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We develop an extension to the Lander-Waterman theory for characterizing gaps in bacterial artificial
chromosome fingerprint mapping and shotgun sequencing projects. It supports a larger set of descriptive
statistics and is applicable to a wider range of project parameters. We show that previous assertions regarding
inconsistency of the Lander-Waterman theory at higher coverages are incorrect and that another well-known
but ostensibly different model is in fact the same. The apparent paradox of infinite island lengths is resolved.
Several applications are shown, including evolution of the probability density function, calculation of closure
probabilities, and development of a probabilistic method for computing stopping points in bacterial artificial
chromosome shotgun sequencing.

Complete DNA sequences are critical resources for biomedical
research. Motivated both by the need for such information
and by enabling advances in technology, sequencing efforts
continue to expand dramatically. Several “model” organisms
have already been completed (e.g., Johnston et al. 1997; The
Caenorhabditis elegans Sequencing Consortium 1998; Adams
et al. 2000; The Arabidopsis Genome Initiative 2000), and
draft versions of the human genome have recently been an-
nounced (International Human Genome Sequencing Consor-
tium [IHGSC] 2001; Venter et al. 2001). Numerous additional
projects are either planned or underway.

There are a number of views regarding optimal strategies
toward sequencing. Experience derived from recent human
projects (IHGSC 2001; McPherson et al. 2001) confirms that a
fingerprint approach based on bacterial artificial chromosome
(BAC) clones (Shizuya et al. 1992) is effective for large ge-
nomes. Conversely, small genomes can usually be sequenced
directly using the random shotgun method (e.g., Heidelberg
et al. 2000). The seminal work of Lander and Waterman
(1988) provided the first step toward a fundamental theoreti-
cal basis for these two important procedures. In particular, the
Lander and Waterman (L-W) theory permits calculation of
the expected number of gaps as a function of the number of
clones or subclones processed and the resolution for detecting
overlaps (Fig. 1). Because project completion basically de-
pends on the number of outstanding gaps (Roach et al. 1999),
this statistic is useful both in planning and troubleshooting
and remains one of scientists’ standard analytical tools (Myers
1999).

Mathematical descriptions of mapping and sequencing
are rooted in classical theories of probabilistic coverage pro-
cesses (Kendall and Moran 1963; Solomon 1978). These early
results are idealized in the sense that they do not consider
biologically relevant parameters, such as detection resolution
for clone overlaps. The L-W theory was the first practical ad-
vance in this regard. The L-Wmodel posits a simple geometric

coverage process from which expected values are deduced.
Conversely, Roach (1995) proposes a process governed by a
binomial distribution and argues that the geometric model is
valid only for limited coverage. Wendl et al. (2001) cast some
doubt on this conclusion by showing that L-W results can be
obtained independently of a geometric assumption, but they
did not further resolve the discrepancy. Other idealized re-
sults have been developed, for example, the probability of
closure in which the alphabet of nucleotide bases is infinite
(Derrida and Fink 2002). The text by Hall (1988) discusses
some related problems.

Here, we formulate a rigorous extension to L-W theory.
This work was motivated by three concerns. First, L-W theory
is based on the assumption of vanishing clone size. This sim-
plification is actually embedded in all the standard models
discussed previously, in which it is invoked in equivalent
forms of infinite genome size or a continuum representation
of the problem rather than a discrete one. The degree to
which projects such as BAC fingerprinting small genomes
(e.g., Tomkins et al. 2001) violate the vanishing clone length
assumption is unclear. Second, there are apparent theoretical
discrepancies with other models, especially the well-known
paradox of infinite island lengths (Roach 1995). Finally, L-W
theory does not support descriptive statistics beyond the ex-
pected value. The current generalization fully resolves each of
these issues. We show several example applications that give
a more accurate and comprehensive gap characterization of
mapping and sequencing than has previously been available.

RESULTS
A combinatorially exact distribution describing gaps appears
in equation 4. Variables L and G denote clone and project
lengths, respectively, T specifies the average length of overlap
required for detection, and N represents the number of clones
processed. Statistics are characterized by the moment-
generating function in equation 5, from which are derived
expected number and variance of gaps in equations 6 and 7.
Higher moments can be derived in a straightforward fashion
from equation 5. Corresponding approximate results appear
in equations 9 through 12. We quantify errors arising in the
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latter set of equations and show that they are equivalent to
models by Lander and Waterman (1988) and Roach (1995).

Error Quantification for Approximate Models
The approximate model is obtained by invoking two simpli-
fications with respect to equation 3. First, asymptotic approxi-
mation is used, that is, (1 � �)N → e��N, where � = (L � T)/G
is small (Seed 1982; Torney 1991; Marr et al. 1992). Second,
gap limits are not established as in equation 3. Finite prob-
abilities are therefore permitted for numbers of gaps in excess
of the physical maximum, int (G/L). In general, the resulting
probability density given by equation 9 is artificially disperse
compared with the combinatorially exact result in equation 4
(Fig. 2). Consequently, approximation is only valid when
clone length is “small enough” compared with project size.

Current mapping and sequencing projects encompass
L/G ratios that vary over five orders of magnitude, with the
maximum being of order 10�2 for certain fingerprint projects
(Table 1). Exact theory is difficult to compute for low L/G,
whereas approximate theory is not valid for high L/G. Delin-
eating values for which each is appropriate is therefore useful.
Figure 3 shows error evaluation for the expected number of
gaps in a set of projects having 0.00085 � L/G � 0.03 (Zhu et
al. 1999; Chang et al. 2001). Predictably, the worst case is that
in which relative clone size is largest. Yet, even at this ex-
treme, the maximum error is only on the order of 2%. As-
ymptotic theory is therefore a remarkably robust predictor of
expected gaps. Figure 4 shows the corresponding error evalu-

ation for standard deviation of the gap distribution. Here,
error is more sensitive, being about five times as large as that
of the expected value. A 2% error limit indicates applying the
exact model for BAC shotgun sequencing and small genome
fingerprinting (Table 1).

Unification of Previous Models
Equations 3 through 12 resolve a long-standing controversy
between two established theories. The Lander and Waterman
(1988) model can be considered the standard: It is widely
applied and characterizes the expected number of islands and
their expected lengths via the simple expressions N e��N and
G(e�N � 1)/N. Roach (1995) developed an alternative model,
which is thought to be fundamentally different from the L-W
model. Roach asserts that L-W results are inconsistent at
higher coverages. In particular, expected island length is un-
bounded and exceeds that of the project itself for coverage
depths above approximately 6� to 8�. This trend appears in
the original Lander and Waterman article, although it is not
discussed per se. It is then argued by Roach that the fundamen-
tal basis of the L-W theory is not valid in this range. Kupfer et al.
(1995) have raised similar concerns. Consequently, many inves-
tigators resort exclusively to the Roachmodel when coverages of
interest exceed 5� (Smith et al. 1997; Yamada et al. 2000).

If a slightly modified interpretation is applied to one of
the L-W results, we show that not only is this assertion incor-
rect but that the Lander and Waterman (1988) and Roach
(1995) models are basically identical and both consistent. The
paradox of unbounded island length is really a matter of cor-
rectly characterizing limiting behavior and can be resolved as
follows. Although investigators usually regard gap number
and island number as equal, the latter must converge to one
greater than the former in the limit of closure, that is

lim
Ngaps → 0

Nislands = lim
Ngaps → 0

�Ngaps + 1� = 1. ( 1 )

Suppose that we increment the L-W expression for the
expected number of islands by 1 to obtain the correct limit-
ing behavior as closure is approached. Although not as
important for practical calculations, let us also replace N
with N � 1 to obtain the correct behavior at project initia-
tion, that is, the first clone yields exactly 1 island. The result
is N e��(N � 1) + 1 � �, where � = e��(N � 1) is a small quantity
that quickly vanishes. This expression is identical within � to
E 〈 I〉 + 1, where E 〈 I〉 is given by equation 11. Because equation
11 represents the expected value of gaps, the Lander and Wa-
terman (1988) result above should be more properly regarded
as the number of gaps rather than the number of islands. In
this context, the model is fully consistent and limiting behav-
ior is correct. For example, the quotient of bases covered,
G(1 � e��N), and number of islands (with correct end-
limiting behavior) yields a more reasonable L-W approxima-
tion for expected island length

E�Lisland� =
G�1 − e − �N�

N e − �N + 1
. ( 2 )

Equation 2 correctly converges to the project length G.
Furthermore, equation 11 is derived from equation 9,

which is essentially the same density function given by Roach
(1995), that is, a binomial distribution based on the probabil-
ity of a gap. The Lander and Waterman (1988) and Roach
(1995) models are thus fundamentally equivalent, although
Roach provides the underlying density function that did not

Figure 1 Schematic representation of fingerprint mapping and
shotgun sequencing. Crossbars represent average amount of overlap
required for detection. Some predicted gaps will be genuine as in (a)
for which no clone spans the region, whereas others will be falsely
predicted as in (b) because of insufficient detection resolution.

Figure 2 Representative probability density functions for a hypo-
thetical mapping project (L/G = 0.001, T/L = 0) at 1� coverage.
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appear in the Lander and Waterman article. Differences in
appearance of the equations between the two articles are sec-
ond-order and can be neglected for practical calculations. Spe-
cifically, Roach (1995) uses N � 1 rather than N but does not
explicitly use exponentiation. Strictly speaking, his result re-
mains asymptotic because gap limits are not rigorously estab-
lished as in equation 3. This leads to a one-term approxima-
tion of equation 4. To illustrate the equivalency, we repeat a
case study by Roach (1995) that compares expected island
lengths for a shotgun sequencing project (Fig. 5). Whereas
original L-W theory diverges, equation 2 duplicates results
obtained by Roach within the second-order differences men-
tioned above. Amending limiting behavior as we have de-
scribed here promises to resolve similar anomalies in other
models (Arratia et al. 1991; Port et al. 1995).

DISCUSSION
Past work has largely focused on expected value of gaps, is-
lands, and so forth. Here we broaden these results by several
example calculations using both our combinatorially exact
and asymptotically approximate models.

Evolution of Gaps
The process by which gaps evolve in a project can be exam-
ined by plotting probability density as a function of coverage
depth N L/G (Fig. 6). Dispersion is minimal at the outset,
which is expected, given that the number of possible arrange-
ments for a limited number of clones is relatively small. Dis-
tributions are not symmetric. As a project progresses toward
1� coverage, distributions rapidly become disperse and sym-
metric. It is in this region that theoretical predictions for ex-
pected gaps are most likely to differ from results obtained in
the laboratory. The shape remains almost constant for several
increments in coverage. As deeper coverage is reached, for
example, 5� in this case, distributions start to contract and
become asymmetric. The trend becomes more exaggerated as
closure is approached. Dispersion also increases with L/G as
characterized by the quotient of maximum � to maximum
E 〈 I〉 (Fig. 7). In general, this implies that estimates of the ex-
pected number of gaps are more likely to reflect actual labo-
ratory observations for smaller L/G.

Closure Probabilities
Although it is not a rigorous indicator, some es-
timate of the difficulty of a project can be ob-
tained by examining the probability of closure,
that is, the absence of gaps. Straightforward sim-
plification of equations 4 and 9 yields p(0, N). It
is clear from Figure 8 that closure is approached
faster for projects having larger L/G values. Maxi-
mizing clone length (or sequencing read length)
is therefore critical. Similar behavior has been
noted previously for random subcloning by
Roach (1995) using the Flatto and Konheim
(1962) theory and for pairwise end sequencing
using computer simulation (Roach et al. 1995).
In our opinion, idealized models that predict
lower coverages, for example, 15� for shotgun
sequencing a typical human chromosome of
108 bases (Derrida and Fink 2002), are incor-
rect. Trends in Figure 8 approximately follow
(1 � e�NL/G)N, as shown by equation 9, which
penalizes short clones because N must be larger
to attain a given coverage. This reflects the fact

that larger clones are more effective at closing gaps than
smaller ones and explains why BAC clones can be shotgunned
to within a few gaps, whereas whole genome shotgun projects
retain many gaps at the same coverage. These expectations
extrapolate in large degree to fingerprinting as well. For ex-
ample, projects having L/G of 3.3 � 10�3 (Martin et al. 2002)
or above reach a probability of closure of 99% or higher by
13� coverage. In practice, some bias will likely exist, meaning
that a small number of gaps must still be closed by directed
means.

BAC Shotgun Sequencing
The concept of closure probability can also be applied to de-
riving probabilistic stopping points in BAC clone shotgun se-
quencing. Current practice uses a simple linear scale: 5� cov-
erage is considered a “half shotgun” and 10� coverage is a
“full shotgun.” However, these figures do not take into ac-
count clone size or the average read length obtained from
sequencing reactions. Roach (1995) proposed a criterion
based on the expected cost for incrementally closing a gap,
but the scale increases exponentially near closure. A more
systematic method unaffected by the exponential problem
can be defined according to confidence levels, for example, a
90% confidence of closure. BAC clone length is typically on
the order of 150 kb (IHGSC 2001) but can average as low as 58
kb (Diaz-Perez et al. 1997) or show significantly higher values,
for example, 235 kb for some human clones (Wendl et al.
2001). Read length is generally in the range of 500 to 800 base
pairs in a large-scale production environment. Figure 9 shows
that reasonable stopping points vary between about 8.5� and
12� coverage and decrease approximately linearly with read
length. “Full shotgun” of a typical 150-kb BAC coincides with
10� coverage for an average read length of 650 bases and a
90% confidence level of closure. Longer clones, lower read
lengths, or higher confidence values would require additional
coverage beyond 10�.

METHODS
We briefly describe assumptions used in modeling BAC clone
mapping and shotgun sequencing and then construct a
theory describing evolution of gaps for these processes.

Table 1. Representative Fingerprint Mapping and Shotgun
Sequencing Projects

Project description Approximate L/G Reference

Whole genome shotgun 1.8 � 10�7 Venter et al. (2001)
sequencing of complex
organisms 4.6 � 10�6 Adams et al. (2000)

BAC clone fingerprinting
of large genomes 6.0 � 10�5 McPherson et al. (2001)

Bacterial whole genome 1.4 � 10�4 Heidelberg et al. (2000)
shotgun sequencing 2.6 � 10�4 Fleischmann et al. (1995)

BAC clone fingerprinting 7.7 � 10�4 Mozo et al. (1999)
intermediate-size genomes 8.5 � 10�4 Chang et al. (2001)

BAC shotgun sequencing 3.0 � 10�3 IHGSC (2001)
BAC clone fingerprinting 3.3 � 10�3 Martin et al. (2002)
small genomes 1.1 � 10�2 Dewar et al. (1998)

1.7 � 10�2 Tomkins et al. (2001)
2.1 � 10�2 Diaz-Perez et al. (1997)
3.0 � 10�2 Zhu et al. (1999)

BAC, bacterial artificial chromosome.
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Assumptions
The following assumptions collectively represent what is pos-
sible in the laboratory regarding implementation of BAC
clone and subclone libraries. Well-made libraries would be
expected to display characteristics reasonably close to these.

First, we make the conventional assumption of a uni-
form clone distribution. Techniques used for BAC clone li-
braries enable a high degree of uniformity (Osoegawa et al.
1998, 2000; Cheung et al. 2001; Osoegawa et al. 2001), and
subclone libraries are usually created by mechanical means,
which are not significantly biased (e.g., sonication). We as-
sume that cloning biases are small or can be minimized. Sec-
ond, we make the standard assumption of a constant clone
length L. Although length variability is largely governed
by fractionation protocols, it is typically small in practice
(Osoegawa et al. 1998). Third, chimerism is low in a well-
made library, for example, less than 1% for BACs (Osoegawa
et al. 2000), so it is ignored. Fourth, end effects are neglected
because they are genome and project specific. Although they
have little influence on large projects(Arratia et al. 1991; Bald-
ing and Torney 1991; Ewens et al. 1991), they can have a
small biasing effect on fingerprint mapping if L/G is compar-
atively large. Conversely, for circular architectures found in
bacterial fingerprint projects (Tomkins et al. 2001), the as-
sumption is identically satisfied. Some models account for
end effects on a linear representation of the DNA target; how-
ever, this is spurious for genomes with more than one chro-
mosome. One would have to properly model all chromo-
some-specific end effects. Lacking such genome-specific con-
siderations, the appropriate configuration is a circular DNA
target. Last, we assume that overlap detection can be ad-
equately modeled using the simple threshold constant T used
by previous theories (Lander and Waterman 1988; Roach
1995). This parameter can be thought of as an expected value
required for an overlap to be detected.

Theoretical Development
Let N be the number of clones that have been processed in a
fingerprint mapping or shotgun sequencing project and I be a
random variable representing the number of gaps i among
these N clones. Following Lander and Waterman (1988) and
Roach (1995), we define the effective clone length as
� = (L � T)/G. This expression accounts for the penalty in-
volved in not detecting an actual overlap. That is, if a real
overlap is less than T, a gap is assumed. No restrictions are
imposed on clone size except 0 < L/G < 1. In other words, we
do not explicitly invoke the asymptotic approximation.

We begin by deriving probabilities of gaps immediately
following particular sets of clones. Let the target DNA seg-
ment be represented by a circle of unit circumference so that
each of the N clones contributes a fractional coverage �. A gap
occurs when the starting positions of two clones are greater
than � apart. Following Solomon (1978), we can infer the
probability of gaps following particular sets of clones by ap-
plying a geometric translation operator to each set. For ex-
ample, the probability of a gap immediately following any
one specific clone of the N clones is f(1) = (1 � �)N � 1. For
gaps following any two particular clones, the probability is
f(2) = (1 � 2�)N � 1. Generalizing this procedure for m spe-
cific clones leads to

f �m� = �1 − m��+
N− 1, ( 3 )

where the “plus” notation (Siegel 1979) is defined as
(j)+ = max (0, j). This restriction arises from the fact that the
number of gaps is bounded by the minimum number of
clones required to cover the project exactly one time. In other
words, there can be, at most, a tiny gap between each clone as
1� coverage is approached. The probability of a number of
gaps greater than this value is zero. Results from equation 3
are biased upward as T increases because gaps are presumed
when overlaps are too small to be detected.

Next, we must account for the various ways these gap
arrangements can be realized. For example, in the case of
m = 2, gaps could follow the first and second clones, the first
and third clones, and so forth. Stevens’ Theorem (Stevens
1939; Solomon 1978) can be applied directly for this calcula-
tion. We thus obtain the probability density function for i
gaps distributed among N clones

p�i, N� = CN,i �
m= 0

N− i

CN− i,m � − 1�m f �m + i�, ( 4 )

where Cj,k is the binomial coefficient for j gaps taken k at a
time. By applying the definition of the moment-generating
function (Ross 2000), we obtain

��t� = E�etI� = �
i = 0

N

eti p�i, N�, ( 5 )

from which all moments of interest can be derived.
The standard gap statistic provided by previous models is

the expected number of gaps E 〈 I〉 resulting from N clones.
Evaluating the first moment E 〈 I〉 = ��(0), we obtain

Figure 3 Parametric characterization of how asymptotic theory
overpredicts expected value of gaps. Ordinate is scaled by the maxi-
mum exact expected value for each project.

Figure 4 Parametric characterization of how asymptotic theory
overpredicts standard deviation of gaps. Ordinate is scaled as in Fig-
ure 3.
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E�I� = �
i = 0

N

i p�i, N�. ( 6 )

This result is more general than corresponding expressions
given by Lander and Waterman (1988) and Roach (1995) be-
cause it can be applied with larger L/G ratios. Variance is a
useful measure of dispersion and can be computed as a com-
bination of the first and second moments �2 = E 〈 I2〉 � (E 〈 I〉 )2.
Evaluation of E 〈 I2〉 = ��(0) from equation 5 along with some
algebraic manipulation shows

�2 = �
i = 0

N

�i − E�I�� i p�i, N�. ( 7 )

Standard deviation � is obtained by taking the square root of
equation 7. Higher moments such as skewness and kurtosis
could be derived by similar operations.

These equations become progressively more difficult to
evaluate as L/G decreases. Specifically, N becomes very large
for coverages of interest, making the ranges of both the sum-

mations and the binomial coefficients correspondingly large.
Moreover, full precision of the binomial coefficients must be
retained, otherwise round-off error quickly destabilizes the
calculation. Here, we use Perl, which implements arbitrary
precision integer and floating point object classes (Wall et al.
2000). In most cases, we do not evaluate the equations “ex-
actly,” that is, over the entire distribution such that the total
probability is identically 1. Instead, we truncate computations
for the moments in equations 6 and 7 such that the total
probability is at least 0.9998. This dramatically reduces com-
putational time without significant loss of accuracy.

Asymptotic Approximation
When L/G is small enough, one can invoke the so-called as-
ymptotic approximation (Seed 1982; Torney 1991; Marr et al.
1992), whereby (1 � �)N → e��N for suitable � and N. In this
case, the specific probability in equation 3 follows the limit
[1 � (i + m)�]+

N � 1 → e��(i + m)(N � 1). Let b = e��(N � 1), then
equation 4 becomes

p�i, N� = bi CN,i �
m= 0

N− i

CN− i,m � − 1�m bm. ( 8 )

The summation in equation 8 is simply an expansion of
(1 � b)N � i. Thus, the density function in equation 4 reduces
to the binomial distribution

p�i, N� = CN,i b
i �1 − b�N− i. ( 9 )

Following equation 5, we substitute this expression to obtain
the moment-generating function, which can be simplified via
the Binomial Theorem to obtain

��t� = �bet + 1 − b�N. ( 10)

Equation 10 is the well-known generating function for a bi-
nomial distribution having a Bernoulli “success” probability
of b (Ross 2000). Deriving the appropriate moments, we find
the expected value to be

E�I� = N e − ��N − 1� ( 11)

and the variance to be

�2 = E�I� �1 − e − ��N− 1��. ( 12)

Higher moments can be derived in a straightforward fashion
by succeeding derivatives of �(t).

Figure 5 Repeat of a case study by Roach (1995) that compares
expected island length for a shotgun sequencing project having
G = 40,000, L = 500, and T = 20. Crosses represent average values
derived from a series of Monte Carlo simulations performed by Roach
(1995). Coordinate axes are scaled exactly as in Roach (1995).

Figure 6 Evolution of probability density function for a hypothetical
project (L/G = 0.001, T/L = 0) up to 5� coverage as evaluated by
equation 4. Arrows indicate whether the average number of gaps is
increasing (→ ) or decreasing (← ) for each distribution.

Figure 7 Dispersion of probability density function characterized by
the quotient of maximum standard deviation and maximum ex-
pected gaps.

Generalized Gap Model for Mapping and Sequencing

Genome Research 1947
www.genome.org



Availability
Programs implementing the theory developed in this article
are written in Perl and are freely available from the authors.
The Perl language itself and necessary modules used here are
freely available at www.cpan.org on the World Wide Web.
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