scientific vocabulary. By integrat-
ing, and in some cases reanalyzing, these data, MODs are able
to greatly enhance their value. This information is made
available to the research community via a Web site that also
serves as a nexus for discussions, announcements of interest
to the community, and data submissions.

It is important to note that with respect to genomic data,
the key role of the model organism databases is to connect
genomic features to the classical biology of the organism, a
role that is distinct from that of whole genome annotation
projects such as EnsEMBL (Hubbard et al. 2002). Also MODs
have an interpretative and curatorial role that distinguishes
them from GenBank (Benson et al. 2002) and other strictly
archival databases.

Four well-established model organism databases are Fly-
Base, SGD, MGD, and WormBase, which are associated, re-
spectively, with Drosophila melanogaster, Saccharomyces cerevi-
siae, Mus musculus, and Caenorhabditis elegans. These are four

of the five original model organism systems targeted by the
NIH component of the Human Genome Project in 1990
(http://www.nhgri.nih.gov/HGP/HGP_goals/5yrplan.html;
the fifth was Escherichia coli). As the cost of genome sequenc-
ing has come down, an increasing number of organisms are
either now in the process of sequencing, such as Anopheles
gambiae (Hoffman et al. 2002), Oryza sativa (Sasaki and Burr
2000), Plasmodium falciparum (Gardner 1999), Rattus rattus
(Pennisi 2000); or are likely to be sequenced in the near fu-
ture, such as Dictyostelium discoidium (Kuspa et al. 2001),
Leishmania donovani (Blackwell 1997), Zea mays (Bennetzen et
al. 2001), honeybee (http://www.nps.ars.usda.gov/menu.
htm?newsid=1696), and cow (http://www.hgsc.bcm.tmc.edu/
projects/bovine/). There is a clear and present need for new
MODs to manage these data sets.

Setting up an MOD is expensive and time-consuming.
Recognizing that a major component of the cost of creating a
new MOD is the development of database schemata, middle-
ware, and visualization software, the four MODs agreed in the
fall of 2000 to pool their resources and to make reusable com-
ponents available to the community free of charge under an
open source license. The goal of this NIH-funded project,
christened GMOD for Generic Model Organism Database, is
to generate a model organism database construction set that
would allow a new model organism to be assembled by mix-
ing and matching various components. Among the compo-
nents presently under development or in planning are mod-
ules for literature curation, tools for classifying genes using
the Gene Ontology, management of genetic and physical
maps, and an extensible architecture for an MOD Web site.
Also part of the GMOD project are a set of standard operating
procedures for managing the data gathering, quality control,
and community outreach activities of an MOD.
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The first large component of the project to be released
was the Apollo genome annotation editor, a curator’s tool for
inspecting and editing genomic annotations (S. Lewis, in
prep.). This paper describes the second component of the
project, the Generic Genome Browser (GBrowse). GBrowse
implements a Web-based display that can be used to display
an arbitrary set of features on a nucleotide or protein se-
quence, and can accommodate genome-scale sequences
megabases in length. The browser provides most of the fea-
tures available in other browsers (Harris 1997; Mural et al.
1999; Kent and Zahler 2000; Hubbard et al. 2002) but was
designed from the outset to be portable and extensible. This
allows it to integrate well with other components of a MOD
Web site in general, and with planned components of the
GMOD project in particular. Although GBrowse is targeted at
maintainers of model organism databases, it is suitable for any
research group that must manage a set of sequence annota-
tions, ranging from those needing to display raw features such
as similarity hits through those maintaining high-level ge-
nome features such as fully curated gene models.

RESULTS
The GBrowse module is available for download at http://
www.gmod.org. It depends only on readily available open
source software and runs well on a variety of platforms in-
cluding such Unix-based systems as Linux, Solaris, FreeBSD,
and Macintosh OS X, as well as systems running Windows
2000 and XP. See Methods for a list of server software require-
ments. On the client side, GBrowse-generated pages are ren-
dered correctly by any Web browser that supports HTML level
4.0 or higher and cascading stylesheets level 2 or higher. This
includes Netscape 4.0 and higher, Internet Explorer 5.0 and
higher, and many other popular browsers such as Opera and
Mozilla.

We first discuss GBrowse from the point of view of the
end user accessing it and then from the perspective of the data
provider who configures and populates it. For the purposes of
illustration, we use a version of GBrowse configured to access
the C. elegans genome features available at http://www.
wormbase.org/db/seq/gbrowse. Demonstrations of the soft-
ware running on the human, D. melanogaster, and S. cerevisiae
genomes are available at the GMOD Web site (http://www.
gmod.org).

Browsing a Region of the Genome
The end user enters GBrowse via the Web page shown in
Figure 1. The user selects the feature types he or she is inter-
ested in viewing from a set of checkboxes, types a search term
or landmark into the text field at the top of the screen, and
either hits the enter key or presses the “Go” button. This
fetches the region of the genome that spans the landmark,
and displays it in an image panel called the “detailed view.”

The detailed view consists of one or more horizontal
tracks, each of which contains a particular type of sequence
feature. The Figure 1 example shows tracks corresponding to
curated gene structures, clone boundaries, cDNA alignments,
the location of commercially available PCR primer pairs, and
an alignment between C. elegans and an orthologous region in
the related nematode Caenorhabditis briggsae. Each track con-
tains glyphs of various sizes, colors, and shapes that provide
feature-specific information. For example, the alignment
glyph that appears in the third track of Figure 1 is color-coded
to indicate the strength of the similarity. A key at the bottom

of the detailed view (partly scrolled out of view in the figure)
and pop-up “tool tips” that appear when the user hovers the
mouse over a glyph both help the user interpret the detailed
view. The use of distinctively shaped glyphs distinguishes the
GBrowse user interface from the UCSC and EnsEMBL brows-
ers, which rely more heavily on color to distinguish one type
of feature from another.

From this display, the researcher can see that the 10-exon
structure for the C. elegans gene ace-1 is supported by a full-
length cDNA clone (X75331, shown in yellow), that the first
four exons and a long 3�-UTR are supported by a set of four
EST pairs (shown in green). The exon structure is also sup-
ported by alignment with the C. briggsae draft contig
cb25.fpc4033 (light and dark blue boxes), but there are in-
triguing regions of cross-species similarity located just up-
stream and downstream of the transcript.

Once an interesting region of the genome is in view, the
user can navigate through it in a variety of ways. He can jump
rapidly from region to region by clicking in the overview
panel, a schematic located at the top of the image that shows
the entire chromosome (or, in the case of unfinished ge-
nomes, a contig) and a number of landmark features such as
well-known genetic markers, cytogenetic bands, or sequence
scaffolds. He can make finer adjustments by scrolling and
zooming with the navigation bar, which appears in the upper-
right-hand side of the image in Figure 1. GBrowse provides
multiple configurable levels of zoom, and two scroll speeds.
For fine adjustment, the user can click on the scale that ap-
pears at the top of the detailed view to center the displayed
region at that point, or select the “+” and “�” buttons to
make fine adjustments in the zoom level. Figure 2 shows the
same view after the user has zoomed out to show 200 kb of
features surrounding the region of interest.

Notice the use of semantic zooming in the display. As the
user zooms out, GBrowse first inhibits the display of feature
labels and descriptions, and then deactivates collision control
to allow glyphs to overlap densely (shown by the EST track).
Some glyphs will also change appearance during semantic
zooming. For example, the gene glyph shows the internal
intron/exon structure at high magnification, but at low mag-
nification is rendered as a solid arrow pointing in the direc-
tion of transcription. The “dna” glyph shows the literal DNA
sequence at very high levels of magnification, and a GC con-
tent histogram at lower levels. To get more information about
a feature, the user clicks on it. This links the user to another
Web page that provides more detailed information about the
feature. The destination Web page is not usually generated by
GBrowse, but is typically a component of the Web site, such
as a static HTML page, a script, or an external destination like
NCBI Entrez.

Searching for Regions of Interest
The GBrowse search functionality is very flexible. It will ac-
cept a chromosome name using the nomenclature that is ap-
propriate for the organism being displayed, for example “II”
for C. elegans, “2L” for D. melanogaster, and “2” for M. muscu-
lus. In addition, it can accept a contig name, a clone accession
number, a GenBank accession number, a gene symbol, a ge-
netic marker name, an SNP ID, or indeed any other unique
feature name that is known to the database. In the case of
collision between the IDs of landmarks of different types, the
user can qualify the ID using the notation “type:ID”, as in
“PCR_Product:sjj_W09B12.1.” The data provider selects
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which IDs are recognized automatically, the order in which to
try different feature types when searching for IDs, and which
feature types must always be entered as fully qualified names.
To aid in the identification of landmark features, the search
system supports wild cards, stem searches, and synonyms.

By default, GBrowse will fit the entire landmark into the
detailed view. Advanced users can tweak this by providing
start and stop coordinates for the landmark in the format
“landmark:start..stop.” For example, when using the C. el-
egans database, typing “unc-9:1..200” will fetch and display
the first 200 bp of the C. elegans gene unc-9. Negative coordi-
nates are acceptable, so that “unc-9:-100..1” will fetch and
display the region beginning 100 bp to the left of unc-9.

Should a search term be found in multiple locations, the
browser shows the user an intermediate screen that shows the
regions graphically and prompts him or her to select one to
view. In the case of a region that is too large (where “too
large” is an administrator-defined setting), the browser will
indicate the region in the “overview panel” (described in
more detail below) and ask the user to zoom in.

If the user searches for a landmark that doesn’t corre-

spond to a feature name, GBrowse will perform a keyword
search on the underlying database, presenting the user with a
list of matching features and their genomic coordinates. This
enables the administrator to create databases that are search-
able for gene function term, name of the submitting author,
and so forth. As an example, Figure 3 shows the response to a
request for “7 transmembrane receptor” when GBrowse is
running on top of the C. elegans database. It is possible to
supplement this facility with structured queries using the
plug-in mechanism described later.

Customizing the Display
The end-user can customize the view in several ways. The
simplest way is to select the tracks to display using a list of
checkboxes located below the detailed view (scrolled out of
view in the screenshots). Checkbox titles also double as docu-
mentation; selecting one brings up a text document that gives
the citation and other descriptive information for the track.
More advanced users can select a “Set Track Options . . .” but-
ton that appears at the bottom of the track checkbox panel.

Figure 1 The user enters GBrowse by typing a landmark name into the text field at top. Landmarks can be gene names, clone names, accession
numbers, or any other identifier configured by the administrator. Once a region is selected, it is displayed in a detailed view that summarizes
annotations and other genomic features. An overview panel and a navigation bar together allow the user to move from one place to another.
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This displays a form that allows the user to adjust, on a track-
by-track basis, whether to show the track at all, and if so
whether to display it in a compressed format in which over-
lapping features collide, in expanded format in which over-
lapping features are offset upward or downward to avoid col-
liding, or in a format in which each feature is labeled with its
name and description. The user can also customize the track
order and the width of the image.

When the user is satisfied with the view, he or she can
take several actions on it. By selecting the “bookmark” link,
the current view and its settings will be added to the user’s
browser bookmarks, thereby allowing him or her to revisit a
set of interesting regions from time to time. This link can also
be used to attach the current page to an e-mail message. Other
actions are available via a popup menu of plug-ins. One stan-
dard plug-in allows the user to format the current view as a
FASTA-format file (Pearson 2000), either in plain text, or in an
HTML form that highlights a selected set of features using
combinations of colors and font changes. Another plug-in
generates text dumps of the currently visible features using a
number of standard formats including the tab-delimited GFF
format (Reese et al. 2000), GenBank (Ouelette 2001), EMBL,
GAME/XML (http://www.bioxml.org/Projects/game/game0.

1.html), and BSML (http://www.labbook.com/products/
xmlbsml.asp). A third plug-in generates restriction maps for
the current region in order to assist with cloning constructs.

GBrowse remembers the user’s settings between sessions.
When the user next visits the GBrowse page, his or her pref-
erences in terms of tracks, track options, track order, display
width, and genomic region of interest are automatically re-
stored to their previous values. A reset button located to the
right of the navigation bar will restore the standard settings.

Adding Third-Party Features
GBrowse supports third-party features via a set of controls at
the bottom of the main browser screen (scrolled out of view in
Fig. 1). To add annotations to the genome, a user prepares one
or more text files describing the nature and position of his or
her annotations and uploads it to GBrowse using a standard
file upload field. GBrowse accepts either the full nine-column
GFF format or a simplified three-column version. Both for-
mats allow the user to create complex multipart features; to
attach names, notes, and links to the features; and to control
the way that the features are formatted by specifying their
glyph, color, height, and other graphical attributes. Uploaded

Figure 2 The detailed view after zooming out to 200 kb, showing semantic zooming.
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features appear on the detailed view in specially designated
tracks and persist between sessions.

Uploaded features can be expressed using absolute coor-
dinates, or as relative coordinates based on any of the land-
marks recognized by GBrowse. This gives the user the choice
of annotating in whole chromosome coordinates, relative to
the start of a well-known landmark such as a GenBank entry,
or relative to another feature, such as the start of a predicted
gene. Each time a third-party feature is accessed, GBrowse
remaps relative coordinates into absolute ones, a strategy that
allows most features to survive updates to the genomic assem-
bly.

Once a feature file is uploaded, it persists on the GBrowse
server for a period of time established by the database admin-
istrator, typically 60 d since the last time the uploaded file was
accessed. The end-user can download his or her features,
modify them, and upload them again, or use a simple
browser-based editor to change the features directly. Al-
though the uploaded third party feature files are located on a
publicly accessible server, they are only accessible via a secret
key that is stored in a cookie on the end-user’s machine.

To share features with others, end-users can publish
them via GBrowse, thereby allowing other researchers to dis-
play them alongside other feature tracks. To accomplish this,
the end-user places a tab-delimited feature file on an Internet-
accessible Web or FTP site, such as a departmental server. He
or she then publicizes the existence of this information by
e-mailing the file’s URL to colleagues or by publishing the
URL in a paper. Interested colleagues can now layer these
features onto the GBrowse view by entering the URL into a
text field in the section labeled “Add Remote Annotations.”
Like uploaded files, end-users can add an unlimited number
of URL-based tracks to GBrowse, and adjust their order and
formatting in the same way as other tracks. GBrowse intelli-
gently caches third-party feature information using a scheme
that is described in more detail below. This means that when
researchers update their published feature files their changes
will immediately become visible to their colleagues.

A user who wishes to make third-party annotations avail-
able to a limited number of authorized users may place the
annotation information behind a password-protected FTP
or Web site. The username and password information can

Figure 3 A search for the term “7 transmembrane receptor.”
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then be entered directly in the URL using the syntax http://
username:password@host.name/.

A simplified version of the upload feature can also be
activated by invoking GBrowse with a specially formatted
URL that directly contains positional information on a feature
or features. By taking advantage of this facility, a data pro-
vider who wishes to integrate GBrowse into a BLAST search
script can modify the links generated by BLAST so as to point
to GBrowse, thereby layering users’ BLAST hits on top of ge-
nomic features. Similar functionality is available for creating
in-line images that incorporate third-party features dynami-
cally layered on top of GBrowse images.

Use Case: Visualizing Patterns of DNA-Binding Sites
for Drosophila Transcription Factors
As an example of how the Genome Browser can be used by
the scientific community, one of us (M. Caudy) used GBrowse
to visualize patterns of DNA-binding sites for specific tran-
scription factors (TFs) in relation to potential target genes
within the genome (M. Caudy, L. Stein, and J. Tisdall, in
prep.).

Transcriptional enhancers and promoters typically con-
tain clusters of multiple binding sites localized in a small re-
gion. Perl scripts that recognize clusters patterned on a model
promoter were used to identify all similar clusters in the entire
D. melanogaster genome. These clusters and their coordinates
were then saved as a GFF file and uploaded into GBrowse,
thereby allowing the visualization and analysis of cluster po-
sitions in relation to potential target genes. Browsing for
clusters near potential target genes of interest—in this case
neuronal differentiation genes regulated by HLH transcrip-
tion factors—provided a means of determining which of the
many hundreds of such clusters found were likely to be func-
tional enhancers and promoters in vivo. In cases where the
function of genes with nearby clusters is unknown to a user,
the available functional information for that gene could be
rapidly reviewed by following the link for that gene to Fly-
Base, which makes available such information as expression
pattern, phenotype when mutated, and other functional in-
formation.

This method has greatly facilitated the identification and
prioritization of clusters that should be selected for molecular
and genetic analysis in the search for the transcriptional regu-

latory code embedded within the genome that controls spe-
cific target gene expression by HLH transcription factors. This
type of genomic pattern analysis would be extremely time-
consuming and difficult without the annotation upload,
graphical display, and database linkout features provided by
GBrowse, and it was accomplished without a heavy invest-
ment in bioinformatics mining or visualization software by
the researcher.

GBrowse Internals
We now describe the Generic Genome Browser’s internal
workings. GBrowse consists of several components (Fig. 4). At
the top level is a CGI (Common Gateway Interface) script
named gbrowse, which is responsible for managing the user
interface. This script generates the HTML forms that the end-
users interact with, accepts and processes requests, manages
the cookies that preserve users’ preferences from session to
session, and displays the rendered images of annotated re-
gions.

BioPerl and Bio::Graphics Software Libraries
Beneath gbrowse are two software libraries. The Bioperl li-
brary (Stajich et al., this issue) is responsible for interceding
between the CGI script and the underlying database; this ab-
straction insulates the CGI script from the details of the da-
tabase schema, and in principle allows the browser to run on
top of a variety of database management systems and sche-
mata.

The Bio::Graphics module is responsible for rendering
the genome images. It, in turn, makes use of the GD module
(http://stein.cshl.org/software/GD/), a Perl library that is ca-
pable of generating a variety of image formats, including
JPEG, WBMP, and PNG. Although it was developed for use
with this project, Bio::Graphics is completely independent of
the Generic Genome Browser and can be used to graphically
render any type of nucleotide or protein sequence feature.
Because of recent patent issues regarding JPEG compression,
GBrowse comes configured to generate the open source PNG
(Portable Network Graphics) format; this can be altered if de-
sired.

Bio::DB::GFF Database
Underlying these layers is a relational database that is respon-
sible for storing and retrieving features. The current stable
release of GBrowse is limited to using the MySQL relational
database management system. Within MySQL, however,
GBrowse supports two distinct schemata. One schema, called
Bio::DB::GFF, is a simple schema that requires minimal prepa-
ration on the part of the MOD administrator. It is necessary
only for the administrator to prepare a tab-delimited flat file
that describes the genome features using the widely used GFF
format, and a set of one or more FASTA-format files that con-
tain the DNA sequence itself. The administrator then uses a
provided Perl script to load the database from these files, or to
update a previously loaded database with new information.
Access to the database is typically accomplished via a Perl
programmer’s API, which translates requests for feature infor-
mation into the appropriate SQL queries, and then transforms
the results into Bioperl objects for inspection and manipula-
tion.

The Bio::DB::GFF schema was designed for simplicity
and speed (Fig. 5). The main Bio::DB::GFF table contains
one row per feature, and has columns representing the
start and end of the feature, its type, and the reference se-

Figure 4 The Generic Genome Browser is built from multiple soft-
ware modules. In this illustration, modules that were not produced as
part of this project are shown in a lighter color.
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quence that establishes its coordinate system. The schema
allows a single level of hierarchical substructure in features
using a “group” field. This allows “gene” features to con-
tain introns, exons, and transcriptional start sites; and
“sequence alignment” features to be built up from a series
of aligned regions separated by gaps. Bio::DB::GFF allows
the maintainer to attach notes, citations, and other infor-
mation to features using a simply named properties sys-
tem, but for semantically rich information, it is recom-
mended to either incorporate the Bio::DB::GFF schema
into a larger schema, or to use the GadFly schema described
below.

The Bio::DB::GFF schema is optimized for queries that
retrieve features by ID, by their type, or by the region of the
genome they overlap. The last query is a challenge, because
conventional relational database indexes do not handle posi-
tional range queries well. In SQL, the query to find all features
that overlap the region on Chromosome 1 between bases
12,010,000 and 12,020,000 looks like this:

SELECT ref,start,end WHERE ref = “Chrl” AND
start � 12020000 AND end � 12010000.

If ref, start, and stop are indexed, an SQL optimizer will
be able to eliminate half the rows in the feature table, on
average, by eliminating all those rows that do not satisfy the
criteria for start or end. However, the remainder of the table
must then be inspected by a linear search, something that is
particularly inefficient when searching for a small feature in
the middle of a large chromosome or contig.

The solution that we use is a special case of the R-tree
algorithm (Guttman 1984) and was inspired by discussions
with Richard Durbin (The Wellcome Trust Sanger Institute).
In this optimization, the genome is divided into a hierarchical
set of bins. At the top level are bins of size 10 Mb. This is
followed by a tier of 1-Mb bins, another of 100 kb, and so on
down to 1000 bp. The bins are assigned identifiers using float-
ing point numbers in such a way that adjacent bins in the

same tier have adjacent IDs, but bin IDs from different tiers do
not overlap. As features are entered into the database, they are
assigned to the smallest bin that will entirely contain them. A
few very large features, such as entire chromosomes, end up in
the large bins, but most features are allocated to the smaller
ones.

The Bio::DB::GFF module automatically takes advantage
of this binning scheme to optimize the queries. The example
positional query given earlier now becomes the following:

SELECT ref,start,end WHERE ref = “Chrl”
AND (bin = 100000000.000000

OR bin=10000000.000001
OR bin=1000000.000012
OR bin=100000.000120
OR bin between 10000.001201 and 10000.001202
OR bin between 1000.012010 and 1000.012020)

AND start �12010000 AND end �12020000

Although this query is more complex than the previous
one, it executes much faster. On a 700-MHz Pentium III lap-
top, searching a 6-million-feature database took 17.4 sec with
the unoptimized query, and 0.4 sec using the bin optimiza-
tion, a performance increase of >400-fold. A version of this
indexing scheme has also been adopted for use with the Hu-
man Genome Browser at UCSC (Kent et al. 2002).

Although not specifically designed for this purpose,
Bio::DB::GFF databases can be used to support genomic analy-
ses. Because it is optimized for positional queries, one can use
this database to extract the DNA from arbitrary regions, such
as the first intron of every gene, or to find sequence features
that intersect others.

GadFly Database
The main limitation of the Bio::DB::GFF schema is that it
relies on a flat coordinate system to represent genomic fea-
tures, and can handle only one level of nesting of sequence
features. The flat coordinate system means that for a partially
assembled genome, the administrator will have to translate
clone- or contig-relative features into chromosome or super-
contig coordinates before they can be properly browsed with
GBrowse. The restriction on nesting allows a primary tran-
script to contain multiple features, such as exons, but makes
it difficult to represent the fact that multiple primary tran-
scripts belong to one gene (although this can be finessed by
declaring the gene a shared property of the transcripts). The
Bio::DB::GFF schema also provides no control over feature
types, but instead relies on the database administrator to
maintain the proper list of types and part/subpart relation-
ships.

These problems are solved by GadFly, the second schema
supported by GBrowse. GadFly, which was originally devel-
oped for use with the Berkeley Drosophila Genome Project’s
annotation pipeline, represents features using a hierarchical
coordinate scheme in which relative coordinates are trans-
lated into absolute coordinates as needed according to the
current state of the genome assembly. GadFly is able to rep-
resent multiple levels of part/subpart relationships, and takes
advantage of controlled vocabularies to describe feature types
and gene functions.

GadFly uses a Perl API and a Bioperl-compliant object
model for fetching and manipulating data. A strong emphasis
has been placed on providing flexibility in the API to take

Figure 5 The Bio::DB::GFF database uses a minimal schema to rep-
resent features on sequences. The main tables are fdata, which con-
tains the position and type of each feature, fgroup, which tracks the
grouping of subfeatures into features, such as high-similarity pairs in
a gapped alignment, fdna, which stores the raw DNA sequence, and
fattribute_to_feature, which allows attribute information to be at-
tached to features. Attributes are used for storing such textual infor-
mation as notes, synonyms, and evidence codes. The fattribute and
ftype tables, respectively, hold attribute names and the method and
source fields. For retrieval efficiency, the fdna table fragments each
DNA into small pieces and stores the beginning of each piece in the
foffset field.
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advantage of the rich schema. For instance, it is possible to
mix range-based queries with queries by gene function, pro-
tein domain, sequence similarity, and phylogeny.

Because of the need to support the richer schema, Gad-
Fly’s performance is slower than that of an equivalent Bio::
DB::GFF database, and creating a feature load file will require
more advanced planning on the part of the maintainers.
However, GadFly is a good fit for MOD projects that prefer a
robust, semantically rich schema, and it is straightforward to
move feature data from one schema to the other. More infor-
mation on GadFly, including an interactive schema diagram,
can be found at http://www.fruitfly.org/developers/.

Plug-ins
GBrowse supports a plug-in architecture that allows third-
party modules to extend GBrowse’s capabilities. A plug-in is a
Perl module that is placed in a specially designated plug-ins
directory. When GBrowse initializes, it examines this direc-
tory and loads all plug-ins it finds. There are three types of
plug-ins. Dumper plug-ins take the region of the genome cur-
rently under display and dump it out in text, HTML, or an-
other format. Both the FASTA and the GFF dumping func-
tions of GBrowse are implemented in this way. Finder plug-
ins are responsible for searching the underlying Bio::DB::GFF
or Gadfly databases for features of interest and returning a list
of the features and/or genomic regions found. GBrowse then
displays the search results to the user. A simple example of
this type of plug-in is the OligoFinder plug-in, which accepts
user input of an oligonucleotide of 15 bp or more in length,
and returns the location(s) of the oligonucleotide on the ge-
nome. Lastly, there are Annotators, which add annotation
tracks to the current view. The standard restriction-map gen-
erator is implemented in this way.

Many plug-ins have configuration settings. For example,
the restriction map annotation plug-in maintains a list of re-
striction sites that the user can toggle on or off. To allow
plug-ins to be configured by the end-user, each plug-in gen-
erates an HTML form that displays its settings. These settings
are then saved in a persistent HTTP cookie from session to
session, remembering the user’s preferences. Plug-ins can also
store low-level configuration information in files maintained
by the administrator.

The plug-in mechanism is in principle very powerful.
Because plug-ins are fully functional Perl programs, they can
act as hooks into GBrowse to allow the browser to be used as
a front end to similarity-searching programs, gene prediction
engines and motif finders, and various types of visualization
software.

Displaying Third-Party Annotations
GBrowse uses a simple scheme for fetching and displaying
third-party annotations. Both uploaded and remotely located
feature files are stored at the server side as a set of flat files.
Uploaded files are stored on the server directly, whereas files
located on remote Web or FTP sites are fetched and cached
using a scheme in which the cached copy is freshened if its
modification date is older than the modification date of the
authoritative version on the remote site. This avoids the over-
head of a network fetch if one is not needed.

Third-party feature files may use a mix of absolute and
relative coordinate addressing; relative coordinates will be re-
mapped into absolute coordinates before they can be dis-
played. At present, this remapping is deferred until just before
the features are displayed on the screen. Although this en-

sures that the remapping is correct for the current state of the
assembly, it has performance implications as the remapping is
performed each time the features are needed. Subjectively,
performance remains good for third-party feature files that
contain up to several thousand annotated features, but a more
sophisticated scheme will be needed to handle larger third-
party feature sets.

Configuring GBrowse
To get GBrowse up and running, the database administrator
will create a feature database, and then configure GBrowse to
use it. Figure 6 shows the steps the administrator of a fictitious
site named example.org would take to add a new track show-
ing the positions of a set of targeted deletions. Assuming that
the administrator is using the Bio::DB::GFF schema, the first
step is to create a GFF-formatted file of the deletion endpoints
(Fig. 6a). Each row of the file, named “deletions.gff” in this
example, corresponds to one of the deletion features. It has
columns indicating the sequence segment on which the fea-
ture is located (chromosome name in this example), its type,
its start and end points, and the feature ID. The feature type is
indicated by the combination of two fields historically known
as the “source” and the “method,” which are typically used in
GFF files to indicate the subtype and type of the feature, re-
spectively. In this case we have chosen a source of “targeted”
and a method of “deletion”. The feature name is indicated by
the last two columns of the file, which indicates the name
space (“Strain”) and the deletion name. Other columns cor-
respond to attributes that are relevant to gene predictions and
sequence alignments, such as the reading frame and align-
ment score. Empty fields are left blank or replaced with dots as
in this example.

The next step is to load the data into the Bio::DB::GFF
database. This is done by running an included script named
“load_gff.pl” (Fig. 6b). If the database does not already exist, a
command-line switch can be used to create and initialize it.

The last step is to configure GBrowse to recognize and
display the new feature type. This is done by adding a new
“stanza” to the GBrowse configuration file (Fig. 6c). The
stanza is introduced by a pair of square brackets enclosing the
internal identifier for the track, in this case “Knockout.” This
is followed by a series of option = value pairs that describe
what to show in the track. The “feature” option tells GBrowse
to search the database for a feature of type “deletion:tar-
geted,” where “deletion” and “targeted” are the method and
source of this feature type. The “glyph” option instructs

Figure 6 Creating a new track of targeted deletions using GBrowse.
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GBrowse to use the “span” glyph, which is rendered as a solid
line with two vertical caps at the end, whereas the “fgcolor”
option sets the color of the line to red. The “key” option sets
the track legend, and the “citation” option (extending over
several lines) provides a paragraph of information that de-
scribes the track in more detail. The “link” option provides a
template for GBrowse’s link generation. If the user clicks on a
deletion glyph, he or she will be linked to http://example.org/
cgi-bin/knockout?$name, where the special symbol “$name”
is replaced at run time with the deletion name. Much more
complex linking templates are possible, and for cases that do
not lend themselves to template substitution rules, the
GBrowse configuration file allows the “link” option to be re-
placed by the definition of a Perl subroutine. At run time, the
subroutine will be passed a copy of the feature data, which it
can inspect to construct the appropriate outgoing link. This
mechanism is used by WormBase to construct outgoing links
to the SwissProt-TREMBL database, which requires slightly
different URLs to locate proteins in SwissProt and TREMBL
(Bairoch and Apweiler 2000).

Changes made to the configuration file take effect im-
mediately, and the knockout track will now appear among
the tracks offered to the user. In addition to track-specific
stanzas, the configuration file provides settings for such glo-
bal options as the database adaptor to use and the stylesheet.
If the administrator wishes to create more than one data
source, he or she simply adds another configuration file, and
the user will be offered a choice of data sources.

The process of adding a new track to a version of
GBrowse running on top of the GadFly schema is similar,
except that the database is loaded from GAME/XML format
files using a script that comes with the GadFly distribution.

Extending GBrowse
GBrowse was designed with extensibility in mind. Hence
there are multiple distinct layers at which software developers
can add new code to extend the browser’s capabilities. At the
database layer, authors can implement new Bioperl adaptors,
thereby allowing GBrowse to communicate with other data-
base management systems; this is how one would adapt
GBrowse to work with an existing Sybase or ACeDB database.
At the data model layer, authors can implement “Aggrega-
tors”; these modules are responsible for building up Bioperl
Sequence objects—which may contain arbitrarily complex
part/subpart relationships—from their raw database represen-
tation, which is necessarily a flattened form. At the graphics
rendering layer, authors can create new Glyph modules.
Glyphs are responsible for generating graphical representa-
tions of sequence features. At the topmost application layer,
software developers can create plug-ins that add new search-
ing, annotating, and visualization capabilities to GBrowse.

As a concrete example of this extensibility, consider a
bioinformaticist who has developed a splice-site prediction
algorithm and wishes to integrate this into GBrowse so as to
visualize the position of splice sites on the genome. She would
extend GBrowse at two levels. At the graphical layer, the bio-
informaticist would create a new “splice site glyph” that rep-
resents the splice site as an inverted L whose height corre-
sponds to the predicted splice site’s score and whose direction
indicates whether the site is a donor or an acceptor. She would
then create an Annotator plug-in that runs the prediction
algorithm and creates a set of features to be fed into the splice-
site glyph. Based on similar modules already in the code base,

we estimate that the combined code for the glyph and the
plug-in (not counting the actual prediction algorithm), would
occupy roughly a page.

GBrowse Security
Security is a concern for any piece of server-side Web software
because of the possibility of inadvertently passing untrusted
information from the end-user to a system call that opens files
or executes commands. GBrowse has been tested with, and
passes, Perl’s “taint” checking system, a set of checks that
track untrusted data and raise an exception if such data are
used in potentially dangerous system operations. Because of
the performance impact, taint checking is turned off in the
default GBrowse configuration, but the data provider has the
option of reactivating it for an added level of security.

GBrowse Support
The GMOD Web site is hosted by SourceForge, which pro-
vides a polished user interface for user support, feature re-
quests, and bug reports. From the GMOD main page, users
can access a discussion forum devoted to GBrowse installation
and configuration, a GBrowse mailing list, and a tracking sys-
tem for bug reports and feature requests. These fora are moni-
tored by GBrowse developers and other parties to the GMOD
project, thereby providing a responsive environment for user
questions and complaints. There are presently no plans to
provide telephone support or a subscription-based user sup-
port service.

DISCUSSION
Along with genetic and physical map rendering tools, Web-
based genome browsers are a class of application that the
bioinformatics research community seems to be doomed to
reinvent time and again. Genome browsers can be found at
NCBI (Benson et al. 2002), UCSC (Kent et al. 2002), EnsEMBL
(Hubbard et al. 2002), NCGR (http://www.ncgr.org/doc/cgs/
CGS_User_Manual.pdf), The Sanger Centre (Rutherford et al.
2000), and at most of the model organism databases (at TAIR,
http://www.arabidopsis.org/servlets/sv?action=closeup; at
SGD, http://genome-www4.stanford.edu/cgi-bin/SGD/
ORFMAP/ORFmap?chr=3&beg=&end=1; at WormBase, Stein
et al. 2001; and at FlyBase, FlyBase 2002). Indeed, some of the
model organism databases have invented the genome browser
twice. For example, FlyBase developed two such browsers in
the course of its history: GeneSeen, which uses a Java back
end driven off flat files, and an earlier GadFly front end that
uses Perl driven off a relational database. In addition to ge-
nome browsers produced by publicly funded efforts, there are
many similar packages produced by private companies, in-
cluding Celera (http://www.celera.com/genomics/academic/
home.cfm?ppage=cds&cpage=default) and DoubleTwist
(http://www.doubletwist.com/corporate/products/human_
genome_database.shtml).

There are several reasons for this proliferation of brows-
ers. First, there are legitimate differences in data models and
user interface choices. Genome annotation groups wish to
emphasize different aspects of the data set and to facilitate
certain types of comparisons. It is impossible for one browser
to meet all the various requirements that may be put upon it,
and therefore there will always be a need for multiple such
applications. Second are historical reasons: many of the an-
notation and curation groups listed earlier discovered they
needed sequence-browsing software at around the same time,
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in a period when no packages existed; it is not surprising that
development occurred on multiple parallel paths.

Now that multiple genome browsers have been imple-
mented, however, the major factor hindering their dissemi-
nation is lack of portability. Most genome browsers are an
integral part of a larger nonportable system and simply can-
not be redistributed. Examples of this phenomenon include
the NCBI, TIGR, and TAIR browsers. Others are part of a sys-
tem that is portable as a whole, but not portable as individual
modules. To use the genome browser requires that the pro-
spective data provider adopt the entire data model, some-
thing that may not always be desirable. An example of this
phenomenon is EnsEMBL, or any of the commercial genome
database packages.

Presently, the closest fit to a genome browser that can be
adapted as a component of a model organism database project
is the UCSC human genome browser. However, several design
decisions made to optimize the performance of the UCSC
browser present obstacles to integrating the UCSC browser
into a larger system. These decisions include the division of
the feature data by chromosome into multiple stand-alone
databases, the use of the C programming language for the
middleware and user interface layers, and the use of the
AutoSQL preprocessor package to marshal C structures into
database tables. For these reasons, the UCSC browser is closely
tied to the C programming language. However, data providers
tend to use a scripting language such as Perl, Java, or Python.
In addition, the UCSC browser offers a limited range of glyph
shapes and attributes.

The Generic Genome Browser was designed from the
bottom up for portability, extensibility, and modularity. It
relies on no proprietary software, but only readily available
open source software such as MySQL and the Bioperl libraries.
It uses the Perl programming language throughout, a lan-
guage that is familiar to the cohort of beginning to interme-
diate programmers that are most likely to be involved in set-
ting up a new model organism database or other annotation
project. It provides a choice of database back ends and is
highly customizable.

GBrowse offers two complementary paths for integration
into a larger model organism database project. The first path
is to use it as a completely stand-alone product. Under this
scheme, GBrowse and its database back end are separate from
the rest of the project. Periodically the data provider dumps
out the genome features and loads them into the GBrowse
back end. Integration with the rest of the model organism
project takes place at the level of the Web site, where the data
provider uses link rules to forge outgoing links from the
GBrowse page to other pages on the Web site. Similarly, in-
coming links use GBrowse’s standard URL calling conven-
tions to select the region of interest and a series of feature
types to display. In practice, this scheme seems to work well.
For example, the WormBase Web site maintains all genomic
feature data in a GBrowse MySQL database, whereas all the
other biological data on C. elegans resides in an ACeDB data-
base. From the point of view of the end-user, however, the
distinction between the two data sources is invisible.

The second path for integrating GBrowse with a model
organism database project is at the database level. In this ap-
proach, the database schema for the GBrowse back end is
incorporated into the larger project schema, allowing the
same physical database to be used for the whole site. Not only
is this an attractive solution from an administrative point of
view, but it offers the ability to perform complex queries on

the integrated data set. For example, integration with the
Gene Ontology schema (another aspect of the GMOD project)
would allow the database to be searched for physically adja-
cent genes that belong to common metabolic pathways. The
Bio::DB::GFF schema was designed to accommodate this type
of schema integration. In addition to having a relatively small
number of tables, Bio::DB::GFF tables use a uniform prefix to
reduce the chance of table name collision. A single join
through the feature group table is all that is required to link
foreign tables maintained by the model organism database
with genomic coordinate information maintained in Bio::
DB::GFF.

Also by design, GBrowse is complementary to Apollo, the
GMOD project’s genome annotation editor. Unlike GBrowse,
Apollo is a stand-alone Java application that runs on the end-
user’s machine. Once installed, Apollo provides rapid interac-
tive zooming and scrolling, as well as the ability of authorized
users to write back changes to the underlying database. In a
typical MOD setting, Apollo would be used by curators to
inspect and modify genomic annotations, whereas GBrowse
would be accessed by end-users for Web-based access to the
genome. However, Apollo and GBrowse integrate well both at
the database level (by using the common GadFly schema) or
at the file format level (by reading and writing GFF format
feature files). This allows for configurations in which experi-
enced end-users can use GBrowse to search for and select a
genomic region of interest, and then launch Apollo to inspect
the region with greater interactivity.

GBrowse and its underlying database schemata have
been stable for roughly half a year, and the software should be
considered suitable for production use. GBrowse has become
the primary genome browser for the WormBase (http://
www.wormbase.org) and FlyBase (http://www.flybase.org)
Web sites, displacing the Web-based browsers that were there
before. Companies and institutions presently using GBrowse
in production systems include Texas A&M University (E. coli),
Ingenium AG (mouse), Bristol-Myers Squibb (D. melanogaster),
and the Medical College of Wisconsin (R. rattus). Should
changes to the database schemata be necessary, the develop-
ment team is committed to supporting the changes in an
upwardly compatible manner, either by supporting older ver-
sions of the database in the adaptor layer, or by providing
database conversion tools.

An important limitation on GBrowse at present is its re-
striction to a limited set of databases. MySQL was the first
database management system targeted by this project because
of its widespread use in the bioinformatics community, its
open source status, and its excellent performance in read-
mostly environments. A high priority of the project is to ex-
tend this support to other DBMSs and database schemata. An
Oracle (Loney and Koch 2000) adaptor for Bio::DB::GFF is
presently undergoing testing, and a PostgreSQL (Stinson
2001) is in the early stages. A PostgreSQL port of the GadFly
schema is complete, but has not yet been tested with
GBrowse. In addition, a beta release of a GenBank/EMBL
adaptor layer is also available in recent versions of the
browser. This layer acts as a transparent proxy on the remote
sequence-retrieval facilities provided by the NCBI and EBI,
allowing end-users to browse the feature tables of any entry
that has been submitted to GenBank or EMBL.

Although preparing a new adaptor for each underlying
database schema is effective for a limited number of such
cases, this strategy cannot scale indefinitely and will ulti-
mately limit our ability to improve the GBrowse feature set.
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For this reason, an important near-term goal of the project is
to complete an adaptor layer for the Distributed Annotation
System (DAS; Dowell et al. 2001). DAS is a standard protocol
for electronically publishing genomic annotations that was
developed and is actively promoted by several of the coau-
thors. The protocol has achieved modest penetration among
genome databases; it is supported by EnsEMBL, the UCSC
genome browser, WormBase, and FlyBase, among others, but
has not been adopted by the large archival databases such as
GenBank. With the DAS adaptor installed, MOD curators will
be able to configure GBrowse to navigate and render genomic
annotations served by any local or remote DAS-compliant
data source and to superimpose these data sources on a single
display. This will provide great flexibility at some cost in per-
formance because of the additional network overhead. How-
ever, the performance when rendering large third-party fea-
ture sets is expected to improve dramatically because DAS
indexing is able to select features that are contained within
the genomic region of interest, rather than transferring the
entire feature set as occurs with the current flat-file third-
party annotation system.

As it happens, a site that is running GBrowse can readily
become a DAS data source. This is because of the availability
of DAS server software that runs on top of the Bio::DB::GFF
and GadFly schemata (see http://www.biodas.org for avail-
ability).

In addition, we are looking to enhance GBrowse in a
number of other respects. High on our priority list are:

● A more flexible query interface, including the ability to
search features by particular properties, such as submitting
author, and to combine properties with Boolean operators.
This will likely be accomplished using the plug-in architec-
ture.

● The ability to generate and mark up sequence alignments.
● The ability to download FASTA files of derived features,

such as spliced transcripts and translated peptides.
● A facility that allows the end user to toggle from absolute to

relative coordinates easily, so that researchers can view the
region in clone coordinates or relative to a gene, STS
marker, or other landmark; also the ability to flip the entire
display left to right when the end-user is examining a mi-
nus strand gene or other feature.

● Plug-ins that implement interfaces to gene and motif-finder
programs, PCR design, in silico restriction digests, and
other common sequence analysis utilities.

● Internationalization of the help screens, navigation but-
tons, and label text.

● Performance enhancements.

Although the GMOD project’s ultimate goal is to create a
full off-the-shelf model organism database, only a handful of
components are released at present, and a group that needs to
implement such a system now should look carefully at the
available alternatives. For a project whose primary task is au-
tomated sequence annotation, the EnsEMBL system may well
be the best choice because it provides a complete solution
consisting of an annotation pipeline, a database to record the
pipeline’s output, and a Web-based system for browsing gene
predictions, functional annotations, and supporting evi-
dence. The main caveat is that EnsEMBL does not provide
other components needed by a MOD, such as stock center
functions or nomenclature management, and customizing
the EnsEMBL code base to provide these features will require

a significant level of software development expertise. Cus-
tomized versions of EnsEMBL are also likely to be incompat-
ible with future EnsEMBL development. On the other hand,
for a project that is adding annotations to the genome of an
organism that already has a MOD (e.g., mouse), it might be
best to forego setting up one’s own database entirely, and
instead establish a cocuration arrangement in which the
project forwards its annotations to the MOD for incorpora-
tion and display, either by using DAS or an ad hoc protocol.

As a stand-alone application, GBrowse is positioned be-
tween these two extremes. It is recommended for use by a
group of modest size that is performing hand or automated
annotation of genomic regions and either using the Apollo
annotation editor, or which has the minimal amount of
scripting skill needed to create a tab-delimited file represent-
ing the location and nature of its annotations. The software is
particularly suitable for those wishing to place an experimen-
tal data set in its genomic context; examples of such data sets
include microarray results, EST alignments, and the distribu-
tion of knockouts in an insertional mutagenesis study. In this
case, GBrowse provides a lightweight way to display those
annotations, search them, and share them with colleagues.

The GMOD project continues to progress, with new
modules for managing genetic maps, comparative genomic
analysis, and literature curation in early release form on the
GMOD Web site, and software for managing nomenclature
histories, ontologies, expression data, biological pathways,
phenotypes, and stock center functionality slated for release
over the next two years. Together with GBrowse and Apollo,
these modules will one day form the core of a model organism
database “constructor set” that will reduce the cost and time
required to set up a new database, while simultaneously help-
ing to standardize user interfaces and operating procedures
among them.

METHODS
GBrowse requires the following software components:

1. The Perl interpreter, version 5.6.0 or higher (http://www.
perl.org).

2. The Apache Web server, version 1.3 or higher (http://www.
apache.org).

3. The MySQL database management system, version 3.23.43
or higher (http://www.mysql.org).

4. The following Perl modules, all of which are available at
http://www.cpan.org: GD, DBI, DBD::mysql, Digest::MD5,
Text::Shellwords.

5. The Bioperl distribution, version 1.02 or higher (http://
www.bioperl.org).

In theory, any Web server that supports the CGI protocol
will support GBrowse, but only Apache has been tested at this
time. Although not required, GBrowse can be used in con-
junction with the mod_perl embedded Perl interpreter
[http://perl.apache.org], in which case it benefits from a no-
ticeable performance boost.

As described in Results, GBrowse supports two distinct
relational database schemata, but both schemata depend, to
differing extents, on MySQL-specific features.
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Page; The Arabidopsis Information Resource (TAIR).

http://www.bioxml.org/Projects/game/game0.1.html; Genome
Annotation Markup Elements (GAME).

http://www.celera.com/genomics/academic/home.cfm?ppage=
cds&cpage=default; Celera Discovery System, Celera, Inc.

http://www.doubletwist.com/corporate/products/human_genome_
database.shtml; The DoubleTwist Annotated Human Genome
Database, DoubleTwist, Inc.

http://www.fruitfly.org/developers/; BDGP Developer’s Resources.
http://www.gmod.org; GBrowse.
http://www.hgsc.bcm.tmc.edu/projects/bovine/; Bovine Genome

Project, Human Genome Sequencing Center at Baylor College of
Medicine.

http://www.labbook.com/products/xmlbsml.asp; LabBook, Inc., XML
Standard–BSML.

http://www.ncgr.org/doc/cgs/CGS_User_Manual.pdf; Using the
Comparative Genomics System, National Center for Genome
Resources.

http://www.nhgri.nih.gov/HGP/HGP_goals/5yrplan.html;
Understanding Our Genetic Inheritance; The First Five Years: Fiscal
Years 1991–1995; National Human Genome Research Institute.

http://www.nps.ars.usda.gov/menu.htm?newsid=1696; USDA Holds
First International Meeting on Comparative Insect Genomics; United
States Department of Agriculture.

http://www.wormbase.org/db/seq/gbrowse; C. elegans genome
features used in example.
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