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Recent advances in microarray technology have opened new ways for functional annotation of previously
uncharacterised genes on a genomic scale. This has been demonstrated by unsupervised clustering of
co-expressed genes and, more importantly, by supervised learning algorithms. Using prior knowledge, these
algorithms can assign functional annotations based on more complex expression signatures found in existing
functional classes. Previously, support vector machines (SVMs) and other machine-learning methods have been
applied to a limited number of functional classes for this purpose. Here we present, for the first time, the
comprehensive application of supervised neural networks (SNNs) for functional annotation. Our study is novel
in that we report systematic results for ∼100 classes in the Munich Information Center for Protein Sequences
(MIPS) functional catalog. We found that only ∼10% of these are learnable (based on the rate of false negatives).
A closer analysis reveals that false positives (and negatives) in a machine-learning context are not necessarily
“false” in a biological sense. We show that the high degree of interconnections among functional classes
confounds the signatures that ought to be learned for a unique class. We term this the “Borges effect” and
introduce two new numerical indices for its quantification. Our analysis indicates that classification systems with
a lower Borges effect are better suitable for machine learning. Furthermore, we introduce a learning procedure
for combining false positives with the original class. We show that in a few iterations this process converges to a
gene set that is learnable with considerably low rates of false positives and negatives and contains genes that are
biologically related to the original class, allowing for a coarse reconstruction of the interactions between
associated biological pathways. We exemplify this methodology using the well-studied tricarboxylic acid cycle.

DNA array technology (Schena et al. 1995; Shalon et al. 1996)
allows for the simultaneous recording of thousands of gene
expression levels and has opened new ways of looking at or-
ganisms on a genome-wide scale. It is now possible to study
genomic patterns of gene expression in prokaryotes (Arfin et
al. 2000) or in simple eukaryotes like yeast (Eisen et al. 1998)
and Caenorhabditis elegans (Hill et al. 2000), whereas in higher
organisms, like humans, tens of thousands genes can be
monitored (Zhang et al. 1997).

DNA array experiments primarily involve the measure-
ment of thousands of gene expression levels under different
conditions. The data can be clustered along these two dimen-
sions for two purposes: either (1) the classification of condi-
tions (tissues, phenotypes, etc.) in terms of expression values,
regarded as their molecular signatures, or (2) conversely, the
classification of genes with correlated expression patterns, to
explore shared functions or regulation. The classification of
conditions has been investigated in several studies. For in-
stance, aggregative hierarchical clustering has been used ex-
tensively for the molecular classification of leukemia (Golub
et al. 1999), colon cancer (Alon et al. 1999), breast cancer

(Perou et al. 1999), and lymphoma (Alizadeh et al. 2000), to
cite just a few cases. Supervised methods can be used if there
is some prior knowledge about the classes to be analysed.
Thus, support vector machines (Furey et al. 2000), neural net-
works (Khan et al. 2001), and pattern discovery methods
(Califano et al. 2000) have been applied to the molecular clas-
sification of different cancer tissues.

Note that a typical expression data set usually contains
several thousands of genes but perhaps <100 conditions.
Thus, the classification of conditions involves only a few
items (conditions) to be classified, but a high number of vari-
ables (genes). We face an opposite data structure for the sec-
ond type of clustering, the classification of genes: Many items
(genes) need to be classified using only a few variables (con-
ditions). For the classification of genes, an arsenal of methods
has been used, including aggregative hierarchical clustering
(Sneath, and Sokal 1973; Eisen et al. 1998), K-means (Tavazoie
et al. 1999), singular value decomposition (Alter et al. 2000),
and other methods (Ben-Dor et al. 1999; Heyer et al. 1999).
Unsupervised neural networks like self-organizing maps (Ko-
honen, 1997; Tamayo et al. 1999; Törönen et al. 1999), or
their hierarchical version, the self-organizing tree algorithm
(Herrero et al. 2001), have also been used to obtain clusters of
co-expressing genes.

Despite the wealth of data on gene properties (such as
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function, subcellular localization, protein interactions, pres-
ence in pathways, or cellular complexes), supervised ap-
proaches that take this prior information into account have
been applied only scarcely. Brown et al. (2000), using expres-
sion data from yeast (Eisen et al. 1998), concluded that sup-
port vector machines (SVMs; Vapnik 1998) were the most
efficient method for identifying sets of genes with common
functions, among several machine-learning techniques they
compared. However, supervised neural networks (SNNs;
Bishop 1995), the method we use here, were not included in
this comparison.

SNNs are computer-based algorithms inspired by the
structure and behavior of neurons in the human brain. Simi-
lar to SVMs, SNNs are capable of extracting features of classes
in a training process in order to learn how to identify them. In
particular, this pattern-recognition process is achieved in per-
ceptrons (Rosenblatt 1958) by adjusting parameters of the
SNN in a process of error back-propagation and minimization
through learning from experience. They can be calibrated
(trained) using any type of input data, such as gene expression
levels from DNA arrays, and the output can be grouped into
any given number of categories. Compared to SVMs, they
have some potential advantages. SNNs allow for multiple clas-
sifications in a single query, whereas SVMs are only designed
to bisect the data into two classes (the class to be learned and
its complement) and can thus achieve multiple classifications
only indirectly and iteratively. (If a gene being queried is as-
signed to the complement of the original class, the comple-
ment needs to be bisected again with respect to the next class,
and so on, until the gene is assigned or remains unclassified
in the final complement. This procedure is dependent on
the chosen order of the classes.) In contrast, multilayer per-
ceptron-based SNN schemes provide a more direct method
in that they can be tailored to perform multiset classification
in one run, with the output consisting of as many units as
classes of interest. A further advantage is that the parameters
of the SNN (weights) can give relevant information on the
relative importance of each condition in the learning of the
classes.

Our goals in this paper are twofold. First, we explore the
ability of supervised neural networks to learn the gene expres-
sion signatures of classes both in the binary case (i.e., for a
class and its complement) and in the multiple-class case. Sec-
ond, we systematically explore how well these classes can be
learned. Similar to Brown et al., we used the classes from the
Munich Information Center for Protein Sequences (MIPS)
functional catalog, but unlike Brown et al., who analyzed only
five of them, we investigated 96 classes of the MIPS functional
catalog (Mewes et al. 2000). Our results show that even
though some classes can be learned with a low rate of false
positives and false negatives, other classes can hardly be
learned at all. In fact, we get >60% false negatives for 92% of
the functional classes. A priori, one could suspect that this is
caused by a poor performance of the neural network learning
method. There are, however, a number of reasons that can
affect learning performance. First, the output of DNA array
technology can have a poor signal to noise ratio, and poor
learning can be a result of the noise eclipsing the signal. In
addition to this, we identified three reasons for the poor
learning performance that are purely related to the biology
underlying the data rather than to the technical aspects of
machine learning. They are (1) class size, (2) heterogeneity of
the classes, and (3) the high degree of intersection among
functional classes. The MIPS catalog, which has been com-

piled based on the extensive biological knowledge in the lit-
erature, is indeed highly interconnected. This of course re-
flects the fact that cellular processes do not represent isolated,
modules. Thus, if the neural network falsely classifies a gene
as a positive, this is not necessarily a failure of the learning
scheme, but often represents a gene participating in biological
processes closely associated with the original class to be
learned. We substantiate these claims by studying the inter-
section structure of functional classes. For a given classifica-
tion scheme, such as the MIPS catalog, we define what we call
the “Borges effect” and introduce two numerical indices that
give a rough measure of the overlapping structure of a given
class. We conjecture that these indices determine the learning
performance of this class.

Finally, in order to test the proposition that false classi-
fications are not necessarily errors of the learning process, we
introduce an iterative procedure in which, starting from a
single MIPS class, the false positives of iteration i are added as
true positives for iteration i + 1. If the false positives were
really caused by the learning process, one would expect the
rate of false positives to remain approximately unchanged at
each iteration, eventually producing a class that comprises
almost all genes. If this were not the case, one would expect
the false positives rate to decrease and the procedure to con-
verge to a small set of genes. Indeed, we observe the latter
scenario. We have let the iterations run until the rate of false
positives reached a low preassigned threshold. We show that
the new set of genes produced after a few iteration steps, can
be learned with considerably low rates of false positives and
false negatives. This finding is biologically meaningful in that
the new gene set contains genes with functional classes that
are related to the original class through interacting cellular
processes. We shall argue that this method of iteratively pick-
ing up signatures related to an original class might allow for a
coarse reconstruction of the interactions between associated
biological pathways. We exemplify this methodology using
the well-studied tricarboxylic acid cycle (TCA).

RESULTS

Using Multilayer Perceptrons to Learn Multiple
Functional Classes
As mentioned, Brown et al. (2000) applied several supervised
learning schemes to recognize functional classes of genes.
Their results showed that SVMs were superior in performance
to other schemes such as decision trees, Parzen windows, and
the Fisher linear discriminant. In order to meaningfully com-
pare our results, we applied the multilayer perceptron (MLP)
to the same data with the same validation scheme (threefold
cross validation) as used in Brown et al. (2000). We initially
focused on the five MIPS classes that Brown et al. analyzed: (1)
the TCA cycle, (2) genes involved in respiratory processes, (3)
ribosomal genes, (4) the genes of the proteasome, and (5)
histone related genes. (Brown et al. also considered a decoy
class defined by a structural motif [helix-turn-helix] rather
than a functional characteristic, but we shall not consider it
here.) Later, we shall extend our study to a systematic learning
of all functional classes in MIPS.

For each of the 2467 genes contained in the data (Eisen
1998) there are 79 gene expression ratios corresponding to
different experimental conditions. We divide the 2467 genes
into six sets, the five classes mentioned above plus a comple-
mentary set comprising the rest of the genes.
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The architecture of our MLP consists of one input layer
with 79 units (one per experimental condition), one hidden
layer with eight units, and one output layer with five units:
one for each of the classes under consideration. Presented
with an example (i.e., gene) from one class in the training set,
a value of one was assigned to the corresponding output unit,
with the other four output units set to zero. Given a gene that
is not a member of any of the five classes, the five units were
trained to output zero.

Once trained, the performance of the MLP was analyzed
with genes from the test set in order to collect the number of
FPs and FNs. In general, the output units yield a value be-
tween zero and one for genes from the test set. We assigned
the gene to the class for which the corresponding output unit
exceeds a preset threshold � (with 0 < � < 1). If, for a gene
previously known to belong to class i, the MLP calculates a
value greater (smaller) than � in the corresponding output
unit i, the classification results in a true positive (false nega-
tive). Alternatively, if a gene from another class j causes unit
i to be greater (smaller) than �, the result is a false positive
(true negative).

The number of correct and incorrect assignments de-
pends on the random partition made for the threefold vali-
dation process. Thus, different partitions result in different
numbers of correct and incorrect assignments. We performed
five random partitions and computed the average number of
assignments and their standard deviations. Table 1 shows these
results, alongwith the comparisons with Brown et al. (SVMwith
a radial kernel). The statistics for the SVMs was extracted from
http://www.cse.ucsc.edu/research/compbio/genex.

Table 1 shows that the MLP and SVM perform similarly
in terms of the number of FNs, although the MLP seems to do
systematically worse than the SVM in terms of the number of
FPs. We found very similar results when we performed a MLP
binary classification (i.e., one output unit) as opposed to a
multiclass one (data not shown). It might seem then that the
performance of the MLP is inferior to that of SVM despite its
ability to do multiclass classification. But we should not has-
ten to conclude that the MLP performs worse than the SVM,
even though that is what the results tell us at face value. The
reason is that a machine-learning FP or FN might not be a
biological FP or FN. In the next section, we shall argue that

the FPs and FNs picked by the MLP are actually biologically
meaningful.

Machine-Learning FPs and FNs Are Not Necessarily
Biological FPs and FNs: A Case Study
In order to gain insight into the biological meaning of the FPs
and FNs found by the MLP, we will concentrate on one of the
five classes previously analyzed: the TCA cycle. We choose
this class because it is one of the best understood biochemical
pathways. Figure 1 shows a representation of the TCA cycle
and two associated biochemical modules involved in the
same biological process of energy generation: oxidative phos-
phorylation, and ATP synthesis. The genes encoding the en-
zymes that catalyze the reactions of the TCA cycle are listed
within the grey boxes. These are the enzymes as cataloged in
the MIPS database, under the entry of tricarboxylic acid cycle.
We will show that most of the FPs and FNs found by the MLP
are involved in other biological processes of energy metabo-
lism, in which the TCA cycle plays an important role.

We repeated the threefold cross-validation process (see
Methods) five times, thus creating five different sets of FPs
and FNs. These sets overlap: Some of the FPs appear in all five
cross-validation experiments, others appear in four out of
five, and so on. (The same holds for the FNs.) The names of FP
genes are framed with green boxes in Figure 1A, with the
number of cross-validation experiments in which they appear
listed between parentheses. For example, PYC2 (pyruvate car-
boxylase) is not a member of the TCA class according to MIPS,
but it appeared as a FP twice out of the five cross-validation
experiments. PYC2 catalyzes the carboxylation of pyruvate
into oxaloacetate. The three genes listed next to acetyl CoA in
Figure 1A, CIT2, ACH1, and ACS1, which appear in five, five,
and three cross-validation experiments respectively, are en-
zymes for reactions that involve acetyl CoA. For example,
CIT2 (citrate synthase) catalyzes the synthesis of citrate from
acetyl CoA in the glyoxylate cycle. In addition to CIT2, other
members of the glyoxylate cycle (see Fig. 1B), MDH2 and
MLS1, appear as FPs. Both ACH1 (acetyl CoA hydrolase) and
ACS1 (acetyl CoA synthase) function to produce acetyl CoA
from acetate. In summary, Figure 1A clearly shows that the
FPs have a raison d’etre: They actually function together with
the TCA cycle in the biology underlying the classification.

Table 1 Average Performance of Support Vector Machines (SVMs) With a Radial Kernel and Multilayer Perceptrons (MLPs) With
79 Input Units, Eight Hidden Units, and Five Output Units When Trained to Learn the Gene Expression Profiles of Different
Functional Classes

Class
Class
size Method False positive False negative True positive True Negative

TCA cycle 17 MLP 11.0 � 3 10.0 � 2 7.0 � 2 2439.0 � 3
SVM 5.6 9.0 8.0 2444.4

Respiratory processes 27 MLP 6.8 � 1 9.6 � 1 17.4 � 1 2433.2 � 1
30 SVM 6.0 10.4 19.6 2431.0

Ribosomal genes 121 MLP 9.4 � 3 4.0 � 2 117.0 � 2 2336.6 � 3
SVM 5.4 5.4 115.6 2340.6

Proteasome 35 MLP 11.6 � 2 8.6 � 1 26.4 � 1 2420.4 � 2
SVM 1.8 7.0 28.0 2430.2

Histone related genes 11 MLP 0.6 � 1 2.0 � 1 9.0 � 1 2455.4 � 1
SVM 0.0 2.0 9.0 2456.0

The averages are taken over five independent realizations of the three-fold cross-validation scheme. For MLP, the standard deviations over the
five different realizations is included. False negatives show similar performance between the two methods, but MLP tend to produce a higher
number of false positives. Of the 30 respiratory genes used to train the SVM, 3 were also members of the TCA cycle, and were excluded from
the respiratory process set when training the MLP.

Systematic Learning of Gene Classes
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The fact that only the 17 genes
framed by grey boxes in Figure 1, A
and C, are attributed to the TCA
cycle in the MIPS classification is re-
lated to our need to categorize
knowledge, but not necessarily to
the functional characterization of
these genes. We shall discuss this in
more detail in a later section.

Let us now turn to the FNs.
Why did the MLP not attribute
those genes to the TCA cycle? One
might hypothesize that the reason
for the misclassification is that the
gene with an expression profile that
is the closest to the FN is outside of
the TCA cycle class. Then, once the
MLP learns the expression signature
of this most closely related gene,
the TCA cycle gene is misclassified,
thus creating a FN.

In order to test this hypoth-
esis, we looked at the genes with
the highest expression similarity (as
measured by the correlation metric)
to each TCA cycle gene that ap-
peared at least twice as a FN in the
cross-validation experiments. With
only two exceptions these closest
genes are outside the TCA cycle; at
the same time, however, their func-
tions are related to the energy me-
tabolism processes in which the
TCA cycle is involved. In other
words, the small distance between
the FN and the most closely related
gene is an indication that such gene
may be related to the TCA cycle.
Figure 1C demonstrates these
points: The red boxes contain the
gene names of FNs, with the arrow
pointing to the genes most close-
ly related by expression, and the
number of times the FN appeared.
For example, the closest expres-
sion profile to IDP1, a member of
the TCA cycle, is from the gene
encoding alcohol dehydrogenase
1 (ADH1), which is used in the
conversion from pyruvate to
ethanol during alcoholic fermenta-
tion.

Overall, only three (CYP2,
PEP4, and ECM38) out of the 15 FPs
appearing in two or more of the
cross-validation experiments were
not directly related to the process of
energy metabolism. On the other
hand, only two genes (KGD1 and
CIT1, both of which had expression
profiles closest to that of gene
ECM4 involved in cell wall biogen-
esis) out of the 10 FNs appearing in
two or more of the cross-validation

Figure 1 (A) Schematics of the TCA cycle, along with the oxidative phosphorilation and the
ATP synthesis modules. The genes cataloged in MIPS as the TCA cycle genes for which we had
expression data are listed in the central grey square. The green squares contain the FP genes that
appeared in at least two out of the five cross-validation trials. (The number between parentheses
next to a gene indicates the precise number of times that gene appeared as a FP.) The green squares
appear next to the metabolite that the corresponding genes interact with. (B) Schematics of
the glyoxylate cycle (blue arrows) that is intertwined with the TCA cycle. Of the four genes that are
specific of the glyoxylate cycle, three of them appeared as FP in the TCA cycle. (C) Similar as in A, but
here the red squares contain the FN (left of the arrow, also in white in the central grey square) and
an arrow pointing to the gene with an expression profile that was closest to the FN. Only FNs
that appeared in two or more of the cross-validation trials appear (the precise number appears in
parentheses). The red squares are close to the metabolites that the enzyme associated with the FN
interacts with.
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experiments did not have a most closely related gene involved
in energy metabolism.

Systematic Learning of Functional Classes
So far we have focused only on the five functional classes that
were used in (Brown et al. 2000), both as a point of contact
with the previous literature and to directly compare the MLP
with SVMs. But in principle, there is no reason why we should
not attempt to systematically learn all functional classes cata-
loged in the MIPS database.

We used the three-way cross-validation procedure (see
Methods) to train the MLPs and to explore the number of FPs
and FNs. Each threefold validation was repeated five times,
and the results presented below are averages over those five
realizations. We focused here only on learning one class at a
time, as opposed to many classes simultaneously, as done in
the previous sections. Thus, the MLP has only one output
unit. After training, the output produces a value between zero
and one when the MLP is presented with an example (gene)
from the test set. The gene can then be classified as either
positive or negative depending on whether a given threshold
� (with 0 < � < 1) is exceeded.

There are 99 functional classes cataloged in the yeast
database contained in MIPS (version of November 8, 2001).
Of these, only 96 classes were candidates for systematic learn-
ing because they met our criterion of having at least three
genes for which the expression profiles were available. Figure
2 summarizes our results: Figure 2A shows the percentage of
TPs for each class, with the classes sorted by decreasing TP
percentage; Figure 2B shows the percentage of TNs, also in

rank order. The learning rate in terms of the TNs is encour-
aging: >91 out of the 96 classes are learned with a TN rate
�90%, and all classes are learned with a TN rate >75%. The
situation is different from the TP perspective. Figure 2A shows
that there is only a very small number of functional classes
learned with an acceptable number of TPs: Only eight classes
are learned with a TP rate �40%. Worse yet, 17 classes have
the alarming TP rate of 0%!

Table 2 shows the 20 classes with the highest TP rate. The
best learnable class in terms of the TP rate are the ribosomal
proteins, with a TP rate of 79.6%. Notice that this is one of the
classes with the highest number of genes (it is the seventh
largest class considered). Of the 11 best-learnable classes (in
terms of the TP rate), five are organelle-specific protein
classes: organization of cytoplasm, nucleus, mitochondria,
peroxisome, and endoplasmic reticulum.

What are the characteristics of the classes that are rela-
tively easy to learn? What makes most of the classes difficult
to learn? We address these questions next.

Causes for Poor Learning Performance
One of the major difficulties in analyzing high-throughput
gene expression experiments comes from the noisy nature of
the data. In general, the changes in the measured transcript
values among different experiments result from both biologi-
cal variations (corresponding to real differences between dif-
ferent experimental conditions) and experimental noise.
Sources of noise come from the RNA manipulation, labeling
processes, imaging and background subtraction, scanning
steps, etc. In our study, we have assumed that the gene ex-
pression data contains a sufficient amount of signal above the
noise level. When this is not true, the learning ability of any
scheme would be seriously compromised, as the gene expres-
sion profile would be plagued with more noise than signal,
with a devastating effect in the learning process. In the data
analyzed in this paper, it can be argued that for each gene, at
least some (if not all) of the 79 experimental conditions, will
affect the behavior of the yeast cell with respect to the refer-
ence. This is likely given that the nature of the perturbations
to the yeast cells were rather diverse, including different time
points in the cell division cycle, sporulation, diauxic shift,
temperature shocks, and reducing shocks. Quantitatively,
99.1% of the genes considered in this work had a fold change
greater than two in at least one of the conditions, 85% of the
genes had a fold change greater than two in at least five of the
conditions, and 73% of the genes had a fold change greater
than two in seven of the conditions. However likely the ar-
gument that there is enough signal in each gene may seem,
we can not ascertain that for all the genes there is a suffi-
ciently high signal to noise for the expression profile of that
gene to be learned. Thus, the noise in the gene expression
measurements is a potential cause for the poor learning per-
formance of the MIPS functional classes of this study.

Under the assumption of a reasonably high signal-to-
noise ratio in the data, we have identified three reasons that
determine learning performance: class size, class heterogene-
ity, and the internal structure of the catalog.

Class Size
Figure 3 shows the percentage of TPs (Fig. 3A) and TNs (Fig.
3B) as a function of the size of the class. There is a clear trend
for the rate of TP to increase with the class size. In principle,
this can be explained by the fact that more examples make a

Figure 2 (A) Percentage of true positives learned for each functional
class in decreasing true-positive rank order. (B) Same as in A, but for
true negatives.
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class easier to be learned. Still, the correlation between class
size and learning rate is less than perfect. For instance, the
class corresponding to the glyoxylate cycle has only five

members but is learned with a 35% TP rate; on the other
hand, the class of biogenesis of cell wall, with a nonnegligible
size (85 members), has a low rate of learning (4% TPs). The
TNs have a clear tendency to decrease with the size of the
class. The reason is that classes of larger size are more likely to
attract members of the complementary class. Finally, let us
mention that given that the total number of genes under
scrutiny is constant (2467), a small class will have a relatively
large complementary class. This imbalance in the size of a
class and its complementary will create a larger basin of at-
traction for the bigger class. This is likely to be the cause for
the rate of 0%TP of many of the small classes.

Heterogeneity
The trend of increasing rate of TPs with class size discussed
lines above cannot be the whole story. From a biological point
of view, one could expect that even big classes could be
learned with very poor rates of TP. Take, for example, the class
“assembly of protein complexes”, with 82 members; it exhib-
its a low TP rate (9%). Obviously, different complexes are
elicited under different conditions, and there is no reason to
believe that the proteins in this rather heterogeneous class
would be expressed in a coordinated fashion.

Thus, a second important factor that determines the
learning rate of a given class is the heterogeneity of the ex-
pression profiles of its different genes. Classes that behave
homogeneously under similar conditions will tend to have a
better learning rate, as their members will be good examples
of one another. This will not be the case for classes containing
genes that are not transcribed similarly under similar condi-
tions. Figure 4 shows the Eisen plots (see Methods) of two
classes: the class of ribosomal proteins (Fig. 4A) and the class
of amino acid metabolism (Fig. 4B) containing, respectively,
170 and 157 genes. There appears to be two rather homoge-
neous clusters in the expression profiles corresponding to the
genes coding for ribosomal proteins, whereas no clear-cut

Figure 3 The percentage of true positives (A) and true negatives (B)
as a function of the size of the class being learned.

Table 2. The 20 Classes With Higher Rate of True Positives Learned by the Multilayer Perception (MLP) With an Output
Threshold of � = 0.5.

Class Class size
True positive

(%)
True negative

(%)

Ribosomal proteins 170 79.6 97
Mitochondrial organization 294 54.6 90.6
Organization of cytoplasm 462 52.8 84.8
Nuclear organization 645 50.2 76.8
Tricarboxylic-acid pathway 17 47.6 99
C-compound and carbohydrate transporters 31 43.2 97.8
rRNA transcription 95 41.8 95.2
Respiration 54 41.2 96.8
mRNA transcription 427 38.4 80.2
Peroxisomal organization 33 37.8 97.4
Organization of endoplasmatic reticulum 134 36.6 94.2
Organization of chromosome structure 27 36.2 97.4
Glyoxylate cycle 5 35 99
Proteolysis 116 33.4 94.8
Glycolysis and gluconeogenesis 29 32 98.2
C-compound and carbohydrate metabolism 258 31.8 87.2
Amino acid metabolism 157 31 92.8
Stress response 90 28 95
Nitrogen and sulphur metabolism 50 27.8 97.2
Organization of plasma membrane 110 26 94.2

The second column lists the number of genes in the class listed in the first column. The entries in the third and fourth columns are averages
over five realizations of the three-fold cross-validation scheme.
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clusters emerge from the genes associated with amino acid
metabolism processes. The ribosomal protein class, with an
average TP rate of 79.6%, looks considerably more homoge-
neous than does the amino acid metabolism class, which has
a TP rate of 30%. This leads to the intuitively appealing con-
jecture that the learning rate of a class must worsen with
increasing heterogeneity.

To test this conjecture, it is necessary to define a measure
of heterogeneity. Assume we have Ng genes in our class. We
first normalize the gene expression values for each gene to
have zero mean and unit variance across the Nc experimental
conditions (Nc = 79 in this case). We then apply a hierarchical
clustering algorithm (see Methods), as done in Figure 4, which
will yield a gene ordering according to which genes g and
g + 1 are adjacent in the corresponding dendrogram. We de-
fine the heterogeneity measure as

h =
1

Ng − 1 �
g= 1

Ng− 1

D2�g, g + 1��Dg
2,

where

D2� g, g + 1� =
1
Nc �c= 1

Nc

�v� g, c� − v� g + 1, c��2,

is the average over each of the experimental conditions c of
the square of the difference between the expression values
v(g,c) and v(g + 1,c) of genes g and g + 1, andD2R is the expected
value of D2 when the expression values are drawn indepen-
dently from a random distribution with zero mean and unit
variance. It can be easily shown that D2

R = 2. Thus, our

heterogeneity measure is a positive number with a value that
is zero if the gene expression were homogeneous (i.e., each
gene in the class had the same gene expression profile), and
with an average that is one when the gene expression values
are random.

Figure 5A shows the true positive rate versus the hetero-
geneity measure for each of the 96 functional classes consid-
ered. There seems to be a linear relationship between the rate
of TP and heterogeneity measure. As expected, the more ho-
mogeneous classes are learned with a higher rate of TP. Indeed
the best learned class is the class of ribosomal proteins, which
is the most homogeneous one (see Fig. 4A), and the hetero-
geneity measure of the worst learned classes is close to 1.

Heterogeneity and class size are, to some extent, inde-
pendent factors that affect the learning rate of a class. To
study systematically the relationship between heterogeneity
and class size, the former is plotted versus the latter in Figure
5B. There seems to be a very faint trend for smaller classes to
be more heterogeneous, whereas larger classes tend to be
more homogeneous. However, except for extreme class size,
the trend is hardly noticeable. A linear fit to the data of Figure
5B yields a very small correlation coefficient (�0.37), and an
almost flat slope. Indeed, between classes of sizes five and 100,
the size of the class hardly determines the heterogeneity of
the class.

The Borges Effect: The Internal Structure of a
Catalog Affects Its Learning Rate
We have discussed the influence of class size and heterogene-
ity in determining how well a class can be learned. In this

Figure 4 Eisen plot for two classes: the class of ribosomal proteins (A) and the class of amino acid metabolism (B) containing, respectively, 170
and 157 genes. Rows are genes, and columns are experimental conditions. Both the genes and experimental conditions are reordered according
to a hierarchical clustering that puts together genes with expression profiles that are more similar.
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section we shall see that the effect that the internal structure
of the catalog of functional classes has on the performance of
a machine-learning task is substantial. Concisely, one impor-
tant reason why some classes cannot be learned is that they
share members with other classes. When a nonnegligible
amount of class members intersect with other classes and thus
are both members of the class to be learned and the comple-
mentary set, machine-learning algorithms will face serious
difficulties in distinguishing positive from negative examples.

Perhaps an illustration taken from a widely cited work of
writer and philosopher Jorge Luis Borges (1964) will bring this
point home, not without some humor. Referring to the in-
ability of language to explain the universe, Borges describes
an imaginary encyclopedia:

These ambiguities, redundances, and deficiencies recall
those attributed by Dr. Franz Kuhn to a certain Chinese
encyclopedia entitled Celestial Emporium of Benevolent
Knowledge. On those remote pages it is written that ani-
mals are divided into (a) those that belong to the Em-
peror, (b) embalmed ones, (c) those that are trained, (d)
suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray
dogs, (h) those that are included in this classification, (i)
those that tremble as if they were mad, (j) innumerable
ones, (k) those drawn with a very fine camel’s hair
brush, (l) others, (m) those that have just broken a flower
vase, (n) those that resemble flies from a distance.

When trying to differentiate “stray dogs” from the rest of the
animals, it is likely that some stray dogs will not be identified

correctly: Some of them might indeed “resemble flies from a
distance,” or “tremble as if they were mad.”

The inability of our machine-learning algorithm to per-
form without incurring in a great number of misclassifica-
tions is related to the fact that the classes in the MIPS catalog
are not equivalence classes. Note that this is not a limitation
of the design of the MIPS catalog, but rather an inherent prop-
erty of biology, in which different biochemical processes in-
teract. For example, the glyoxylate cycle “talks” with the TCA
cycle and with the glycolysis process (see Fig. 1B). We believe
that this phenomenon will tend to occur whenever we at-
tempt to learn biological classes in a somewhat reductionistic
way: When a biological process is isolated for a machine-
learning task, the poor learning rate for this process responds
to the fact that biology tends to work in a complex and highly
interacting manner.

We wish to propose the term “Borges effect” to describe
this inherent limitation of classification systems. The Borges
effect can be quantified. We shall introduce two quantities to
measure how intermingled the gene sets with the signatures
that we are trying to learn are. Let Ci be the i-th out of N sets.
Each of these sets is composed of genes that share given func-
tional features (i.e., they participate in a specific biological
process). The universe of genes to be considered is then
U = C1 ∪ C2 ∪ … ∪ CN. Genes could belong to two or more
sets. For example, ORF YDL078C (gene name MDH3) belongs
to the following sets: carbohydrate metabolism; lipid, fatty
acid and sterol metabolism; other energy generation activi-
ties; and peroxisomal organization.

Given a set C, we can define its link number, denoted by
L(C), as the number of sets with which C has a nonnull in-
tersection. The link number L(C) ranges between 0 and N � 1
(the total number of sets excluding C). When the link number
of a set is divided by the set size, the resulting quantity is a
measure of the average number of sets that a member of C
belongs to. We will call this quantity the link number per gene.
We also define the sharing number of a set C, S(C), as the
number of members of C that are members of other sets in the
catalog; that is, S(C) = #(C ∩ (U � C)), where #(C) denotes the
number ofmembers, or cardinality, of setC. The relative sharing
number s(C), ranging between zero and one, is defined as S(C)
divided by the total number of members of C. The relative shar-
ing number measures the proportion of a set that is shared by
other members of the catalog. The sharing and link numbers for
the functional catalog of MIPS are shown in Figure 6.

Figure 6A shows the relative sharing number of each
functional class as a function of class size. We can see that
independent of size, almost every class shares almost all its
members with other classes. The relative sharing number av-
eraged over all classes is 0.93; that is, on average 93% of each
class is shared. This observation helps to understand why
overall, the functional MIPS catalog is learned with very low
TP rates: For all of its classes, most of the genes belong to at
least some other functional class.

In Figure 6B, we plot the link number per gene for each
class versus the class size. When the class size increases, there
are more opportunities for the class to intersect with other
classes, and indeed the number of links L(C) increases. How-
ever, this increase is sublinear, and the link number per gene
(defined as L(C)/#(C)) decreases with the class size #(C). This
decrease appears to be proportional to #(C)�1/2, as indicated
in the dashed line of Figure 6B. The link number averaged
over all the classes is 26: In average, each class overlaps with
26 other classes in the catalog. The average link number per

Figure 5 (A) True-positive rate versus the heterogeneity measure
(defined in the text) for all functional classes. (B) Heterogeneity mea-
sure versus the size of the class. The solid line is a linear fit to the data
with correlations coefficient �0.37 and slope of �0.0001.
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gene is 0.9; that is, for each set in the catalog, each of its genes
typically belongs in average to one other set.

Recall that the interpretation of the link number per
gene of a class is the average number of other sets that a gene
in said class belongs to. We should expect that a small link
number per gene would result in higher rate of learning. This
is the general trend shown in Figure 6C, in which we plotted
the percentage of TP versus the link number per gene. All
classes learned with a TP rate >40% had a link number per
gene <0.6. All classes with a link number per gene greater than
one were learned with a TP rate <25% (with the exception of
a class that had a TP rate of 35).

It can be argued that there must be a relationship be-
tween the heterogeneity measure of a class and its link num-
ber per gene. If the link number per gene of a class is large, the
class must accommodate the gene expression profiles of those
classes that have nonnull intersection with itself, and there-
fore, it should exhibit a somehow large heterogeneity mea-
sure. In Figure 6D, we have plotted the heterogeneity measure
of a class in terms of its link number per gene. There is a trend,
albeit faint, showing that the heterogeneity shows a tendency
to increase with the link number per gene.

Let us recapitulate the main observations made in this
section. The Borges effect is one of the determining factors in
the performance of a learning machine: Classes with a small
link number per gene tend to be learned better. The Borges
effect also provides an explanation for the better learning per-
formance of larger classes: Larger classes exhibit smaller link
numbers per gene, and therefore it should be expected that a
learning process performs better on them. Finally, the Borges
effect is related to the heterogeneity of a class: The more ho-

mogeneous classes tend to have smaller link number per gene
and thus are learned better.

We have seen that the performance of our learning
scheme is relatively poor, in the sense that ∼92% of the classes
are learned with a rate of FN >40%. However, the results of
this section indicate that the FNs and the FPs are not random:
The class being learned is likely to recruit FPs from, and lose
FNs to, the classes it is linked with. We had analyzed this
effect in detail for the TCA cycle earlier. The results of this
section provide evidence that such effect is likely to be more
general.

Iterative Learning
We have seen that the FPs arising from learning a class C0 can
play a role in biological processes closely related to this class.
If the Borges effect is at play, these FPs are likely to be genes
belonging to other functional classes whose intersection with
C0 is nonnull. Taking this behavior into account, we propose
an iterative learning procedure in which we augment the class
C0 with the FPs that arise from its learning, thus eventually
creating a new class with better learning performance and
that recapitulates the relationships of genes across functional
classes and pathways.

The procedure works as follows. After a learning step, we
add the newly produced FPs to the original class C0 to form an
extended class C1. These new added members will serve as
examples to facilitate the learning of the classes intersecting
with the original class. We next attempt to learn C1, thus
creating a new set of FPs, which are added to C1 to form C2
and so on. On iterating this process, two scenarios can arise:

Figure 6 (A) The relative sharing number as a function of class size. (B) Link number per gene for each class versus the class size #C (circles) and
a straight line (dashed line) that shows the trend of the link number per gene to decrease as #(C)�1/2 (notice the log-log scale). (C) The percentage
of true positives versus the link number per gene. (D) The heterogeneity measure of a class in terms of its link number per gene.
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(1) The iterations converge (i.e., no new FPs are found after a
number of steps) to an extended class of genes that participate
in biological processes related to the original class C0, or (2)
the basin of attraction for the augmented class keeps growing
until it comprises most of the genes in the whole data set.

We tested our iterative procedure using the TCA cycle as
the original class C0. In the first stage of the iteration, we
trained the MLP to recognize members of C0, and we identi-
fied the FPs using the threefold cross-validation scheme, with
a threshold of � = 0.8. After adding the FP genes to C0 to create
the class C1, we trained the MLP again, and so on. Recall that
the cross-validation scheme randomly partitions classes into
three subsets. Thus, different replicas of the cross-validation,
even at the same iteration number, may yield a different num-
ber of FPs. In this way, we get an average number of FPs and
a standard deviation at each iteration step. An iteration that
yields zero FPs would be a clear sign that the process is con-
vergent. However, it should be noted that even then, the fol-
lowing iteration could still give rise to a nonzero number of
FPs, owing to the randomness of the subsequent partitions.

Setting the threshold �, which determines whether a
gene is a FP or not, is very important for an efficient perfor-
mance of the iterative process. If � is too low, the iteration
might not converge at all, and the augmented class would
grow to include all the genes in the data set. On the other
hand, if the threshold is too stringent, the iteration might
stop after the first step. Park et al. (1998) reported a similar
problem in using an intermediate sequence search procedure
to increase the number of sequences detected by similarity.
We ran the learning procedure with different � values to study
this effect. We chose the optimal threshold as the less strin-
gent value for which the iteration still converges. This gave us
� = 0.8.

The solid line with circles in Figure 7A shows the results
of the iteration process on the TCA class. The dotted line with
diamonds shows the results for a database of gene expression
with the same dimensions, but with the 79 components of
the expression vector randomized. The curves show the aver-
age number of FPs at each iteration with their respective error
bars. The learning procedure consistently produced substan-
tially fewer FPs for the actual data.

There is a sustained trend of decreasing FPs in the TCA
data as the number of iterations increases (especially in the
first four iterations). This trend is much less obvious in the
randomized data, in which at some iteration the average
number of FPs seems to increase strongly (iterations 2, 8, and
9). Figure 7B shows the number of new FNs as a function of
the iterations, which stabilizes at ∼10 for the TCA data; note
that because the class size increases during the process, the
relative number of FNs actually decreases. On the other hand,
the number of FNs for the randomized data shows an increas-
ing trend, reaching ∼30 FNs at the 10th iteration (about three
times higher than for the actual data). That is, the randomized
data shows a much larger FN rate, indicating the nonrandom
nature of the FNs obtained for the real data.

For the actual data, each of the five replicas reached a
value of zero FPs at some iteration. (No individual replica
reached zero FP for the randomized data.) One particular rep-
lica reached zero FP at iteration 4. Figure 8, which pertains to
this replica, is a representation of the classes to which the
successive FPs belonged to, and a clear example of the Borges
effect. At the center of Figure 8 is the TCA cycle class (com-
prising 17 genes). The other classes that are represented in the
innermost circle share some of the TCA cycle members. A

solid line linking two classes indicates that the two classes
share at least one member. Because the link number for the
TCA class is seven, the first circle (iteration 0) contains seven
classes. At the first iteration, we obtained 14 FPs. The new
classes to which these FPs belong (and that were not plotted
in the innermost circle) are listed in the second circle. It
should be noticed that some of the new FPs belong to more
than one class. The second iteration yielded five FPs, which
added four new classes (shown in the third circle). Two of
these classes were not linked with any of the previous classes,
but these two classes actually stem from the same gene
(YGL200C). The third iteration yielded four new genes, only
one of which did not belong to previously encountered
classes and which contributed the two new classes appearing
in the outer circle. The fourth iteration yielded no FPs at all,
and we stopped our analysis there.

Of the 23 FPs discovered in the iterations described
above, only two did not belong to the web of class intersec-
tions related to the TCA cycle in the center. The picture
emerges that the discovered FPs are functionally related to the
TCA cycle, rather than being the product of random errors in
the learning process. Figure 8, constructed merely on the basis
of our machine-learning procedure, looks like a coarse grained
roadmap of the cellular processes associated with the energy
metabolism.

DISCUSSION
In this paper, we tested the ability of the MLP machine-
learning technique to extract the signature of yeast functional

Figure 7 (A) The number of false positives as a function of the
iteration number in iterative learning process of the TCA class (circles
and solid line) and of a randomized control (diamonds and dashed
curve). (B) Same as in A, but for false negatives.
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classes from gene expression data over 79 experimental con-
ditions. The antecedent of this study is the work of Brown et
al. (2000), who used several machine-learning algorithms,
concluding that SVM performed the best in terms of a score
based on FP and FN. We applied MLP for the first time to the
same data to compare our results to those of Brown et al. Both
SVMs and MLP yielded a similar number of FNs. However, the
MLP-based scheme produced a systematically bigger number
of FPs. Subsequently, we explored the biological nature of the
FPs arising from our algorithms for one functional class, the
TCA cycle. The conclusion was that machine-learning FPs
were not necessarily biological FPs. In other words, most of
the FPs had a biological function associated with the TCA
cycle. The FPs were in many cases enzymes interacting with
metabolites that are also channeled through the TCA cycle.
We showed this in Figure 1B, in which three members of the
glyoxylate cycle (which allows the synthesis of carbohydrates
from lipids), CIT2, MLS1, and MDH2, are recruited as FPs by
our learning scheme. Thus, we can hardly say that the MLP is

unable to “learn” the classes com-
pared with SVMs. Indeed, it uncov-
ers the underlying biology in a very
surprising way.

Provided that the last premise
is accepted, it makes sense to under-
take the task of testing how “learn-
able” the rest of the functional
classes cataloged in MIPS are. To
the best of our knowledge, this sys-
tematic study has not been reported
before. Our results are a priori un-
expected: Most of the classes are
nonlearnable, if by learnable we
mean having a reasonably low FN
rate. Indeed, 92% of the classes
were learned with a FN rate worse
than 60%. We explored the reasons
for this poor performance. Assum-
ing that the microarray experi-
ments contain a sufficiently high
signal to noise ratio, we identified
three factors determining the learn-
ing performance. The first one is
the size of the functional classes:
Classes that are of small size learned
more poorly than did classes of
larger size. A second factor identi-
fied was the heterogeneity of
classes. We defined a measure of
heterogeneity and showed that
learning performance degrades as
this heterogeneity measure in-
creases. The third factor stems from
the fact that the functional classes
in the MIPS catalog are not equiva-
lence classes. In fact, transitivity is
not always met: If genes A and B
belong to the same class and genes
B and C belong to the same class,
then A and C do not necessarily be-
long to the same class. This compli-
cates the learning process substan-
tially. In effect, when we try to
learn the signature for the class to

which gene A belongs, we will also learn the signature of gene
B; thus, genes with a gene expression profile similar to that of
B from the class in which C belongs may be erroneously an-
notated as belonging to the class of A (false positives). Alter-
natively, the class of C may recruit gene B, thus creating a
false negative. These false positives and false negatives are
recruited through genes such as B, which act as links between
the class of A and the class of C.We have called this the Borges
effect. We quantified the Borges effect with two indices: the
link number per gene and the relative sharing number. For
equivalence classes these indices are zero, and the larger these
quantities are, the more intermingled the classes will be. We
conjecture that for catalogs in which any of these indices
takes large values, any learning machine will perform poorly
(the average relative sharing number was 0.92 in the classifi-
cation system we used). We believe that this effect warrants
more research.

In the light of the Borges effect, we can rethink why the
machine-learning errors are not necessarily biological errors:

Figure 8 Schematic representation of the classes to which the successive FPs belonged to in the
process of iterative learning. Each circle represents a step in the iterative learning process. The TCA
cycle genes (at the center) intersect the classes that are represented in the innermost circle. A solid line
connecting two classes indicates that the two classes share at least one member. If a new iteration
yields one or more false positives, the corresponding circle will contain all the functional classes that
these false positives belong to (except for the classes already represented at inner circles), linked by
lines to all the classes in the inner circles with which they have nonnull intersection.
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When learning a class, it is very likely that the FPs found were
from a set that intersects with the original class to be learned.
But if these classes intersect, it means that they are function-
ally related. Thinking along these lines, we developed an it-
erative learning scheme, in which at any given iteration, the
FPs at one learning step are added to the original class to be
learned in the next iteration. The augmented classes that ap-
pear at successive iterations will thus be functionally related
to the original class at iteration 0. We implemented this it-
erative scheme using the TCA cycle as the starting class. The
results, shown in Figure 8, look like a coarse grain reconstruc-
tion of the processes functionally related to the TCA pathway.
Thus, it seems that this iterative scheme could be used as a
tool to unravel coarse features of complex and interacting
systems. Of course, much more work is needed in this direc-
tion.

In summary, we have studied the limitations in learning
functional classes from DNA microarray data, and we con-
cluded that those limitations are strongly related to the struc-
ture of the catalog of biological functions, to the heterogene-
ity of the expression profile within the classes, and to the class
size. Our results and inferences, however, are derived from a
particular set of mRNA expression data. It may be possible
that different data sets (e.g. Rosetta’s data series correspond-
ing to 300 diverse mutations and chemical treatments, see
http://www.rii.com/tech/pubs/cell_hughes.htm) or subsets of
the experimental conditions used in the present paper may
yield a different learning performance.

We also made the point that machine-learning false posi-
tives are not necessarily biological false positives. In that re-
spect, we believe that our analysis of the TCA cycle constitutes
proof of principle of our contention. (The reason why we used
the TCA cycle is that the wealth of information available for
this metabolic pathway helped us in the interpretation of the
results.) Our conclusions, however, were not tested in other
functional classes.

Our work opens a number of interesting questions. Do
our results generalize to other catalogs such as biological path-
ways and complexes? Are there classes for which learning sta-
tistics change significantly as a function of the expression
data set? Does the iterative algorithm connect a different set
of neighbor interactions when the learning is performed on
different data sets? Do the results found for the TCA cycle
generalize to other classes? These important questions will be
addressed in future studies.

METHODS

DNA Microarray Data and Classes
Gene expression profiles of 2467 annotated genes from S. cer-
evisiae in 79 different DNA-array experiments, including the
time series along the cell cycle (Eisen et al. 1998), were ana-
lyzed. The classes used for the training process of the SNN
were taken from the Yeast Genome Database at the MIPS, in
particular, the 99 functional classes corresponding to the sec-
ond level of the MIPS functional catalog (http://mips.gsf.de/
proj/yeast/catalogues/funcat, version of November 8, 2001).
Of the MIPS catalog, only classes containing at least three
genes present in Eisen et al.’s (1998) data set were used, which
made the number of trained classes 96, slightly smaller than
the actual number of cataloged classes.

Back-Propagation Neural Networks
The SNNS package program (http://www.ra.informatik.uni-
tuebingen.de/SNNS/) was used to implement the neural net-

work, in this case a MLP. We used a perceptron with standard
back-propagation (Rumelhart et al. 1986) as learning function
and updated by topological order. To introduce nonlinearity
into the network, the logistic activation function was used.
The network has 79 input neurons corresponding to the 79
DNA array experimental conditions. There is no theory that
relates the number of hidden layers necessary to properly
identify classes in a given problem, but one hidden layer with
an appropriate number of hidden units suffices the “universal
approximation” property (Bishop 1995). MLPs with more lay-
ers are more prone to over-fit the problem and fail in learning
the general features of the class. Similar arguments can be
used for the choice of the number of units in the hidden layer.
There are several rules of thumb, and a general agreement is
that this number must be between the number of input and
output units. A good choice for the number of hidden units
seems to be a value around the square root of the number of
units in the previous layer (the input layer in this case; Blum
1992). We have explored the performance of the MLP using
one hidden layer with five, eight, and 20 hidden units (data
not shown). The results between these different architectures
were very consistent. We opted to use eight hidden units, a
choice that yielded a good compromise between generaliza-
tion and error. The MLP used here, then, has one hidden layer
with eight units connected to any of the 79 input neurons
and one output unit, for the case of learning one class at a
time. In the case of learning simultaneous classes, the net-
work topology includes as many output units as classes to be
learned.

The neural network is trained with a training set, which
contains examples corresponding to each of the possible
groups to be learned. When the number of examples corre-
sponding to different groups in the training sets shows a se-
rious asymmetry in sizes, the examples corresponding to the
class smaller in size are presented more times to the network
to compensate the otherwise unbalanced training set.

Three-Way Cross-Validation
The performance of the learning process was checked using a
three-way cross-validation scheme. Both the set C to be
learned and its complement U � C (where U is the set of all
genes under consideration) were randomly divided into three
groups. The MLP was trained with two of these groups (the
training set) and the remaining group (the test set) was used
to test the network. Each gene belonging to C in the test set
can either be predicted to be in set C (in which case it will be
deemed to be a true positive, or TP), or in set U � C (in which
case it will be deemed to be a false negative, or FN). Alterna-
tively, each gene belonging to U � C in the test set can either
be predicted to be in set C (in which case it will be deemed to
be a false positive, or FP), or in set U � C (in which case it will
be deemed to be a true negative, or TN). The procedure was
repeated two more times for the other two possible combina-
tions of groups. The performance of the learning scheme, as
measured by the total number of FP, FN, TP, and TN is ob-
tained as the sum of the performances under the three com-
binations of groups. In this way, the sum of the number of TP
and FN is equal to the number of members in the original set
C, and the sum of the number of TN and FP is equal to the
number of members in the set U � C. It should be noticed
that, because of the random nature of the partition of the sets,
different runs of this three-way cross-validation scheme could
yield different numbers of TP and FN, even though the sum is
always equal to the number of members in the class being
learned.

Hierarchical Clustering and Eisen Plots
The hierarchical clustering algorithm used to generate the
dendrograms of Figure 4 is based on the average-linkage
method (Hartigan 1975; Eisen et al. 1998). The expression
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value of each gene is normalized to have zero mean and unit
standard deviation across the 79 experimental conditions.
The distance between two individual samples is calculated by
euclidean distance with the normalized expression values.
Both the genes and the conditions are organized according to
the hierarchical clustering method. The gene expression is
graphically represented using color-coded matrices (the so-
called Eisen plots; Eisen et al. 1998). Columns represent indi-
vidual experimental conditions, and rows represent indi-
vidual genes present in the class. To generate a pseudo-color
map the normalized gene expression value v is used. The
pseudo-color map represents v = 0 as black, v > 0 as progres-
sively brighter hues of red, and v < 0 as progressively brighter
levels of green. v > 2 and v < �2 correspond to complete satu-
ration of the red and the green, respectively. The resulting
pseudo-color map associates the same colors to measurements
that are off by the same number of standard deviations from
their average.
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